Research Article
BibTex RIS Cite

On Four Dimensional Hermitian Manifolds

Year 2023, Volume: 16 Issue: 2, 697 - 706, 29.10.2023
https://doi.org/10.36890/iejg.1258996

Abstract

The present paper is devoted to 4-dimentional Hermitain manifold. We give a new necessary and sufficient condition of integrability and we introduce a new class of locally conformal Kähler manifolds that we consider a twin of the Vaisman ones. Then, some basic properties of this class is discussed, also the existence of such manifolds is shown with concrete examples.

Thanks

It should be noted that this article is directed specifically to participate in the special issue of honoring the memory of the Prof. Dr. Krishan Lal Duggal.

References

  • [1] Dragomir, S., Ornea, L.: Locally Conformal Kähler Geometry. Progress in Mathematics, vol. 55. Birkhäuser Boston, MA (1998). https://doi.org/10.1007/978-1-4612-2026-8
  • [2] Gray, A., Hervella, L. M.: The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4) 123, 35-58 (1980).
  • [3] Kenmotsu, K.: A class of almost contact Riemannian manifolds. Tohoku Math. J., 24, 93-103 (1972).
  • [4] Libermann, P.: Sur le problème d’équivalence de certaines structures infinitésimales régulières. Ann. Mat. Pura Appl. 36, 27-120 (1954). (InFrench.)
  • [5] Nagao, M., Kotô, S.: Curvature in almost Kähler spaces. Memoirs of The Faculty of Education. Niigata University (1973).
  • [6] Olszak, Z. : Curvature properties of four-dimentional Hermitian manifolds. Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 36, 169-179 (1987).
  • [7] Ornea, L., Verbitsky, M.: Structure theorem for compact Vaisman manifolds. Math. Res. Lett. 10, 799-805 (2003).
  • [8] Oubbich,e N., Beldjilali, G., Bouzir, H., Delloum, A.: New Class of Locally Conformal Kähler Manifolds. Mediterr. J. Math. (2023), doi.org/10.1007/s00009-023-02288-3
  • [9] Vaisman, I.: On locally conformal almost Kähler manifolds. Isr. J. Math. 24, 338-351 (1976).
  • [10] Yamaguchi, S.: On Kaehlerian torse-forming vector fields. Kodai Math. J. 2(1), 103-115 (1979).
  • [11] Yano, K.: On the torse-forming directions in Riemannian spaces. Proc. Imp. Acad. Tokyo. 20, 340-345 (1944).
  • [12] Yano, K., Kon, M.: Structures on Manifolds. Series in Pure Math., 3, World Sci., (1984).
Year 2023, Volume: 16 Issue: 2, 697 - 706, 29.10.2023
https://doi.org/10.36890/iejg.1258996

Abstract

References

  • [1] Dragomir, S., Ornea, L.: Locally Conformal Kähler Geometry. Progress in Mathematics, vol. 55. Birkhäuser Boston, MA (1998). https://doi.org/10.1007/978-1-4612-2026-8
  • [2] Gray, A., Hervella, L. M.: The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4) 123, 35-58 (1980).
  • [3] Kenmotsu, K.: A class of almost contact Riemannian manifolds. Tohoku Math. J., 24, 93-103 (1972).
  • [4] Libermann, P.: Sur le problème d’équivalence de certaines structures infinitésimales régulières. Ann. Mat. Pura Appl. 36, 27-120 (1954). (InFrench.)
  • [5] Nagao, M., Kotô, S.: Curvature in almost Kähler spaces. Memoirs of The Faculty of Education. Niigata University (1973).
  • [6] Olszak, Z. : Curvature properties of four-dimentional Hermitian manifolds. Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 36, 169-179 (1987).
  • [7] Ornea, L., Verbitsky, M.: Structure theorem for compact Vaisman manifolds. Math. Res. Lett. 10, 799-805 (2003).
  • [8] Oubbich,e N., Beldjilali, G., Bouzir, H., Delloum, A.: New Class of Locally Conformal Kähler Manifolds. Mediterr. J. Math. (2023), doi.org/10.1007/s00009-023-02288-3
  • [9] Vaisman, I.: On locally conformal almost Kähler manifolds. Isr. J. Math. 24, 338-351 (1976).
  • [10] Yamaguchi, S.: On Kaehlerian torse-forming vector fields. Kodai Math. J. 2(1), 103-115 (1979).
  • [11] Yano, K.: On the torse-forming directions in Riemannian spaces. Proc. Imp. Acad. Tokyo. 20, 340-345 (1944).
  • [12] Yano, K., Kon, M.: Structures on Manifolds. Series in Pure Math., 3, World Sci., (1984).
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Beldjilali Gherici 0000-0002-8933-1548

Early Pub Date October 25, 2023
Publication Date October 29, 2023
Acceptance Date September 7, 2023
Published in Issue Year 2023 Volume: 16 Issue: 2

Cite

APA Gherici, B. (2023). On Four Dimensional Hermitian Manifolds. International Electronic Journal of Geometry, 16(2), 697-706. https://doi.org/10.36890/iejg.1258996
AMA Gherici B. On Four Dimensional Hermitian Manifolds. Int. Electron. J. Geom. October 2023;16(2):697-706. doi:10.36890/iejg.1258996
Chicago Gherici, Beldjilali. “On Four Dimensional Hermitian Manifolds”. International Electronic Journal of Geometry 16, no. 2 (October 2023): 697-706. https://doi.org/10.36890/iejg.1258996.
EndNote Gherici B (October 1, 2023) On Four Dimensional Hermitian Manifolds. International Electronic Journal of Geometry 16 2 697–706.
IEEE B. Gherici, “On Four Dimensional Hermitian Manifolds”, Int. Electron. J. Geom., vol. 16, no. 2, pp. 697–706, 2023, doi: 10.36890/iejg.1258996.
ISNAD Gherici, Beldjilali. “On Four Dimensional Hermitian Manifolds”. International Electronic Journal of Geometry 16/2 (October 2023), 697-706. https://doi.org/10.36890/iejg.1258996.
JAMA Gherici B. On Four Dimensional Hermitian Manifolds. Int. Electron. J. Geom. 2023;16:697–706.
MLA Gherici, Beldjilali. “On Four Dimensional Hermitian Manifolds”. International Electronic Journal of Geometry, vol. 16, no. 2, 2023, pp. 697-06, doi:10.36890/iejg.1258996.
Vancouver Gherici B. On Four Dimensional Hermitian Manifolds. Int. Electron. J. Geom. 2023;16(2):697-706.