Research Article
BibTex RIS Cite
Year 2023, Volume: 16 Issue: 1, 379 - 397, 30.04.2023
https://doi.org/10.36890/iejg.1273631

Abstract

References

  • [1] Arslan, K., Deszcz, R., Ezentaş, R., Hotloś, M., Murathan, C.: On generalized Robertson-Walker spacetimes satisfying some curvature condition. Turkish J. Math. 38 (2), 353-373 (2014). https://doi.org/10.3906/mat-1304-3
  • [2] Besse, A. L.: Einstein Manifolds. Ergeb. Math. Grenzgeb. (3) 10. Springer. Berlin (1987).
  • [3] Cecil, T. E., Ryan, P. J.: Geometry of Hypersurfaces. Springer Monographs in Mathematics. Springer. New York, Heidelberg, Dodrecht, London (2015).
  • [4] Chen, B. Y.: Pseudo-Riemannian Geometry, δ-Invariants and Applications. World Scientific (2011).
  • [5] Chen, B.Y.: Differential Geometry of Warped Product Manifolds and Submanifolds. World Scientific (2017).
  • [6] Chen, B.-Y.: Recent developments inWintgen inequality andWintgen ideal submanifolds. International Electronic Journal Geometry 14 (1) , 1-40 (2021). https://doi.org/10.36890/iejg.838446
  • [7] Chojnacka-Dulas, J., Deszcz, R., Głogowska, M., Prvanović, M.: On warped products manifolds satisfying some curvature conditions. J. Geom. Phys. 74 , 328-341 (2013). https://doi.org/10.1016/j.geomphys.2013.08.007
  • [8] Decu, S., Deszcz, R., Haesen, S.: A classification of Roter type spacetimes. Int. J. Geom. Meth. Modern Phys. 18 (9) , art. 2150147, 13 pp. (2021). https://doi.org/10.1142/S0219887821501474
  • [9] Decu, S., Petrović-Torgašev, M., Šebeković, A., Verstraelen, L.: On the Roter type of Wintgen ideal submanifolds. Rev. Roumaine Math. Pures Appl. 57 (1) , 75-90 (2012).
  • [10] Defever, F., Deszcz, R., Prvanović, M.: On warped product manifolds satisfying some curvature condition of pseudosymmetry type. Bull. Greek Math. Soc. 36 , 43-67 (1994).
  • [11] Derdziński, A., Roter, W.: Some theorems on conformally symmetric manifolds. Tensor (N.S.). 32 (1), 11-23 (1978).
  • [12] Derdziński A., Roter, W.: Some properties of conformally symmetric manifolds which are not Ricci-recurrent. Tensor (N.S.). 34 (1), 11-20 (1980).
  • [13] Derdziński, A., Roter, W.: Projectively flat surfaces, null parallel distributions, and conformally symmetric manifolds. Tohoku Math. J. 59 (4), 565-602 (2007). https://doi.org/10.2748/tmj/1199649875
  • [14] Derdziński A., Roter,W.: Global properties of indefinite metrics with parallelWeyl tensor. In: Pure and Applied Differential Geometry - PADGE 2007. Shaker Verlag, Aachen, 63-72 (2007).
  • [15] Derdziński, A., Roter, W.: On compact manifolds admitting indefinite metrics with parallel Weyl tensor. J. Geom. Phys. 58 (9), 1137-1147 (2008). https://doi.org/10.1016/j.geomphys.2008.03.011
  • [16] Derdziński, A., Roter, W.: The local structure of conformally symmetric manifolds. Bull. Belg. Math. Soc. Simon Stevin. 16 (1), 117-128 (2009). DOI:2010.36045/bbms/1235574196
  • [17] Derdziński, A., Roter, W.: Compact pseudo-Riemannian manifolds with parallel Weyl tensor. Ann. Global Anal. Geom. 37, 73-90 (2010). https://doi.org/10.1007/s10455-009-9173-9
  • [18] Derdzinski, A., Terek, I.: New examples of compact Weyl-parallel manifolds. Preprint arXiv: 2210.03660v1 (2022).
  • [19] Derdzinski, A., Terek, I.: The topology of compact rank-one ECS manifolds. Preprint arXiv: 2210.09195v1 (2022).
  • [20] Deszcz, R.: On conformally flat Riemannian manifolds satisfying certain curvature conditions. Tensor (N.S.). 49 (2), 134-145 (1990).
  • [21] Deszcz, R.: On four-dimensional warped product manifolds satisfying certain pseudo-symmetry curvature conditions. Colloq. Math. 62 (1), 103-120 (1991). DOI: 10.4064/cm-62-1-103-120
  • [22] Deszcz, R.: On some Akivis-Goldberg type metrics. Publ. Inst. Math. (Beograd) (N.S.). 74 (88) , 71-83 (2003). DOI: 10.2298/PIM0374071D
  • [23] Deszcz, R., Dillen, F., Verstraelen, L., Vrancken, L.: Quasi-Einstein totally real submanifolds of the nearly Kähler 6-sphere. Tôhoku Math. J. 51 (4), 461-478 (1999). https://doi.org/10.2748/tmj/1178224715
  • [24] Deszcz, R., Głogowska, M., Hashiguchi, H., Hotloś, M., Yawata, M.: On semi-Riemannian manifolds satisfying some conformally invariant curvature condition. Colloq. Math. 131 (2), 149-170 (2013). DOI: 10.4064/cm131-2-1
  • [25] Deszcz, R., Głogowska, M., Hotloś, M.: On hypersurfaces satisfying conditions determined by the Opozda-Verstraelen affine curvature tensor. Ann. Polon. Math. 126 (3), 215-240 (2021). DOI: 10.4064/ap200715-6-5
  • [26] Deszcz, R., Głogowska, M., Hotloś, M., Jełowicki, J., Zafindratafa, G.: Curvature properties of some warped product manifolds. Poster, Conf. "Differential Geometry", Banach Conf. Center at B˛edlewo, June 19 to June 24 (2017).
  • [27] Deszcz, R., Głogowska, M., Hotloś, M., Sawicz, K.: A Survey on Generalized Einstein Metric Conditions. In: Advances in Lorentzian Geometry, Proceedings of the Lorentzian Geometry Conference in Berlin, AMS/IP Studies in Advanced Mathematics. 49, S.-T. Yau (series ed.), M. Plaue, A.D. Rendall and M. Scherfner (eds.), 27-46 (2011).
  • [28] Deszcz, R., Głogowska, M., Hotlośs, M., Sawicz, K.: Hypersurfaces in space forms satisfying a particular Roter type equation. Preprint arXiv: 2211.06700v2 (2022).
  • [29] Deszcz, R., Głogowska, M., Hotloś, M., ¸Sentürk, Z.: On certain quasi-Einstein semisymmetric hypersurfaces. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 41 , 151-164 (1998).
  • [30] Deszcz, R., Głogowska, M., Hotloś, M., Verstraelen, L.: On some generalized Einstein metric conditions on hypersurfaces in semi-Riemannian space forms. Colloq. Math. 96 (2), 149-166 (2003). DOI: 10.4064/cm96-2-1
  • [31] Deszcz, R., Głogowska, M., Hotloś, M., Zafindratafa, G.: On some curvature conditions of pseudosymmetry type. Period. Math. Hung. 70 (2), 153-170 (2015). DOI 10.1007/s10998-014-0081-9
  • [32] Deszcz, R., Głogowska, M., Hotloś, M., Zafindratafa, G.: Hypersurfaces in space forms satisfying some curvature conditions. J. Geom. Phys. 99, 218-231 (2016). https://doi.org/10.1016/j.geomphys.2015.10.010
  • [33] Deszcz, R., Głogowska, M., Jełowicki, J., Petrović-Torgašev, M., Zafindratafa, G.: On Riemann and Weyl compatible tensors. Publ. Inst. Math. (Beograd) (N.S.). 94 (108), 111-124 (2013). DOI: 10.2298/PIM1308111D
  • [34] Deszcz, R., Głogowska, M., Jełowicki, J., Zafindratafa, G.: Curvature properties of some class of warped product manifolds. Int. J. Geom. Methods Modern Phys. 13 (1), art. 1550135, 36 pp. (2016). https://doi.org/10.1142/S0219887815501352
  • [35] Deszcz, R., Głogowska, M., Petrović-Torgašev, M., Verstraelen, L.: Curvature properties of some class of minimal hypersurfaces in Euclidean spaces. Filomat. 29 (3), 479-492 (2015). DOI 10.2298/FIL1503479D
  • [36] Deszcz, R., Głogowska, M., Plaue, M., Sawicz, K., Scherfner, M.: On hypersurfaces in space forms satisfying particular curvature conditions of Tachibana type. Kragujevac J. Math. 35 (2), 223-247 (2011).
  • [37] Deszcz, R., Głogowska, M., Zafindratafa, G.: Hypersurfaces in space forms satisfying some generalized Einstein metric condition. J. Geom. Phys. 148, 103562 20 pp. (2020). https://doi.org/10.1016/j.geomphys.2019.103562
  • [38] Deszcz, R., Haesen, S., Verstraelen L.: On natural symmetries. Topics in Differential Geometry, Ch. 6. Editors A. Mihai, I. Mihai and R. Miron. Editura Academiei Romˆane (2008).
  • [39] Deszcz, R., Hotloś, M.: On a certain subclass of pseudosymmetric manifolds. Publ. Math. Debrecen. 53 (1-2), 29-48 (1998). DOI: 10.5486/PMD
  • [40] Deszcz, R., Hotloś,M.: On hypersurfaces with type number two in spaces of constant curvature. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 46, 19-34 (2003).
  • [41] Deszcz, R., Hotloś, M.: On geodesic mappings in a particular class of Roter spaces. Colloq. Math. 166 (2), 267-290 (2021). DOI: 10.4064/cm7797- 1-2021
  • [42] Deszcz, R., Hotloś, M., Jełowicki, J., Kundu, H., Shaikh, A. A.: Curvature properties of Gödel metric. Int. J. Geom. Meth. Modern Phys. 11(3), 1450025, 20 pp. (2014). https://doi.org/10.1142/S021988781450025X
  • [43] Deszcz, R., Hotloś, M., Şentürk, Z.: On curvature properties of certain quasi-Einstein hypersurfaces. Int. J. Math. 23 (7), 1250073 17 pp. (2012). https://doi.org/10.1142/S0129167X12500735
  • [44] Deszcz, R., Kowalczyk, D.: On some class of pseudosymmetric warped products. Colloq. Math. 97 (1), 7-22 (2003). DOI: 10.4064/cm97-1-2
  • [45] Deszcz, R., Petrović-Torgašev, M., Verstraelen, L., Zafindratafa, G.: On Chen ideal submanifolds satisfying some conditions of pseudo-symmetry type. Bull. Malaysian Math. Sci. Soc. 39 (1), 103-131 (2016). https://doi.org/10.1007/s40840-015-0164-7
  • [46] Deszcz, R., Plaue, M., Scherfner, M.: On Roter type warped products with 1-dimensional fibres. J. Geom. Phys. 69, 1-11 (2013). https://dx.doi.org/10.1016/j.geomphys.2013.02.006
  • [47] Deszcz, R., Scherfner, M.: On a particular class of warped products with fibres locally isometric to generalized Cartan hypersurfaces. Colloq. Math. 109 (1), 13-29 (2007). DOI: 10.4064/cm109-1-3
  • [48] Deszcz, R., Verstraelen, L.: Hypersurfaces of semi-Riemannian conformally flat manifolds. In: Geometry and Topology of Submanifolds, III. World Sci., River Edge, NJ, 131-147 (1991).
  • [49] Deszcz, R., Verstraelen, L., Vrancken, L.: The symmetry of warped product spacetimes. Gen. Relativ. Gravit. 23 (6), 671-681 (1991). https://doi.org/10.1007/BF00756772
  • [50] Deszcz, R., Verstraelen, L., Yaprak, Ş.: Warped products realizing a certain condition of pseudosymmetry type imposed on the Weyl curvature tensor. Chinese J. Math. 22 (2), 139-157 (1994). https://www.jstor.org/stable/43836548395 dergipark
  • [51] Deszcz, R., Verstraelen, L., Yaprak, ¸S.: On hypersurfaces with pseudosymmetric Weyl tensor. In: Geometry and Topology of Submanifolds, VIII, World Sci., River Edge, NJ, 111-120 (1996).
  • [52] Deszcz, R., Verstraelen, L., Yaprak, ¸S.: On 2-quasi-umbilical hypersurfaces in conformally flat spaces, Acta Math. Hungarica. 78 (1-2), 45-57 (1998). https://doi.org/10.1023/A:1006566319359
  • [53] Deszcz, R., Verstraelen, L., Yaprak, ¸S.: Hypersurfaces with pseudosymmetric Weyl tensor in conformally flat spaces. In: Geometry and Topology of Submanifolds, IX. World Sci., River Edge, NJ, 108-117 (1999).
  • [54] Deszcz, R., Yaprak, ¸S.: Curvature properties of certain pseudosymmetric manifolds. Publ. Math. Debrecen. 45 (3-4), 333-345 (1994). DOI: 10.5486/PMD
  • [55] Duggal, K. L., Sharma, R.: Hypersurfaces in a conformally flat space with curvature collineation. Internat. J. Math. and Math. Sci. 14 (3), 595-604 (1991). https://doi.org/10.1155/S0161171291000807
  • [56] Eisenhart, L.P.: Riemannian Geometry. Princeton Univ. Press. Princeton (1966).
  • [57] Eyasmin, S.: Hypersurfaces in a conformally flat space. Int. J. Geom. Methods Modern Phys. 18 (5), art. 2150067, pp. 7 (2021). https://doi.org/10.1142/S0219887821500675
  • [58] Głogowska, M.: Semi-Riemannian manifolds whose Weyl tensor is a Kulkarni-Nomizu square. Publ. Inst. Math. (Beograd) (N.S.). 72 (86), 95-106 (2002). DOI: 10.2298/PIM0272095G
  • [59] Głogowska, M.: Curvature conditions on hypersurfaces with two distinct principal curvatures. In: Banach Center Publ., Inst. Math. Polish Acad. Sci. 69, 133-143 (2005). DOI: 10.4064/bc69-0-8
  • [60] Głogowska, M.: On Roter type manifolds. In: Pure and Applied Differential Geometry - PADGE 2007. Shaker Verlag, Aachen. 114-122 (2007).
  • [61] Głogowska, M.: On quasi-Einstein Cartan type hypersurfaces, J. Geom. Phys. 58 (5), 599-614 (2008). doi:10.1016/j.geomphys.2007.12.012
  • [62] Griffiths, J.B.: Podolský, J.: Exact Space-Times in Einstein’s General Relativity. Cambridge Univ. Press (2009).
  • [63] Haesen, S., Verstraelen, L.: Properties of a scalar curvature invariant depending on two planes. Manuscripta Math. 122, 59-72 (2007). https://doi.org/10.1007/s00229-006-0056-0
  • [64] Haesen, S., Verstraelen, L.: Natural intrinsic geometrical symmetries. SIGMA. 5, 086, 15 pp. (2009). https://doi.org/10.3842/SIGMA.2009.086
  • [65] Hotloś, M.: On conformally symmetric warped products. Ann. Acad. Paedagog. Crac. 23. Studia Math. 4, 75-85 (2004).
  • [66] Kon, M.: Pseudo-Einstein real hypersurfaces in complex space forms. J. Differential Geom. 14 (3) , 339-354 (1979). DOI: 10.4310/jdg/1214435100
  • [67] Kowalczyk, D.: On some class of semisymmetric manifolds. Soochow J. Math. 27 (4), 445-461 (2001).
  • [68] Kowalczyk, D.: On the Reissner-Nordström-de Sitter type spacetimes. Tsukuba J. Math. 30 (2), 363-381 (2006). DOI: 10.21099/tkbjm/ 1496165068
  • [69] Kundu, H., Mandal, J. K., Baishya, K. K.: On hypersurfaces with semisymmetric and pseudosymmetric Weyl tensor embedded in a conformally flat manifold. Preprint, Research Square, 17 pp. (2022).
  • [70] Lumiste, Ü.: Semiparallel Submanifolds in Space Forms. Springer Science + Business Media, New York, LLC (2009).
  • [71] Maeda, Y.: On real hypersurfaces of a complex projective space. J. Math. Soc. Japan. 28 (3), 529-540 (1976). DOI: 10.2969/jmsj/02830529
  • [72] Sawicz, K.: On some class of hypersurfaces with three distinct principal curvatures. In: Banach Center Publ., Inst. Math. Polish Acad. Sci. 69, 145-156 (2005). DOI: 10.4064/bc69-0-9
  • [73] Sawicz, K.: On curvature characterization of some hypersurfaces in spaces of constant curvature. Publ. Inst. Math. (Beograd) (N.S.). 79 (93) , 95-107 (2006). DOI: 10.2298/PIM0693095S
  • [74] Sawicz, K.: Curvature properties of some class of hypersurfaces in Euclidean spaces. Publ. Inst. Math. (Beograd) (N.S.). 98 (112) , 165-177 (2015). DOI: 10.2298/PIM141025001S
  • [75] Shaikh, A. A., Deszcz, R., Hotlo´s, M., Jełowicki, J., Kundu, H.: On pseudosymmetric manifolds. Publ. Math. Debrecen 86 (3-4) , 433-456 (2015). DOI: 10.5486/PMD.2015.7057
  • [76] Shaikh, A. A., Kundu, H.: On warped product generalized Roter type manifolds. Balkan J. Geom. Appl. 21 (2), 82-94 (2016).
  • [77] Shaikh, A. A., Kundu, H.: On generalized Roter type manifolds. Kragujevac J. Math. 43 (3), 471-493 (2019).
  • [78] Sharma, R.: Cauchy-Riemann (CR) - submanifolds of semi-Riemannian manifolds with applications to relativity and hydrodynamics. Electronic Theses and Dissertations, 1374. Windsor, Ontario, Canada. Ph.D. thesis, University of Windsor (1986).https://scholar.uwindsor.ca/etd/1374
  • [79] Stuchlik, Z., Hledik, S.: Properties of the Reissner-Nordström spacetimes with a nonzero cosmological constant. Acta Phys. Slovaca. 52 (5), 363-407 (2002).
  • [80] Szabó, Z. I.: Structure theorems on Riemannian spaces satisfying R(X, Y ) · R = 0. I. The local version. J. Differential Geom. 17 (4), 531-582 (1982). DOI: 10.4310/jdg/1214437486
  • [81] Verstraelen, L.: Comments on the pseudo-symmetry in the sense of Ryszard Deszcz. In: Geometry and Topology of Submanifolds, VI. World Sci., Singapore, 119-209 (1994).
  • [82] Verstraelen, L.: A coincise mini history of Geometry. Kragujevac J. Math. 38 (1), 5-21 (2014).
  • [83] Verstraelen, L.: Natural extrinsic geometrical symmetries – an introduction. In: Recent advances in the geometry of submanifolds: dedicated to the memory of Franki Dillen (1963-2013). AMS special session on geometry of submanifolds, San Francisco State University, San Francisco, CA, USA, October 25-26, 2014, and the AMS special session on recent advances in the geometry of submanifolds: dedicated to the memory of Franki Dillen (1963–2013), Michigan State University, East Lansing, Ml, USA, March 14-15, 2015. Proceedings. Providence. Suceavˇa, Bogdan D. (ed.) et al. Contemporary Math. 674, 5-16 (2016). DOI: http://dx.doi.org/10.1090/conm/674
  • [84] Verstraelen, L.: Foreword, In: B.-Y. Chen, Differential Geometry ofWarped Product Manifolds and Submanifolds.World Scientific, vii-xxi (2017).
  • [85] Verstraelen, L.: Submanifolds theory – a contemplation of submanifolds. In: Geometry of Submanifolds. AMS special session in honor of Bang- Yen Chen’s 75th birthday, University of Michigan, Ann Arbor, Michigan, October 20-21, 2018. Providence, RI: American Mathematical Society (AMS). J. Van der Veken (ed) et al. Contemporary Math. 756. 21-56 (2020). DOI: https://doi.org/10.1090/conm/756
  • [86] Yaprak, Ş.: Intrinsic and extrinsic differential geometry concerning curvature conditions of pseudosymmetry type. Ph.D. thesis, Katholieke Universiteit Leuven (1993).
  • [87] Zafindratafa, G.: Sous-variétés soumises a des conditions de courbure (in French). Ph.D. thesis, Katholieke Universiteit Leuven (1991).

A Note on Some Generalized Curvature Tensor

Year 2023, Volume: 16 Issue: 1, 379 - 397, 30.04.2023
https://doi.org/10.36890/iejg.1273631

Abstract

For any semi-Riemannian manifold (M, g) we define some generalized curvature tensor E as a linear combination of Kulkarni-Nomizu products formed by the metric tensor, the Ricci tensor and its square of given manifold. That tensor is closely related to quasi-Einstein spaces, Roter spaces and some Roter type spaces.

References

  • [1] Arslan, K., Deszcz, R., Ezentaş, R., Hotloś, M., Murathan, C.: On generalized Robertson-Walker spacetimes satisfying some curvature condition. Turkish J. Math. 38 (2), 353-373 (2014). https://doi.org/10.3906/mat-1304-3
  • [2] Besse, A. L.: Einstein Manifolds. Ergeb. Math. Grenzgeb. (3) 10. Springer. Berlin (1987).
  • [3] Cecil, T. E., Ryan, P. J.: Geometry of Hypersurfaces. Springer Monographs in Mathematics. Springer. New York, Heidelberg, Dodrecht, London (2015).
  • [4] Chen, B. Y.: Pseudo-Riemannian Geometry, δ-Invariants and Applications. World Scientific (2011).
  • [5] Chen, B.Y.: Differential Geometry of Warped Product Manifolds and Submanifolds. World Scientific (2017).
  • [6] Chen, B.-Y.: Recent developments inWintgen inequality andWintgen ideal submanifolds. International Electronic Journal Geometry 14 (1) , 1-40 (2021). https://doi.org/10.36890/iejg.838446
  • [7] Chojnacka-Dulas, J., Deszcz, R., Głogowska, M., Prvanović, M.: On warped products manifolds satisfying some curvature conditions. J. Geom. Phys. 74 , 328-341 (2013). https://doi.org/10.1016/j.geomphys.2013.08.007
  • [8] Decu, S., Deszcz, R., Haesen, S.: A classification of Roter type spacetimes. Int. J. Geom. Meth. Modern Phys. 18 (9) , art. 2150147, 13 pp. (2021). https://doi.org/10.1142/S0219887821501474
  • [9] Decu, S., Petrović-Torgašev, M., Šebeković, A., Verstraelen, L.: On the Roter type of Wintgen ideal submanifolds. Rev. Roumaine Math. Pures Appl. 57 (1) , 75-90 (2012).
  • [10] Defever, F., Deszcz, R., Prvanović, M.: On warped product manifolds satisfying some curvature condition of pseudosymmetry type. Bull. Greek Math. Soc. 36 , 43-67 (1994).
  • [11] Derdziński, A., Roter, W.: Some theorems on conformally symmetric manifolds. Tensor (N.S.). 32 (1), 11-23 (1978).
  • [12] Derdziński A., Roter, W.: Some properties of conformally symmetric manifolds which are not Ricci-recurrent. Tensor (N.S.). 34 (1), 11-20 (1980).
  • [13] Derdziński, A., Roter, W.: Projectively flat surfaces, null parallel distributions, and conformally symmetric manifolds. Tohoku Math. J. 59 (4), 565-602 (2007). https://doi.org/10.2748/tmj/1199649875
  • [14] Derdziński A., Roter,W.: Global properties of indefinite metrics with parallelWeyl tensor. In: Pure and Applied Differential Geometry - PADGE 2007. Shaker Verlag, Aachen, 63-72 (2007).
  • [15] Derdziński, A., Roter, W.: On compact manifolds admitting indefinite metrics with parallel Weyl tensor. J. Geom. Phys. 58 (9), 1137-1147 (2008). https://doi.org/10.1016/j.geomphys.2008.03.011
  • [16] Derdziński, A., Roter, W.: The local structure of conformally symmetric manifolds. Bull. Belg. Math. Soc. Simon Stevin. 16 (1), 117-128 (2009). DOI:2010.36045/bbms/1235574196
  • [17] Derdziński, A., Roter, W.: Compact pseudo-Riemannian manifolds with parallel Weyl tensor. Ann. Global Anal. Geom. 37, 73-90 (2010). https://doi.org/10.1007/s10455-009-9173-9
  • [18] Derdzinski, A., Terek, I.: New examples of compact Weyl-parallel manifolds. Preprint arXiv: 2210.03660v1 (2022).
  • [19] Derdzinski, A., Terek, I.: The topology of compact rank-one ECS manifolds. Preprint arXiv: 2210.09195v1 (2022).
  • [20] Deszcz, R.: On conformally flat Riemannian manifolds satisfying certain curvature conditions. Tensor (N.S.). 49 (2), 134-145 (1990).
  • [21] Deszcz, R.: On four-dimensional warped product manifolds satisfying certain pseudo-symmetry curvature conditions. Colloq. Math. 62 (1), 103-120 (1991). DOI: 10.4064/cm-62-1-103-120
  • [22] Deszcz, R.: On some Akivis-Goldberg type metrics. Publ. Inst. Math. (Beograd) (N.S.). 74 (88) , 71-83 (2003). DOI: 10.2298/PIM0374071D
  • [23] Deszcz, R., Dillen, F., Verstraelen, L., Vrancken, L.: Quasi-Einstein totally real submanifolds of the nearly Kähler 6-sphere. Tôhoku Math. J. 51 (4), 461-478 (1999). https://doi.org/10.2748/tmj/1178224715
  • [24] Deszcz, R., Głogowska, M., Hashiguchi, H., Hotloś, M., Yawata, M.: On semi-Riemannian manifolds satisfying some conformally invariant curvature condition. Colloq. Math. 131 (2), 149-170 (2013). DOI: 10.4064/cm131-2-1
  • [25] Deszcz, R., Głogowska, M., Hotloś, M.: On hypersurfaces satisfying conditions determined by the Opozda-Verstraelen affine curvature tensor. Ann. Polon. Math. 126 (3), 215-240 (2021). DOI: 10.4064/ap200715-6-5
  • [26] Deszcz, R., Głogowska, M., Hotloś, M., Jełowicki, J., Zafindratafa, G.: Curvature properties of some warped product manifolds. Poster, Conf. "Differential Geometry", Banach Conf. Center at B˛edlewo, June 19 to June 24 (2017).
  • [27] Deszcz, R., Głogowska, M., Hotloś, M., Sawicz, K.: A Survey on Generalized Einstein Metric Conditions. In: Advances in Lorentzian Geometry, Proceedings of the Lorentzian Geometry Conference in Berlin, AMS/IP Studies in Advanced Mathematics. 49, S.-T. Yau (series ed.), M. Plaue, A.D. Rendall and M. Scherfner (eds.), 27-46 (2011).
  • [28] Deszcz, R., Głogowska, M., Hotlośs, M., Sawicz, K.: Hypersurfaces in space forms satisfying a particular Roter type equation. Preprint arXiv: 2211.06700v2 (2022).
  • [29] Deszcz, R., Głogowska, M., Hotloś, M., ¸Sentürk, Z.: On certain quasi-Einstein semisymmetric hypersurfaces. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 41 , 151-164 (1998).
  • [30] Deszcz, R., Głogowska, M., Hotloś, M., Verstraelen, L.: On some generalized Einstein metric conditions on hypersurfaces in semi-Riemannian space forms. Colloq. Math. 96 (2), 149-166 (2003). DOI: 10.4064/cm96-2-1
  • [31] Deszcz, R., Głogowska, M., Hotloś, M., Zafindratafa, G.: On some curvature conditions of pseudosymmetry type. Period. Math. Hung. 70 (2), 153-170 (2015). DOI 10.1007/s10998-014-0081-9
  • [32] Deszcz, R., Głogowska, M., Hotloś, M., Zafindratafa, G.: Hypersurfaces in space forms satisfying some curvature conditions. J. Geom. Phys. 99, 218-231 (2016). https://doi.org/10.1016/j.geomphys.2015.10.010
  • [33] Deszcz, R., Głogowska, M., Jełowicki, J., Petrović-Torgašev, M., Zafindratafa, G.: On Riemann and Weyl compatible tensors. Publ. Inst. Math. (Beograd) (N.S.). 94 (108), 111-124 (2013). DOI: 10.2298/PIM1308111D
  • [34] Deszcz, R., Głogowska, M., Jełowicki, J., Zafindratafa, G.: Curvature properties of some class of warped product manifolds. Int. J. Geom. Methods Modern Phys. 13 (1), art. 1550135, 36 pp. (2016). https://doi.org/10.1142/S0219887815501352
  • [35] Deszcz, R., Głogowska, M., Petrović-Torgašev, M., Verstraelen, L.: Curvature properties of some class of minimal hypersurfaces in Euclidean spaces. Filomat. 29 (3), 479-492 (2015). DOI 10.2298/FIL1503479D
  • [36] Deszcz, R., Głogowska, M., Plaue, M., Sawicz, K., Scherfner, M.: On hypersurfaces in space forms satisfying particular curvature conditions of Tachibana type. Kragujevac J. Math. 35 (2), 223-247 (2011).
  • [37] Deszcz, R., Głogowska, M., Zafindratafa, G.: Hypersurfaces in space forms satisfying some generalized Einstein metric condition. J. Geom. Phys. 148, 103562 20 pp. (2020). https://doi.org/10.1016/j.geomphys.2019.103562
  • [38] Deszcz, R., Haesen, S., Verstraelen L.: On natural symmetries. Topics in Differential Geometry, Ch. 6. Editors A. Mihai, I. Mihai and R. Miron. Editura Academiei Romˆane (2008).
  • [39] Deszcz, R., Hotloś, M.: On a certain subclass of pseudosymmetric manifolds. Publ. Math. Debrecen. 53 (1-2), 29-48 (1998). DOI: 10.5486/PMD
  • [40] Deszcz, R., Hotloś,M.: On hypersurfaces with type number two in spaces of constant curvature. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 46, 19-34 (2003).
  • [41] Deszcz, R., Hotloś, M.: On geodesic mappings in a particular class of Roter spaces. Colloq. Math. 166 (2), 267-290 (2021). DOI: 10.4064/cm7797- 1-2021
  • [42] Deszcz, R., Hotloś, M., Jełowicki, J., Kundu, H., Shaikh, A. A.: Curvature properties of Gödel metric. Int. J. Geom. Meth. Modern Phys. 11(3), 1450025, 20 pp. (2014). https://doi.org/10.1142/S021988781450025X
  • [43] Deszcz, R., Hotloś, M., Şentürk, Z.: On curvature properties of certain quasi-Einstein hypersurfaces. Int. J. Math. 23 (7), 1250073 17 pp. (2012). https://doi.org/10.1142/S0129167X12500735
  • [44] Deszcz, R., Kowalczyk, D.: On some class of pseudosymmetric warped products. Colloq. Math. 97 (1), 7-22 (2003). DOI: 10.4064/cm97-1-2
  • [45] Deszcz, R., Petrović-Torgašev, M., Verstraelen, L., Zafindratafa, G.: On Chen ideal submanifolds satisfying some conditions of pseudo-symmetry type. Bull. Malaysian Math. Sci. Soc. 39 (1), 103-131 (2016). https://doi.org/10.1007/s40840-015-0164-7
  • [46] Deszcz, R., Plaue, M., Scherfner, M.: On Roter type warped products with 1-dimensional fibres. J. Geom. Phys. 69, 1-11 (2013). https://dx.doi.org/10.1016/j.geomphys.2013.02.006
  • [47] Deszcz, R., Scherfner, M.: On a particular class of warped products with fibres locally isometric to generalized Cartan hypersurfaces. Colloq. Math. 109 (1), 13-29 (2007). DOI: 10.4064/cm109-1-3
  • [48] Deszcz, R., Verstraelen, L.: Hypersurfaces of semi-Riemannian conformally flat manifolds. In: Geometry and Topology of Submanifolds, III. World Sci., River Edge, NJ, 131-147 (1991).
  • [49] Deszcz, R., Verstraelen, L., Vrancken, L.: The symmetry of warped product spacetimes. Gen. Relativ. Gravit. 23 (6), 671-681 (1991). https://doi.org/10.1007/BF00756772
  • [50] Deszcz, R., Verstraelen, L., Yaprak, Ş.: Warped products realizing a certain condition of pseudosymmetry type imposed on the Weyl curvature tensor. Chinese J. Math. 22 (2), 139-157 (1994). https://www.jstor.org/stable/43836548395 dergipark
  • [51] Deszcz, R., Verstraelen, L., Yaprak, ¸S.: On hypersurfaces with pseudosymmetric Weyl tensor. In: Geometry and Topology of Submanifolds, VIII, World Sci., River Edge, NJ, 111-120 (1996).
  • [52] Deszcz, R., Verstraelen, L., Yaprak, ¸S.: On 2-quasi-umbilical hypersurfaces in conformally flat spaces, Acta Math. Hungarica. 78 (1-2), 45-57 (1998). https://doi.org/10.1023/A:1006566319359
  • [53] Deszcz, R., Verstraelen, L., Yaprak, ¸S.: Hypersurfaces with pseudosymmetric Weyl tensor in conformally flat spaces. In: Geometry and Topology of Submanifolds, IX. World Sci., River Edge, NJ, 108-117 (1999).
  • [54] Deszcz, R., Yaprak, ¸S.: Curvature properties of certain pseudosymmetric manifolds. Publ. Math. Debrecen. 45 (3-4), 333-345 (1994). DOI: 10.5486/PMD
  • [55] Duggal, K. L., Sharma, R.: Hypersurfaces in a conformally flat space with curvature collineation. Internat. J. Math. and Math. Sci. 14 (3), 595-604 (1991). https://doi.org/10.1155/S0161171291000807
  • [56] Eisenhart, L.P.: Riemannian Geometry. Princeton Univ. Press. Princeton (1966).
  • [57] Eyasmin, S.: Hypersurfaces in a conformally flat space. Int. J. Geom. Methods Modern Phys. 18 (5), art. 2150067, pp. 7 (2021). https://doi.org/10.1142/S0219887821500675
  • [58] Głogowska, M.: Semi-Riemannian manifolds whose Weyl tensor is a Kulkarni-Nomizu square. Publ. Inst. Math. (Beograd) (N.S.). 72 (86), 95-106 (2002). DOI: 10.2298/PIM0272095G
  • [59] Głogowska, M.: Curvature conditions on hypersurfaces with two distinct principal curvatures. In: Banach Center Publ., Inst. Math. Polish Acad. Sci. 69, 133-143 (2005). DOI: 10.4064/bc69-0-8
  • [60] Głogowska, M.: On Roter type manifolds. In: Pure and Applied Differential Geometry - PADGE 2007. Shaker Verlag, Aachen. 114-122 (2007).
  • [61] Głogowska, M.: On quasi-Einstein Cartan type hypersurfaces, J. Geom. Phys. 58 (5), 599-614 (2008). doi:10.1016/j.geomphys.2007.12.012
  • [62] Griffiths, J.B.: Podolský, J.: Exact Space-Times in Einstein’s General Relativity. Cambridge Univ. Press (2009).
  • [63] Haesen, S., Verstraelen, L.: Properties of a scalar curvature invariant depending on two planes. Manuscripta Math. 122, 59-72 (2007). https://doi.org/10.1007/s00229-006-0056-0
  • [64] Haesen, S., Verstraelen, L.: Natural intrinsic geometrical symmetries. SIGMA. 5, 086, 15 pp. (2009). https://doi.org/10.3842/SIGMA.2009.086
  • [65] Hotloś, M.: On conformally symmetric warped products. Ann. Acad. Paedagog. Crac. 23. Studia Math. 4, 75-85 (2004).
  • [66] Kon, M.: Pseudo-Einstein real hypersurfaces in complex space forms. J. Differential Geom. 14 (3) , 339-354 (1979). DOI: 10.4310/jdg/1214435100
  • [67] Kowalczyk, D.: On some class of semisymmetric manifolds. Soochow J. Math. 27 (4), 445-461 (2001).
  • [68] Kowalczyk, D.: On the Reissner-Nordström-de Sitter type spacetimes. Tsukuba J. Math. 30 (2), 363-381 (2006). DOI: 10.21099/tkbjm/ 1496165068
  • [69] Kundu, H., Mandal, J. K., Baishya, K. K.: On hypersurfaces with semisymmetric and pseudosymmetric Weyl tensor embedded in a conformally flat manifold. Preprint, Research Square, 17 pp. (2022).
  • [70] Lumiste, Ü.: Semiparallel Submanifolds in Space Forms. Springer Science + Business Media, New York, LLC (2009).
  • [71] Maeda, Y.: On real hypersurfaces of a complex projective space. J. Math. Soc. Japan. 28 (3), 529-540 (1976). DOI: 10.2969/jmsj/02830529
  • [72] Sawicz, K.: On some class of hypersurfaces with three distinct principal curvatures. In: Banach Center Publ., Inst. Math. Polish Acad. Sci. 69, 145-156 (2005). DOI: 10.4064/bc69-0-9
  • [73] Sawicz, K.: On curvature characterization of some hypersurfaces in spaces of constant curvature. Publ. Inst. Math. (Beograd) (N.S.). 79 (93) , 95-107 (2006). DOI: 10.2298/PIM0693095S
  • [74] Sawicz, K.: Curvature properties of some class of hypersurfaces in Euclidean spaces. Publ. Inst. Math. (Beograd) (N.S.). 98 (112) , 165-177 (2015). DOI: 10.2298/PIM141025001S
  • [75] Shaikh, A. A., Deszcz, R., Hotlo´s, M., Jełowicki, J., Kundu, H.: On pseudosymmetric manifolds. Publ. Math. Debrecen 86 (3-4) , 433-456 (2015). DOI: 10.5486/PMD.2015.7057
  • [76] Shaikh, A. A., Kundu, H.: On warped product generalized Roter type manifolds. Balkan J. Geom. Appl. 21 (2), 82-94 (2016).
  • [77] Shaikh, A. A., Kundu, H.: On generalized Roter type manifolds. Kragujevac J. Math. 43 (3), 471-493 (2019).
  • [78] Sharma, R.: Cauchy-Riemann (CR) - submanifolds of semi-Riemannian manifolds with applications to relativity and hydrodynamics. Electronic Theses and Dissertations, 1374. Windsor, Ontario, Canada. Ph.D. thesis, University of Windsor (1986).https://scholar.uwindsor.ca/etd/1374
  • [79] Stuchlik, Z., Hledik, S.: Properties of the Reissner-Nordström spacetimes with a nonzero cosmological constant. Acta Phys. Slovaca. 52 (5), 363-407 (2002).
  • [80] Szabó, Z. I.: Structure theorems on Riemannian spaces satisfying R(X, Y ) · R = 0. I. The local version. J. Differential Geom. 17 (4), 531-582 (1982). DOI: 10.4310/jdg/1214437486
  • [81] Verstraelen, L.: Comments on the pseudo-symmetry in the sense of Ryszard Deszcz. In: Geometry and Topology of Submanifolds, VI. World Sci., Singapore, 119-209 (1994).
  • [82] Verstraelen, L.: A coincise mini history of Geometry. Kragujevac J. Math. 38 (1), 5-21 (2014).
  • [83] Verstraelen, L.: Natural extrinsic geometrical symmetries – an introduction. In: Recent advances in the geometry of submanifolds: dedicated to the memory of Franki Dillen (1963-2013). AMS special session on geometry of submanifolds, San Francisco State University, San Francisco, CA, USA, October 25-26, 2014, and the AMS special session on recent advances in the geometry of submanifolds: dedicated to the memory of Franki Dillen (1963–2013), Michigan State University, East Lansing, Ml, USA, March 14-15, 2015. Proceedings. Providence. Suceavˇa, Bogdan D. (ed.) et al. Contemporary Math. 674, 5-16 (2016). DOI: http://dx.doi.org/10.1090/conm/674
  • [84] Verstraelen, L.: Foreword, In: B.-Y. Chen, Differential Geometry ofWarped Product Manifolds and Submanifolds.World Scientific, vii-xxi (2017).
  • [85] Verstraelen, L.: Submanifolds theory – a contemplation of submanifolds. In: Geometry of Submanifolds. AMS special session in honor of Bang- Yen Chen’s 75th birthday, University of Michigan, Ann Arbor, Michigan, October 20-21, 2018. Providence, RI: American Mathematical Society (AMS). J. Van der Veken (ed) et al. Contemporary Math. 756. 21-56 (2020). DOI: https://doi.org/10.1090/conm/756
  • [86] Yaprak, Ş.: Intrinsic and extrinsic differential geometry concerning curvature conditions of pseudosymmetry type. Ph.D. thesis, Katholieke Universiteit Leuven (1993).
  • [87] Zafindratafa, G.: Sous-variétés soumises a des conditions de courbure (in French). Ph.D. thesis, Katholieke Universiteit Leuven (1991).
There are 87 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Ryszard Deszcz 0000-0002-5133-5455

Małgorzata Głogowska 0000-0002-4881-9141

Marian Hotloś This is me 0000-0002-4165-4348

Miroslava Petrović-torgašev 0000-0002-9140-833X

Georges Zafındratafa This is me 0009-0001-7618-4606

Early Pub Date April 27, 2023
Publication Date April 30, 2023
Acceptance Date April 27, 2023
Published in Issue Year 2023 Volume: 16 Issue: 1

Cite

APA Deszcz, R., Głogowska, M., Hotloś, M., Petrović-torgašev, M., et al. (2023). A Note on Some Generalized Curvature Tensor. International Electronic Journal of Geometry, 16(1), 379-397. https://doi.org/10.36890/iejg.1273631
AMA Deszcz R, Głogowska M, Hotloś M, Petrović-torgašev M, Zafındratafa G. A Note on Some Generalized Curvature Tensor. Int. Electron. J. Geom. April 2023;16(1):379-397. doi:10.36890/iejg.1273631
Chicago Deszcz, Ryszard, Małgorzata Głogowska, Marian Hotloś, Miroslava Petrović-torgašev, and Georges Zafındratafa. “A Note on Some Generalized Curvature Tensor”. International Electronic Journal of Geometry 16, no. 1 (April 2023): 379-97. https://doi.org/10.36890/iejg.1273631.
EndNote Deszcz R, Głogowska M, Hotloś M, Petrović-torgašev M, Zafındratafa G (April 1, 2023) A Note on Some Generalized Curvature Tensor. International Electronic Journal of Geometry 16 1 379–397.
IEEE R. Deszcz, M. Głogowska, M. Hotloś, M. Petrović-torgašev, and G. Zafındratafa, “A Note on Some Generalized Curvature Tensor”, Int. Electron. J. Geom., vol. 16, no. 1, pp. 379–397, 2023, doi: 10.36890/iejg.1273631.
ISNAD Deszcz, Ryszard et al. “A Note on Some Generalized Curvature Tensor”. International Electronic Journal of Geometry 16/1 (April 2023), 379-397. https://doi.org/10.36890/iejg.1273631.
JAMA Deszcz R, Głogowska M, Hotloś M, Petrović-torgašev M, Zafındratafa G. A Note on Some Generalized Curvature Tensor. Int. Electron. J. Geom. 2023;16:379–397.
MLA Deszcz, Ryszard et al. “A Note on Some Generalized Curvature Tensor”. International Electronic Journal of Geometry, vol. 16, no. 1, 2023, pp. 379-97, doi:10.36890/iejg.1273631.
Vancouver Deszcz R, Głogowska M, Hotloś M, Petrović-torgašev M, Zafındratafa G. A Note on Some Generalized Curvature Tensor. Int. Electron. J. Geom. 2023;16(1):379-97.