Research Article
BibTex RIS Cite

Screen Pseudo-Slant Lightlike Submersions from Indefinite Sasakian Manifolds onto Lightlike Manifolds

Year 2024, Volume: 17 Issue: 2, 437 - 446, 27.10.2024
https://doi.org/10.36890/iejg.1393446

Abstract

As a generalization of screen slant lightlike submersions, we introduce the notion of screen pseudo-slant lightlike submersions from indefinite Sasakian manifolds onto lightlike manifolds. We give examples and prove a characterization theorem for the existence of such lightlike submersions. We also obtain integrability conditions of distributions involved in the definition of this class of lightlike submersions. Further, we find necessary and sufficient conditions for foliations determined by these distributions to be totally geodesic.

References

  • [1] Duggal, K. L., Bejancu, A.: Lightlike submanifolds of semi-Riemannian manifolds and applications. Mathematics and Its Applications. Kluwer Publisher, Dordrecht (1996).
  • [2] Duggal, K. L., Şahin, B.: Differential geometry of lightlike submanifolds. Frontiers in Mathematics. Birkhaüser Verlag, Basel (2010).
  • [3] Duggal, K. L., Şahin, B.: Lightlike Submanifolds of indefinite Sasakian manifolds. Int. J. Math. Math. Sci., Article ID 57585 (2007)
  • [4] Gray, A.: Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech. 16(7), 715-737 (1967).
  • [5] Gündüzalp, Y.: Neutral slant submersions in paracomplex geometry. Afr. Mat. 32(5-6), 1095-1110 (2021).
  • [6] Gündüzalp, Y.: Slant submersions in paracontact geometry. Hacet. J. Math. Stat. 49(2), 822-834 (2020).
  • [7] Kaushal, R., Kumar, R., Nagaich, R. K.: On the geometry of screen conformal submersions of semi-transversal lightlike submanifolds. Asian-Eur. J. Math. 14(8), 1-13 (2021).
  • [8] Noyan, E. Başarır, Gündüzalp, Y.: Proper semi-slant pseudo-Riemannian submersions in para-Kaehler geometry. Int. Electron. J. Geom. 15(2), 253-265 (2022).
  • [9] Noyan, E. Başarır, Gündüzalp, Y.: Proper bi-slant pseudo-Riemannian submersions whose total manifolds are para-Kaehler manifolds Honam Math. J. 44(3), 370-383 (2022).
  • [10] O’Neill, B.: The fundamental equations of a submersion. Michigan Math. J. 13(4), 459-469 (1966).
  • [11] O’Neill, B.: Semi-Riemannian geometry with applications to relativity. Academic Press. London (1983).
  • [12] Prasad, R., Singh, P. K., Kumar, S.: Slant lightlike submersions from an indefinite nearly K¨ahler manifold into a lightlike manifold. J. Math. Comput. Sci. 8(2), 225-240 (2018).
  • [13] Sachdeva, R., Kumar, R., Bhatia, S. S.: Slant lightlike submersions from an indefinite almost Hermitian manifold into a lightlike manifold. Ukrainian Math. J. 68(7), 1097-1107 (2016).
  • [14] Şahin, B.: On a submersion between Reinhart lightlike manifolds and semi-Riemannian manifolds. Mediterr. J. Math. 5(3), 273-284 (2008).
  • [15] Şahin, B., Gündüzalp, Y.: Submersions from semi-Riemannian manifolds onto lightlike manifolds. Hacet. J. Math. Stat. 39(1), 41-53 (2010).
  • [16] Shukla, S. S., Yadav, A.: Screen pseudo-slant lightlike submanifolds of indefinite Sasakian manifolds. Mediterr. J. Math. 13, 789-802 (2016).
  • [17] Shukla, S. S., Singh, V.: Screen slant lightlike submersions from indefinite Sasakian manifolds onto lightlike manifolds. Lobachevskii J. Math. 43(3), 697-708 (2022).
  • [18] Shukla, S. S., Singh, V.: Transversal lightlike submersions from indefinite Sasakian manifolds onto lightlike manifolds. Commun. Korean Math. Soc. 38(4), 1191-1213 (2023).
  • [19] Shukla, S. S., Singh, V.: Radical transversal screen slant lightlike submersions from indefinite Sasakian manifolds onto lightlike manifolds. Int. J. Geom. Methods Mod. Phys. 21(1), 1-21 (2024).
  • [20] Shukla, S. S., Omar, S.: Screen pseudo-slant lightlike submersions. J. Indones. Math. 29(1), 64-74 (2023).
  • [21] Takahashi, T.: Sasakian manifold with pseudo-Riemannian metric. Tohoku Math. J. 21(2), 271-290 (1969).
Year 2024, Volume: 17 Issue: 2, 437 - 446, 27.10.2024
https://doi.org/10.36890/iejg.1393446

Abstract

References

  • [1] Duggal, K. L., Bejancu, A.: Lightlike submanifolds of semi-Riemannian manifolds and applications. Mathematics and Its Applications. Kluwer Publisher, Dordrecht (1996).
  • [2] Duggal, K. L., Şahin, B.: Differential geometry of lightlike submanifolds. Frontiers in Mathematics. Birkhaüser Verlag, Basel (2010).
  • [3] Duggal, K. L., Şahin, B.: Lightlike Submanifolds of indefinite Sasakian manifolds. Int. J. Math. Math. Sci., Article ID 57585 (2007)
  • [4] Gray, A.: Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech. 16(7), 715-737 (1967).
  • [5] Gündüzalp, Y.: Neutral slant submersions in paracomplex geometry. Afr. Mat. 32(5-6), 1095-1110 (2021).
  • [6] Gündüzalp, Y.: Slant submersions in paracontact geometry. Hacet. J. Math. Stat. 49(2), 822-834 (2020).
  • [7] Kaushal, R., Kumar, R., Nagaich, R. K.: On the geometry of screen conformal submersions of semi-transversal lightlike submanifolds. Asian-Eur. J. Math. 14(8), 1-13 (2021).
  • [8] Noyan, E. Başarır, Gündüzalp, Y.: Proper semi-slant pseudo-Riemannian submersions in para-Kaehler geometry. Int. Electron. J. Geom. 15(2), 253-265 (2022).
  • [9] Noyan, E. Başarır, Gündüzalp, Y.: Proper bi-slant pseudo-Riemannian submersions whose total manifolds are para-Kaehler manifolds Honam Math. J. 44(3), 370-383 (2022).
  • [10] O’Neill, B.: The fundamental equations of a submersion. Michigan Math. J. 13(4), 459-469 (1966).
  • [11] O’Neill, B.: Semi-Riemannian geometry with applications to relativity. Academic Press. London (1983).
  • [12] Prasad, R., Singh, P. K., Kumar, S.: Slant lightlike submersions from an indefinite nearly K¨ahler manifold into a lightlike manifold. J. Math. Comput. Sci. 8(2), 225-240 (2018).
  • [13] Sachdeva, R., Kumar, R., Bhatia, S. S.: Slant lightlike submersions from an indefinite almost Hermitian manifold into a lightlike manifold. Ukrainian Math. J. 68(7), 1097-1107 (2016).
  • [14] Şahin, B.: On a submersion between Reinhart lightlike manifolds and semi-Riemannian manifolds. Mediterr. J. Math. 5(3), 273-284 (2008).
  • [15] Şahin, B., Gündüzalp, Y.: Submersions from semi-Riemannian manifolds onto lightlike manifolds. Hacet. J. Math. Stat. 39(1), 41-53 (2010).
  • [16] Shukla, S. S., Yadav, A.: Screen pseudo-slant lightlike submanifolds of indefinite Sasakian manifolds. Mediterr. J. Math. 13, 789-802 (2016).
  • [17] Shukla, S. S., Singh, V.: Screen slant lightlike submersions from indefinite Sasakian manifolds onto lightlike manifolds. Lobachevskii J. Math. 43(3), 697-708 (2022).
  • [18] Shukla, S. S., Singh, V.: Transversal lightlike submersions from indefinite Sasakian manifolds onto lightlike manifolds. Commun. Korean Math. Soc. 38(4), 1191-1213 (2023).
  • [19] Shukla, S. S., Singh, V.: Radical transversal screen slant lightlike submersions from indefinite Sasakian manifolds onto lightlike manifolds. Int. J. Geom. Methods Mod. Phys. 21(1), 1-21 (2024).
  • [20] Shukla, S. S., Omar, S.: Screen pseudo-slant lightlike submersions. J. Indones. Math. 29(1), 64-74 (2023).
  • [21] Takahashi, T.: Sasakian manifold with pseudo-Riemannian metric. Tohoku Math. J. 21(2), 271-290 (1969).
There are 21 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Shiv Sharma Shukla 0000-0003-2759-6097

Vipul Singh 0000-0003-3842-0345

Early Pub Date September 19, 2024
Publication Date October 27, 2024
Submission Date November 20, 2023
Acceptance Date September 9, 2024
Published in Issue Year 2024 Volume: 17 Issue: 2

Cite

APA Shukla, S. S., & Singh, V. (2024). Screen Pseudo-Slant Lightlike Submersions from Indefinite Sasakian Manifolds onto Lightlike Manifolds. International Electronic Journal of Geometry, 17(2), 437-446. https://doi.org/10.36890/iejg.1393446
AMA Shukla SS, Singh V. Screen Pseudo-Slant Lightlike Submersions from Indefinite Sasakian Manifolds onto Lightlike Manifolds. Int. Electron. J. Geom. October 2024;17(2):437-446. doi:10.36890/iejg.1393446
Chicago Shukla, Shiv Sharma, and Vipul Singh. “Screen Pseudo-Slant Lightlike Submersions from Indefinite Sasakian Manifolds onto Lightlike Manifolds”. International Electronic Journal of Geometry 17, no. 2 (October 2024): 437-46. https://doi.org/10.36890/iejg.1393446.
EndNote Shukla SS, Singh V (October 1, 2024) Screen Pseudo-Slant Lightlike Submersions from Indefinite Sasakian Manifolds onto Lightlike Manifolds. International Electronic Journal of Geometry 17 2 437–446.
IEEE S. S. Shukla and V. Singh, “Screen Pseudo-Slant Lightlike Submersions from Indefinite Sasakian Manifolds onto Lightlike Manifolds”, Int. Electron. J. Geom., vol. 17, no. 2, pp. 437–446, 2024, doi: 10.36890/iejg.1393446.
ISNAD Shukla, Shiv Sharma - Singh, Vipul. “Screen Pseudo-Slant Lightlike Submersions from Indefinite Sasakian Manifolds onto Lightlike Manifolds”. International Electronic Journal of Geometry 17/2 (October 2024), 437-446. https://doi.org/10.36890/iejg.1393446.
JAMA Shukla SS, Singh V. Screen Pseudo-Slant Lightlike Submersions from Indefinite Sasakian Manifolds onto Lightlike Manifolds. Int. Electron. J. Geom. 2024;17:437–446.
MLA Shukla, Shiv Sharma and Vipul Singh. “Screen Pseudo-Slant Lightlike Submersions from Indefinite Sasakian Manifolds onto Lightlike Manifolds”. International Electronic Journal of Geometry, vol. 17, no. 2, 2024, pp. 437-46, doi:10.36890/iejg.1393446.
Vancouver Shukla SS, Singh V. Screen Pseudo-Slant Lightlike Submersions from Indefinite Sasakian Manifolds onto Lightlike Manifolds. Int. Electron. J. Geom. 2024;17(2):437-46.