Research Article
BibTex RIS Cite
Year 2023, Volume: 16 Issue: 2, 689 - 696, 29.10.2023
https://doi.org/10.36890/iejg.1255469

Abstract

References

  • [1] Benz, W.: Über Möbiusebenen. Jahresbericht der Deutschen Mathematiker-Vereinigung. 63 (Abt. 1), 1–27 (1960).
  • [2] Chen, Y.: Der Satz von Miquel in der Möbiusebene. Mathematische Annalen. 186, 81–100 (1970).
  • [3] Dembowski, P.: Finite geometries. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44. Springer-Verlag, Berlin-New York (1968).
  • [4] Hering, C.: Eine Klassifikation der Möbius-Ebenen. Mathematische Zeitschrift. 87, 252–262 (1965).
  • [5] Krier, N.: The Hering classification of Möbius planes. In: Proceedings of the International Conference on Projective Planes, Washington State Univerity, Pullman, Wash., 1973. Washington State University Press, Pullman. 157–163 (1973).
  • [6] Li, H., Xu, R., Zhang, N.: On Miquel’s five-circle theorem. In: Hongbo Li, Peter J. Olver, and Gerald Sommer (eds). Computer Algebra and Geometric Algebra with Applications. Springer, Berlin Heidelberg. 217–228 (2005).
  • [7] Miquel, A.: Théorèmes de géométrie. Journal de Mathématiques Pures et Appliquées. 3, 485–487 (1838).

The Pentagon Theorem in Miquelian Möbius Planes

Year 2023, Volume: 16 Issue: 2, 689 - 696, 29.10.2023
https://doi.org/10.36890/iejg.1255469

Abstract

We give an algebraic proof of the Pentagon Theorem. The proof works in all Miquelian Möbius planes obtained from a separable quadratic field extension. In particular, the theorem holds in every finite Miquelian plane. The arguments also reveal that the five concyclic points in the Pentagon Theorem are either pairwise distinct or identical to one single point. In addition we identify five additional quintuples of points in the pentagon configuration which are concyclic.

References

  • [1] Benz, W.: Über Möbiusebenen. Jahresbericht der Deutschen Mathematiker-Vereinigung. 63 (Abt. 1), 1–27 (1960).
  • [2] Chen, Y.: Der Satz von Miquel in der Möbiusebene. Mathematische Annalen. 186, 81–100 (1970).
  • [3] Dembowski, P.: Finite geometries. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44. Springer-Verlag, Berlin-New York (1968).
  • [4] Hering, C.: Eine Klassifikation der Möbius-Ebenen. Mathematische Zeitschrift. 87, 252–262 (1965).
  • [5] Krier, N.: The Hering classification of Möbius planes. In: Proceedings of the International Conference on Projective Planes, Washington State Univerity, Pullman, Wash., 1973. Washington State University Press, Pullman. 157–163 (1973).
  • [6] Li, H., Xu, R., Zhang, N.: On Miquel’s five-circle theorem. In: Hongbo Li, Peter J. Olver, and Gerald Sommer (eds). Computer Algebra and Geometric Algebra with Applications. Springer, Berlin Heidelberg. 217–228 (2005).
  • [7] Miquel, A.: Théorèmes de géométrie. Journal de Mathématiques Pures et Appliquées. 3, 485–487 (1838).
There are 7 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Lorenz Halbeısen 0000-0001-6078-7237

Norbert Hungerbühler 0000-0001-6191-0022

Vanessa Loureiro 0009-0002-1999-5696

Early Pub Date October 25, 2023
Publication Date October 29, 2023
Acceptance Date September 27, 2023
Published in Issue Year 2023 Volume: 16 Issue: 2

Cite

APA Halbeısen, L., Hungerbühler, N., & Loureiro, V. (2023). The Pentagon Theorem in Miquelian Möbius Planes. International Electronic Journal of Geometry, 16(2), 689-696. https://doi.org/10.36890/iejg.1255469
AMA Halbeısen L, Hungerbühler N, Loureiro V. The Pentagon Theorem in Miquelian Möbius Planes. Int. Electron. J. Geom. October 2023;16(2):689-696. doi:10.36890/iejg.1255469
Chicago Halbeısen, Lorenz, Norbert Hungerbühler, and Vanessa Loureiro. “The Pentagon Theorem in Miquelian Möbius Planes”. International Electronic Journal of Geometry 16, no. 2 (October 2023): 689-96. https://doi.org/10.36890/iejg.1255469.
EndNote Halbeısen L, Hungerbühler N, Loureiro V (October 1, 2023) The Pentagon Theorem in Miquelian Möbius Planes. International Electronic Journal of Geometry 16 2 689–696.
IEEE L. Halbeısen, N. Hungerbühler, and V. Loureiro, “The Pentagon Theorem in Miquelian Möbius Planes”, Int. Electron. J. Geom., vol. 16, no. 2, pp. 689–696, 2023, doi: 10.36890/iejg.1255469.
ISNAD Halbeısen, Lorenz et al. “The Pentagon Theorem in Miquelian Möbius Planes”. International Electronic Journal of Geometry 16/2 (October 2023), 689-696. https://doi.org/10.36890/iejg.1255469.
JAMA Halbeısen L, Hungerbühler N, Loureiro V. The Pentagon Theorem in Miquelian Möbius Planes. Int. Electron. J. Geom. 2023;16:689–696.
MLA Halbeısen, Lorenz et al. “The Pentagon Theorem in Miquelian Möbius Planes”. International Electronic Journal of Geometry, vol. 16, no. 2, 2023, pp. 689-96, doi:10.36890/iejg.1255469.
Vancouver Halbeısen L, Hungerbühler N, Loureiro V. The Pentagon Theorem in Miquelian Möbius Planes. Int. Electron. J. Geom. 2023;16(2):689-96.