Research Article
BibTex RIS Cite

QUANTIFICATION OF THE CHANGE IN ECOLOGICAL CONNECTIVITY USING A GIS-BASED MODEL AND CURRENT COMPLEXITY METRICS

Year 2020, Issue: 42, 689 - 701, 25.07.2020
https://doi.org/10.32003/igge.746242

Abstract

Landscape patterns have been undergoing various changes on account of environmental and human factors. These changes affect ecological connectivity of landscapes; therefore existing connections are necessary to maintain sustainable habitats. Connectivity is associated with the diversity and composition of landscape structure. For this reason, when studying ecological connectivity, it is relevant to analyze the changes in diversity, composition, and fragmentation of landscape patterns. This study was conducted in Manisa, Turkey, where the impact of industrialization and urbanization on landscape is very significant. The aim of this study is to assess the changes in ecological connectivity based on an ecological connectivity model and landscape metrics that characterize landscape heterogeneity between 2000 and 2018. Largest Patch Index (LPI), Marginal Entropy (ENT), and Relative Mutual Information (RELMUTINF) were utilized to evaluate the fragmentation, diversity, and composition of the landscape, respectively. As a result of this study, forest loss was found to be 12,970 ha based on 18 years of land change. This has an adverse impact on the ecological connectivity, resulting in a decrease in the high and very high connectivity areas from 71.5% to 53.5%. At the landscape level, the decrease in the LPI from 3.55 to 2.30 shows that fragmentation has increased in Manisa. Since larger patches have higher species diversity in general, a drop in the LPI value indicates that species diversity has decreased over time. The most substantial observed changes include the homogenization of agricultural land and the fragmentation of forests. The results demonstrate that a combination of ecological connectivity and landscape metrics would be highly effective for extensive planning and interpretation. 

References

  • Almenar, J. B., Bolowich, A., Elliot, T., Geneletti, D., Sonnemann, G. & Rugani, B. (2019). Assessing habitat loss, fragmentation and ecological connectivity in Luxembourg to support spatial planning. Landscape and Urban Planning, 189, 335-351.
  • Altan, Y., Aktaş, K. & Suveren, Y. M. (2017). Flora of Beydere village (Manisa). Bilge International Journal of Science and Technology Research, 1(2), 143-154.
  • Arı, Y. & Derinöz, B. (2011). How Not to Manage a Wetland? the Case of Lake Marmara (Manisa) with a cultural ecological perspective). Turkish Journal of Geographical
  • Sciences, 9(1), 41-60.
  • Beier, P. & Noss, R. F. (1998). Do habitat corridors provide connectivity? Conservation biology, 12(6), 1241-1252.
  • Carlier, J. & Moran, J. (2019). Landscape typology and ecological connectivity assessment to inform Greenway design. Science of the Total Environment, 651, 3241-3252.
  • Chang, Q., Li, X., Huang, X. & Wu, J. (2012). A GIS-based green infrastructure planning for sustainable urban land use and spatial development. Procedia Environmental Sciences, 12, 491-498.
  • Christensen, A. A., Brandt, J., & Svenningsen, S. R. (2017). Landscape ecology. In D. Richardson, N. Castree, M. F. Goodchild, A. Kobayashi, W. Liu, & R. A. Marston (Eds.), The international encyclopedia of geography: people, the earth, environment, and technology (pp. 1-10). New Jersey: Wiley.
  • Collinge, S. K. (1998). Spatial arrangement of habitat patches and corridors: clues from ecological field experiments. Landscape and Urban Planning, 42(2-4), 157-168.
  • Correa Ayram, C. A., Mendoza, M. E., Etter, A. & Salicrup, D. R. P. (2016). Habitat connectivity in biodiversity conservation: A review of recent studies and applications. Progress in Physical Geography, 40(1), 7-37.
  • Crist, M. R., Wilmer, B. O. & Aplet, G. H. (2005). Assessing the value of roadless areas in a conservation reserve strategy: biodiversity and landscape connectivity in the northern Rockies. Journal of Applied Ecology, 42(1), 181-191.
  • CSB, (2014). Çevre ve Şehircilik Bakanlığı mekânsal planlama genel müdürlüğü mekânsal planlar yapım yönetmeliği. 15 Mart 2020 tarihinde https://mpgm.csb.gov.tr/plan- gosterimleri-i-4926, adresinden edinilmiştir.
  • De Montis, A., Caschili, S., Mulas, M., Modica, G., Ganciu, A., Bardi, A., Ledda, A., Dessena, L., Laudari, L. & Fichera, C. R. (2016). Urban–rural ecological networks for landscape planning. Land Use Policy, 50, 312-327.
  • DiLeo, M. F., Rico, Y., Boehmer, H. J. & Wagner, H. H. (2017). An ecological connectivity network maintains genetic diversity of a flagship wildflower, Pulsatilla vulgaris. Biological conservation, 212, 12-21.
  • Dramstad, W., Olson, J. D. & Forman, R. T. (1996). Landscape Ecology Principles in Landscape Architecture and Land-Use Planning. Washington: Island press.
  • Dupras, J., Marull, J., Parcerisas, L., Coll, F., Gonzalez, A., Girard, M. & Tello, E. (2016). The impacts of urban sprawl on ecological connectivity in the Montreal Metropolitan Region. Environmental Science & Policy, 58, 61-73.
  • EEA, (2019). European environment agency, copernicus land monitoring service. Retrieved from September 10, 2019, from https://land.copernicus.eu/pan-european/corine-land- cover.
  • Ersoy, E., Yılmaz, K. T., Atak, B. K. & Gülçin, D. (2019). Sentinel-2A uydu görüntüsünde nesne tabanlı sınıflandırma yöntemi kullanılarak kıyı habitatlarının haritalanması. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 19(1), 152-161.
  • Fábos, J. G. & Ryan, R. L. (2006). An introduction to greenway planning around the world. Landscape and Urban Planning, 76(1/4), 1-6.
  • Forman, R. T. (1995). Some general principles of landscape and regional ecology. Landscape Ecology, 10(3), 133-142.
  • García-Díaz, P., Anderson, D. P., & Lurgi, M. (2019). Evaluating the effects of landscape structure on the recovery of an invasive vertebrate after population control. Landscape Ecology, 34(3), 615-626.
  • Goodwin, B. J. (2003). Is landscape connectivity a dependent or independent variable?. Landscape Ecology, 18(7), 687-699.
  • Gorguner, M., Kavvas, M. L. & Ishida, K. (2019). Assessing the impacts of future climate change on the hydroclimatology of the Gediz Basin in Turkey by using dynamically downscaled CMIP5 projections. Science of the Total Environment, 648, 481-499.
  • Guan, B. C., Liu, X., Gong, X., Cai, Q. Y. & Ge, G. (2019). Genetic landscape and landscape connectivity of Ceratopteris thalictroides, an endangered aquatic fern. Ecological Informatics, 53, 100973.
  • Gülersoy, A. E. (2013). Farkli uzaktan algilama teknikleri kullanilarak arazi örtüsü/kullaniminda meydana gelen değişimlerin incelenmesi: Manisa Merkez ilçesi örneği (1986- 2010). Electronic Turkish Studies, 8(8), 1915-1934.
  • Hepcan, C. C. (2013). Quantifying landscape pattern and connectivity in a Mediterranean coastal settlement: the case of the Urla district, Turkey. Environmental Monitoring and Assessment, 185(1), 143-155.
  • Hesselbarth, M. H., Sciaini, M., With, K. A., Wiegand, K. & Nowosad, J. (2019). landscapemetrics: an open‐source R tool to calculate landscape metrics. Ecography, 42(10), 1648-1657.
  • Hodgson, J. A., Moilanen, A. & Thomas, C. D. (2009). Metapopulation responses to patch connectivity and quality are masked by successional habitat dynamics. Ecology, 90(6), 1608-1619.
  • Indrayani, P., Mitani, Y., Djamaluddin, I. & Ikemi, H. (2017). A GIS based evaluation of land use changes and ecological connectivity ındex. Journal of Geomatics and Planning, 4(1), 9-18.
  • Işık-Gürsoy, D., Uğurlu, E. & Oldeland, J. (2016). Plant communities, diversity and endemism of the Kula Volcano, Manisa, Turkey. Plant Biosystems, 150(5), 1046-1055.
  • Jongman, R. H. (2019). Connectivity and ecological networks. In Fath, B. (Ed.), Encyclopedia of ecology (pp. 366-376). Cambridge: Elsevier.
  • Jorgensen, S. E. & Fath, B. D. (2014). Encyclopedia of ecology. Amsterdam: Newnes.
  • Kaplan, A. & Hepcan, Ş. (2009). An examination of ecological risk assessment at landscape scale and the management plan. In T. S. Illangasekare, K. & Mahutova, J. J. Barich (Eds.), Decision support for natural disasters and intentional threats to water security (pp. 237-251). Dordrecht: Springer.
  • Kocataş, A., Ergen, Z., Katağan, T., Koray, T., Büyükışık, B., Mater, D., Özel, I., Uçal, O. & Önen, M. (1988). Effects of pollution on benthic and pelagic ecosystems of the Izmir Bay (Turkey). MAP Technical Reports Series, 2, 53-72.
  • LaPoint, S., Balkenhol, N., Hale, J., Sadler, J. & van der Ree, R. (2015). Ecological connectivity research in urban areas. Functional Ecology, 29(7), 868-878.
  • Lavers, C. J. & Haines-Young, R. (1993). Equilibrium landscapes and their aftermath: spatial heterogeneity and the role of new technology. Haines-Young, R., Green, DR, Cousins, S.,(Eds.), Landscape ecology and geographic information systems (pp 59-75). New Jersey: Taylor and Francis.
  • Lindenmayer, D., Hobbs, R. J., Montague‐Drake, R., Alexandra, J., Bennett, A., Burgman, M., Cale, P., Calhoun, A., Cramer, V., Cullen, P., Driscoll, D., Fahrig, L., Fischer, J., Franklin, J., Haila, Y., Hunter, M., Gibbons, P., Lake., S., Luck, G., MacGregor, C., McIntyre, S., Nally, R. M., Manning, A., Miller, J., Mooney, H., Noss, R., Possingham, H., Saunders, D., Schmiegelow, F., Scott, M., Simberloff, D., Sisk, T., Tabor, G., Walker, B., Wiens, J., Woinarski, J. & Zavaleta. E. (2008). A checklist for ecological management of landscapes for conservation. Ecology Letters, 11(1), 78-91.
  • Linehan, J., Gross, M. & Finn, J. (1995). Greenway planning: developing a landscape ecological network approach. Landscape and Urban Planning, 33(1-3), 179-193.
  • Luque, S., Saura, S. & Fortin, M. J. (2012). Landscape connectivity analysis for conservation: insights from combining new methods with ecological and genetic data. Landscape Ecology, 27(2), 153-157.
  • Mallarach, J. M. & Marull, J. (2006). Impact assessment of ecological connectivity at the regional level: recent developments in the Barcelona Metropolitan Area. Impact Assessment and Project Appraisal, 24(2), 127-137.
  • Marulli, J. & Mallarach, J. M. (2005). A GIS methodology for assessing ecological connectivity: application to the Barcelona Metropolitan Area. Landscape and Urban Planning, 71(2-4), 243-262.
  • McGarigal, K. (2002). Landscape pattern metrics. In: A. H. El-Shaarawi, & W. W. Piegorsch, (Eds.), Encyclopedia of environmetrics (pp 1135–1142), Chichester: Wiley.
  • McGarigal, K., Cushman, S. A. & Ene, E. (2012). FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst.
  • McRae, B. H., Hall, S. A., Beier, P. & Theobald, D. M. (2012). Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits. PloS one, 7(12), 1-12.
  • MV, (2020). Manisa Valiliği Çevre ve Şehircilik İl Müdürlüğü Manisa İl Çevre Durum Raporu. 13 Ocak 2020 tarihinde https://webdosya.csb.gov.tr/db/ced/icerikler/man-sa_2018_- cdr_son-20191015130608.pdf, adresinden edinilmiştir.
  • Nor, A. N. M., Corstanje, R., Harris, J. A., Grafius, D. R. & Siriwardena, G. M. (2017). Ecological connectivity networks in rapidly expanding cities. Heliyon, 3(6), 1-29.
  • Nowosad, J. & Stepinski, T. F. (2019). Information theory as a consistent framework for quantification and classification of landscape patterns. Landscape Ecology, 34(9), 2091- 2101.
  • Olds, A. D., Pitt, K. A., Maxwell, P. S. & Connolly, R. M. (2012). Synergistic effects of reserves and connectivity on ecological resilience. Journal of Applied Ecology, 49(6), 1195- 1203.
  • Pino, J. & Marull, J. (2012). Ecological networks: are they enough for connectivity conservation? A case study in the Barcelona Metropolitan Region (NE Spain). Land Use Policy, 29(3), 684-690.
  • Qian, J., Xiang, W. N., Liu, Y., & Meng, X. (2018). Incorporating landscape diversity into greenway alignment planning. Urban Forestry & Urban Greening, 35, 45-56.
  • Raison, R. J., Brown, A. G. & Flinn, D. W. (2001). Criteria and Indicators for Sustainable Forest Management. New York: CABI.
  • Saura, S., Estreguil, C., Mouton, C. & Rodríguez-Freire, M. (2011). Network analysis to assess landscape connectivity trends: application to European forests (1990–2000). Ecological Indicators, 11(2), 407-416.
  • Taylor, J., Paine, C. & FitzGibbon, J. (1995). From greenbelt to greenways: four Canadian case studies. Landscape and Urban Planning, 33(1-3), 47-64.
  • Taylor, P. D., Fahrig, L., Henein, K. & Merriam, G. (1993). Connectivity is a vital element of landscape structure. Oikos, 68(3), 571-573.
  • Tischendorf, L. & Fahrig, L. (2000). On the usage and measurement of landscape connectivity. Oikos, 90(1), 7-19.
  • Tscharntke, T., Clough, Y., Wanger, T. C., Jackson, L., Motzke, I., Perfecto, Vandermeer, J. & Whitbread, A. (2012). Global food security, biodiversity conservation and the future of agricultural intensification. Biological Conservation, 151(1), 53-59.
  • TUIK, (2019). Turkish Statistical Institute. Retrieved November 15, 2019 from http://www.tuik.gov.tr/PreTablo.do?alt_id=1047.
  • Turner, M. G. (1989). Landscape ecology: the effect of pattern on process. Annual Review of Ecology and Systematics, 20(1), 171-197.
  • Uuemaa, E., Antrop, M., Roosaare, J., Marja, R. & Mander, Ü. (2009). Landscape metrics and indices: an overview of their use in landscape research. Living Reviews in Landscape Research, 3(1), 1-28.
  • Velázquez, J., Gutiérrez, J., García-Abril, A., Hernando, A., Aparicio, M. & Sánchez, B. (2019). Structural connectivity as an indicator of species richness and landscape diversity in Castilla y León (Spain). Forest Ecology and Management, 432, 286-297.
  • Vizzari, M., Hilal, M., Sigura, M., Antognelli, S. & Joly, D. (2018). Urban-rural-natural gradient analysis with CORINE data: An application to the metropolitan France. Landscape and Urban Planning, 171, 18-29.
  • Vogiatzakis, I. N., Mannion, A. M. & Griffiths, G. H. (2006). Mediterranean ecosystems: problems and tools for conservation. Progress in Physical Geography, 30(2), 175-200.
  • Watson, D. M., Doerr, V. A., Banks, S. C., Driscoll, D. A., van der Ree, R., Doerr, E. D. & Sunnucks, P. (2017). Monitoring ecological consequences of efforts to restore landscape-scale connectivity. Biological Conservation, 206, 201-209.
  • Wu, L. Y., He, D. J., You, W. B., Ji, Z. R., Tan, Y. & Zhao, L. L. (2017). The dynamics of landscape-scale ecological connectivity based on least-cost model in Dongshan Island, China. Journal of Mountain Science, 14(2), 336-345.
  • Yazgi, D., Yilmaz, K. T. (2017). The evaluation of landscape typology and richness for achieving conservation priorities of habitats. Ekoloji 2017 Uluslararası Sempozyumu’nda sunulmuştur. Kayseri, Türkiye.
  • Zhang, Z., Meerow, S., Newell, J. P. & Lindquist, M. (2019). Enhancing landscape connectivity through multifunctional green infrastructure corridor modeling and design. Urban Forestry & Urban Greening, 38, 305-317.
  • Zwoliński, Z., Najwer, A. & Giardino, M. (2018). Methods for assessing geodiversity. In E. Reynard & J. Brilha (Eds.), Geoheritage (pp. 27-52). Amsterdam: Elsevier.

QUANTIFICATION OF THE CHANGE IN ECOLOGICAL CONNECTIVITY USING A GIS-BASED MODEL AND CURRENT COMPLEXITY METRICS

Year 2020, Issue: 42, 689 - 701, 25.07.2020
https://doi.org/10.32003/igge.746242

Abstract

Landscape patterns have been undergoing various changes on account of environmental and human factors. These changes affect ecological connectivity of landscapes; therefore existing connections are necessary to maintain sustainable habitats. Connectivity is associated with the diversity and composition of landscape structure. For this reason, when studying ecological connectivity, it is relevant to analyze the changes in diversity, composition, and fragmentation of landscape patterns. This study was conducted in Manisa, Turkey, where the impact of industrialization and urbanization on landscape is very significant. The aim of this study is to assess the changes in ecological connectivity based on an ecological connectivity model and landscape metrics that characterize landscape heterogeneity between 2000 and 2018. Largest Patch Index (LPI), Marginal Entropy (ENT), and Relative Mutual Information (RELMUTINF) were utilized to evaluate the fragmentation, diversity, and composition of the landscape, respectively. As a result of this study, forest loss was found to be 12,970 ha based on 18 years of land change. This has an adverse impact on the ecological connectivity, resulting in a decrease in the high and very high connectivity areas from 71.5% to 53.5%. At the landscape level, the decrease in the LPI from 3.55 to 2.30 shows that fragmentation has increased in Manisa. Since larger patches have higher species diversity in general, a drop in the LPI value indicates that species diversity has decreased over time. The most substantial observed changes include the homogenization of agricultural land and the fragmentation of forests. The results demonstrate that a combination of ecological connectivity and landscape metrics would be highly effective for extensive planning and interpretation. 

References

  • Almenar, J. B., Bolowich, A., Elliot, T., Geneletti, D., Sonnemann, G. & Rugani, B. (2019). Assessing habitat loss, fragmentation and ecological connectivity in Luxembourg to support spatial planning. Landscape and Urban Planning, 189, 335-351.
  • Altan, Y., Aktaş, K. & Suveren, Y. M. (2017). Flora of Beydere village (Manisa). Bilge International Journal of Science and Technology Research, 1(2), 143-154.
  • Arı, Y. & Derinöz, B. (2011). How Not to Manage a Wetland? the Case of Lake Marmara (Manisa) with a cultural ecological perspective). Turkish Journal of Geographical
  • Sciences, 9(1), 41-60.
  • Beier, P. & Noss, R. F. (1998). Do habitat corridors provide connectivity? Conservation biology, 12(6), 1241-1252.
  • Carlier, J. & Moran, J. (2019). Landscape typology and ecological connectivity assessment to inform Greenway design. Science of the Total Environment, 651, 3241-3252.
  • Chang, Q., Li, X., Huang, X. & Wu, J. (2012). A GIS-based green infrastructure planning for sustainable urban land use and spatial development. Procedia Environmental Sciences, 12, 491-498.
  • Christensen, A. A., Brandt, J., & Svenningsen, S. R. (2017). Landscape ecology. In D. Richardson, N. Castree, M. F. Goodchild, A. Kobayashi, W. Liu, & R. A. Marston (Eds.), The international encyclopedia of geography: people, the earth, environment, and technology (pp. 1-10). New Jersey: Wiley.
  • Collinge, S. K. (1998). Spatial arrangement of habitat patches and corridors: clues from ecological field experiments. Landscape and Urban Planning, 42(2-4), 157-168.
  • Correa Ayram, C. A., Mendoza, M. E., Etter, A. & Salicrup, D. R. P. (2016). Habitat connectivity in biodiversity conservation: A review of recent studies and applications. Progress in Physical Geography, 40(1), 7-37.
  • Crist, M. R., Wilmer, B. O. & Aplet, G. H. (2005). Assessing the value of roadless areas in a conservation reserve strategy: biodiversity and landscape connectivity in the northern Rockies. Journal of Applied Ecology, 42(1), 181-191.
  • CSB, (2014). Çevre ve Şehircilik Bakanlığı mekânsal planlama genel müdürlüğü mekânsal planlar yapım yönetmeliği. 15 Mart 2020 tarihinde https://mpgm.csb.gov.tr/plan- gosterimleri-i-4926, adresinden edinilmiştir.
  • De Montis, A., Caschili, S., Mulas, M., Modica, G., Ganciu, A., Bardi, A., Ledda, A., Dessena, L., Laudari, L. & Fichera, C. R. (2016). Urban–rural ecological networks for landscape planning. Land Use Policy, 50, 312-327.
  • DiLeo, M. F., Rico, Y., Boehmer, H. J. & Wagner, H. H. (2017). An ecological connectivity network maintains genetic diversity of a flagship wildflower, Pulsatilla vulgaris. Biological conservation, 212, 12-21.
  • Dramstad, W., Olson, J. D. & Forman, R. T. (1996). Landscape Ecology Principles in Landscape Architecture and Land-Use Planning. Washington: Island press.
  • Dupras, J., Marull, J., Parcerisas, L., Coll, F., Gonzalez, A., Girard, M. & Tello, E. (2016). The impacts of urban sprawl on ecological connectivity in the Montreal Metropolitan Region. Environmental Science & Policy, 58, 61-73.
  • EEA, (2019). European environment agency, copernicus land monitoring service. Retrieved from September 10, 2019, from https://land.copernicus.eu/pan-european/corine-land- cover.
  • Ersoy, E., Yılmaz, K. T., Atak, B. K. & Gülçin, D. (2019). Sentinel-2A uydu görüntüsünde nesne tabanlı sınıflandırma yöntemi kullanılarak kıyı habitatlarının haritalanması. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 19(1), 152-161.
  • Fábos, J. G. & Ryan, R. L. (2006). An introduction to greenway planning around the world. Landscape and Urban Planning, 76(1/4), 1-6.
  • Forman, R. T. (1995). Some general principles of landscape and regional ecology. Landscape Ecology, 10(3), 133-142.
  • García-Díaz, P., Anderson, D. P., & Lurgi, M. (2019). Evaluating the effects of landscape structure on the recovery of an invasive vertebrate after population control. Landscape Ecology, 34(3), 615-626.
  • Goodwin, B. J. (2003). Is landscape connectivity a dependent or independent variable?. Landscape Ecology, 18(7), 687-699.
  • Gorguner, M., Kavvas, M. L. & Ishida, K. (2019). Assessing the impacts of future climate change on the hydroclimatology of the Gediz Basin in Turkey by using dynamically downscaled CMIP5 projections. Science of the Total Environment, 648, 481-499.
  • Guan, B. C., Liu, X., Gong, X., Cai, Q. Y. & Ge, G. (2019). Genetic landscape and landscape connectivity of Ceratopteris thalictroides, an endangered aquatic fern. Ecological Informatics, 53, 100973.
  • Gülersoy, A. E. (2013). Farkli uzaktan algilama teknikleri kullanilarak arazi örtüsü/kullaniminda meydana gelen değişimlerin incelenmesi: Manisa Merkez ilçesi örneği (1986- 2010). Electronic Turkish Studies, 8(8), 1915-1934.
  • Hepcan, C. C. (2013). Quantifying landscape pattern and connectivity in a Mediterranean coastal settlement: the case of the Urla district, Turkey. Environmental Monitoring and Assessment, 185(1), 143-155.
  • Hesselbarth, M. H., Sciaini, M., With, K. A., Wiegand, K. & Nowosad, J. (2019). landscapemetrics: an open‐source R tool to calculate landscape metrics. Ecography, 42(10), 1648-1657.
  • Hodgson, J. A., Moilanen, A. & Thomas, C. D. (2009). Metapopulation responses to patch connectivity and quality are masked by successional habitat dynamics. Ecology, 90(6), 1608-1619.
  • Indrayani, P., Mitani, Y., Djamaluddin, I. & Ikemi, H. (2017). A GIS based evaluation of land use changes and ecological connectivity ındex. Journal of Geomatics and Planning, 4(1), 9-18.
  • Işık-Gürsoy, D., Uğurlu, E. & Oldeland, J. (2016). Plant communities, diversity and endemism of the Kula Volcano, Manisa, Turkey. Plant Biosystems, 150(5), 1046-1055.
  • Jongman, R. H. (2019). Connectivity and ecological networks. In Fath, B. (Ed.), Encyclopedia of ecology (pp. 366-376). Cambridge: Elsevier.
  • Jorgensen, S. E. & Fath, B. D. (2014). Encyclopedia of ecology. Amsterdam: Newnes.
  • Kaplan, A. & Hepcan, Ş. (2009). An examination of ecological risk assessment at landscape scale and the management plan. In T. S. Illangasekare, K. & Mahutova, J. J. Barich (Eds.), Decision support for natural disasters and intentional threats to water security (pp. 237-251). Dordrecht: Springer.
  • Kocataş, A., Ergen, Z., Katağan, T., Koray, T., Büyükışık, B., Mater, D., Özel, I., Uçal, O. & Önen, M. (1988). Effects of pollution on benthic and pelagic ecosystems of the Izmir Bay (Turkey). MAP Technical Reports Series, 2, 53-72.
  • LaPoint, S., Balkenhol, N., Hale, J., Sadler, J. & van der Ree, R. (2015). Ecological connectivity research in urban areas. Functional Ecology, 29(7), 868-878.
  • Lavers, C. J. & Haines-Young, R. (1993). Equilibrium landscapes and their aftermath: spatial heterogeneity and the role of new technology. Haines-Young, R., Green, DR, Cousins, S.,(Eds.), Landscape ecology and geographic information systems (pp 59-75). New Jersey: Taylor and Francis.
  • Lindenmayer, D., Hobbs, R. J., Montague‐Drake, R., Alexandra, J., Bennett, A., Burgman, M., Cale, P., Calhoun, A., Cramer, V., Cullen, P., Driscoll, D., Fahrig, L., Fischer, J., Franklin, J., Haila, Y., Hunter, M., Gibbons, P., Lake., S., Luck, G., MacGregor, C., McIntyre, S., Nally, R. M., Manning, A., Miller, J., Mooney, H., Noss, R., Possingham, H., Saunders, D., Schmiegelow, F., Scott, M., Simberloff, D., Sisk, T., Tabor, G., Walker, B., Wiens, J., Woinarski, J. & Zavaleta. E. (2008). A checklist for ecological management of landscapes for conservation. Ecology Letters, 11(1), 78-91.
  • Linehan, J., Gross, M. & Finn, J. (1995). Greenway planning: developing a landscape ecological network approach. Landscape and Urban Planning, 33(1-3), 179-193.
  • Luque, S., Saura, S. & Fortin, M. J. (2012). Landscape connectivity analysis for conservation: insights from combining new methods with ecological and genetic data. Landscape Ecology, 27(2), 153-157.
  • Mallarach, J. M. & Marull, J. (2006). Impact assessment of ecological connectivity at the regional level: recent developments in the Barcelona Metropolitan Area. Impact Assessment and Project Appraisal, 24(2), 127-137.
  • Marulli, J. & Mallarach, J. M. (2005). A GIS methodology for assessing ecological connectivity: application to the Barcelona Metropolitan Area. Landscape and Urban Planning, 71(2-4), 243-262.
  • McGarigal, K. (2002). Landscape pattern metrics. In: A. H. El-Shaarawi, & W. W. Piegorsch, (Eds.), Encyclopedia of environmetrics (pp 1135–1142), Chichester: Wiley.
  • McGarigal, K., Cushman, S. A. & Ene, E. (2012). FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst.
  • McRae, B. H., Hall, S. A., Beier, P. & Theobald, D. M. (2012). Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits. PloS one, 7(12), 1-12.
  • MV, (2020). Manisa Valiliği Çevre ve Şehircilik İl Müdürlüğü Manisa İl Çevre Durum Raporu. 13 Ocak 2020 tarihinde https://webdosya.csb.gov.tr/db/ced/icerikler/man-sa_2018_- cdr_son-20191015130608.pdf, adresinden edinilmiştir.
  • Nor, A. N. M., Corstanje, R., Harris, J. A., Grafius, D. R. & Siriwardena, G. M. (2017). Ecological connectivity networks in rapidly expanding cities. Heliyon, 3(6), 1-29.
  • Nowosad, J. & Stepinski, T. F. (2019). Information theory as a consistent framework for quantification and classification of landscape patterns. Landscape Ecology, 34(9), 2091- 2101.
  • Olds, A. D., Pitt, K. A., Maxwell, P. S. & Connolly, R. M. (2012). Synergistic effects of reserves and connectivity on ecological resilience. Journal of Applied Ecology, 49(6), 1195- 1203.
  • Pino, J. & Marull, J. (2012). Ecological networks: are they enough for connectivity conservation? A case study in the Barcelona Metropolitan Region (NE Spain). Land Use Policy, 29(3), 684-690.
  • Qian, J., Xiang, W. N., Liu, Y., & Meng, X. (2018). Incorporating landscape diversity into greenway alignment planning. Urban Forestry & Urban Greening, 35, 45-56.
  • Raison, R. J., Brown, A. G. & Flinn, D. W. (2001). Criteria and Indicators for Sustainable Forest Management. New York: CABI.
  • Saura, S., Estreguil, C., Mouton, C. & Rodríguez-Freire, M. (2011). Network analysis to assess landscape connectivity trends: application to European forests (1990–2000). Ecological Indicators, 11(2), 407-416.
  • Taylor, J., Paine, C. & FitzGibbon, J. (1995). From greenbelt to greenways: four Canadian case studies. Landscape and Urban Planning, 33(1-3), 47-64.
  • Taylor, P. D., Fahrig, L., Henein, K. & Merriam, G. (1993). Connectivity is a vital element of landscape structure. Oikos, 68(3), 571-573.
  • Tischendorf, L. & Fahrig, L. (2000). On the usage and measurement of landscape connectivity. Oikos, 90(1), 7-19.
  • Tscharntke, T., Clough, Y., Wanger, T. C., Jackson, L., Motzke, I., Perfecto, Vandermeer, J. & Whitbread, A. (2012). Global food security, biodiversity conservation and the future of agricultural intensification. Biological Conservation, 151(1), 53-59.
  • TUIK, (2019). Turkish Statistical Institute. Retrieved November 15, 2019 from http://www.tuik.gov.tr/PreTablo.do?alt_id=1047.
  • Turner, M. G. (1989). Landscape ecology: the effect of pattern on process. Annual Review of Ecology and Systematics, 20(1), 171-197.
  • Uuemaa, E., Antrop, M., Roosaare, J., Marja, R. & Mander, Ü. (2009). Landscape metrics and indices: an overview of their use in landscape research. Living Reviews in Landscape Research, 3(1), 1-28.
  • Velázquez, J., Gutiérrez, J., García-Abril, A., Hernando, A., Aparicio, M. & Sánchez, B. (2019). Structural connectivity as an indicator of species richness and landscape diversity in Castilla y León (Spain). Forest Ecology and Management, 432, 286-297.
  • Vizzari, M., Hilal, M., Sigura, M., Antognelli, S. & Joly, D. (2018). Urban-rural-natural gradient analysis with CORINE data: An application to the metropolitan France. Landscape and Urban Planning, 171, 18-29.
  • Vogiatzakis, I. N., Mannion, A. M. & Griffiths, G. H. (2006). Mediterranean ecosystems: problems and tools for conservation. Progress in Physical Geography, 30(2), 175-200.
  • Watson, D. M., Doerr, V. A., Banks, S. C., Driscoll, D. A., van der Ree, R., Doerr, E. D. & Sunnucks, P. (2017). Monitoring ecological consequences of efforts to restore landscape-scale connectivity. Biological Conservation, 206, 201-209.
  • Wu, L. Y., He, D. J., You, W. B., Ji, Z. R., Tan, Y. & Zhao, L. L. (2017). The dynamics of landscape-scale ecological connectivity based on least-cost model in Dongshan Island, China. Journal of Mountain Science, 14(2), 336-345.
  • Yazgi, D., Yilmaz, K. T. (2017). The evaluation of landscape typology and richness for achieving conservation priorities of habitats. Ekoloji 2017 Uluslararası Sempozyumu’nda sunulmuştur. Kayseri, Türkiye.
  • Zhang, Z., Meerow, S., Newell, J. P. & Lindquist, M. (2019). Enhancing landscape connectivity through multifunctional green infrastructure corridor modeling and design. Urban Forestry & Urban Greening, 38, 305-317.
  • Zwoliński, Z., Najwer, A. & Giardino, M. (2018). Methods for assessing geodiversity. In E. Reynard & J. Brilha (Eds.), Geoheritage (pp. 27-52). Amsterdam: Elsevier.
There are 67 citations in total.

Details

Primary Language English
Subjects Human Geography
Journal Section RESEARCH ARTICLE
Authors

Derya Gülçin

Tuluhan Yılmaz 0000-0003-2663-1583

Publication Date July 25, 2020
Published in Issue Year 2020 Issue: 42

Cite

APA Gülçin, D., & Yılmaz, T. (2020). QUANTIFICATION OF THE CHANGE IN ECOLOGICAL CONNECTIVITY USING A GIS-BASED MODEL AND CURRENT COMPLEXITY METRICS. Lnternational Journal of Geography and Geography Education(42), 689-701. https://doi.org/10.32003/igge.746242
AMA Gülçin D, Yılmaz T. QUANTIFICATION OF THE CHANGE IN ECOLOGICAL CONNECTIVITY USING A GIS-BASED MODEL AND CURRENT COMPLEXITY METRICS. IGGE. July 2020;(42):689-701. doi:10.32003/igge.746242
Chicago Gülçin, Derya, and Tuluhan Yılmaz. “QUANTIFICATION OF THE CHANGE IN ECOLOGICAL CONNECTIVITY USING A GIS-BASED MODEL AND CURRENT COMPLEXITY METRICS”. Lnternational Journal of Geography and Geography Education, no. 42 (July 2020): 689-701. https://doi.org/10.32003/igge.746242.
EndNote Gülçin D, Yılmaz T (July 1, 2020) QUANTIFICATION OF THE CHANGE IN ECOLOGICAL CONNECTIVITY USING A GIS-BASED MODEL AND CURRENT COMPLEXITY METRICS. lnternational Journal of Geography and Geography Education 42 689–701.
IEEE D. Gülçin and T. Yılmaz, “QUANTIFICATION OF THE CHANGE IN ECOLOGICAL CONNECTIVITY USING A GIS-BASED MODEL AND CURRENT COMPLEXITY METRICS”, IGGE, no. 42, pp. 689–701, July 2020, doi: 10.32003/igge.746242.
ISNAD Gülçin, Derya - Yılmaz, Tuluhan. “QUANTIFICATION OF THE CHANGE IN ECOLOGICAL CONNECTIVITY USING A GIS-BASED MODEL AND CURRENT COMPLEXITY METRICS”. lnternational Journal of Geography and Geography Education 42 (July 2020), 689-701. https://doi.org/10.32003/igge.746242.
JAMA Gülçin D, Yılmaz T. QUANTIFICATION OF THE CHANGE IN ECOLOGICAL CONNECTIVITY USING A GIS-BASED MODEL AND CURRENT COMPLEXITY METRICS. IGGE. 2020;:689–701.
MLA Gülçin, Derya and Tuluhan Yılmaz. “QUANTIFICATION OF THE CHANGE IN ECOLOGICAL CONNECTIVITY USING A GIS-BASED MODEL AND CURRENT COMPLEXITY METRICS”. Lnternational Journal of Geography and Geography Education, no. 42, 2020, pp. 689-01, doi:10.32003/igge.746242.
Vancouver Gülçin D, Yılmaz T. QUANTIFICATION OF THE CHANGE IN ECOLOGICAL CONNECTIVITY USING A GIS-BASED MODEL AND CURRENT COMPLEXITY METRICS. IGGE. 2020(42):689-701.

Cited By