Ilgar Dağı periglasyal şekilleri üzerinde oluşmuş toprakların erozyon duyarlılıklarının belirlenmesi ve yapay sinir ağı (YSA) ile tahmin edilmesi
Year 2022,
Issue: 47, 258 - 279, 30.09.2022
Volkan Dede
,
Orhan Dengiz
,
İnci Demirağ Turan
,
Kuttusi Zorlu
,
Sena Pacci
,
Soner Serin
Abstract
Periglasyal şekiller, geçmiş dönem iklim koşullarına bağlı olarak gelişen ve günümüz iklim koşulları altındada devinim gösteren oluşumlardır. Bu şekiller, Dünya’nın yüksek enlemlerinin yanı sıra alçak enlemlerinin yüksek dağlık alanlarında da yayılış göstermektedir. Kuzeydoğu Anadolu’da, Küçük Kafkaslar (4090 m) üzerinde yer alan Ilgar Dağı (2918 m) da söz konusu periglasyal şekillerin dağılış gösterdiği önemli noktalar arasındadır. Tipik bir volkan konisi görünümünde olan Ilgar Dağı’nın jeolojisini,temelde Üst Miosen ve Alt Pliosen yaşlı bazalt, tüf ve aglomera oluştururken, zirveler bölümünü ise Pleistosen yaşlı andezitler meydana getirmektedir. Ilgar Dağı’nın Öküzkoku ve Mısıkanadlı parazit konilerinin yamaçlarında girland, çember ve taş kümelerinden oluşan periglasyal şekiller görülmektedir. Bu çalışmada, (1) Ilgar Dağı periglasyal şekilleri üzerinde gelişen toprakların fiziko-kimyasal özelliklerinin belirlenmesi ve (2) bazı erozyon duyarlılık parametrelerinin (Strüktür stabilite indeksi-SSI, dispersiyon oranı-DO ve kabuk oluşumu-CF) tahmin edilmesi amaçlanmıştır. Bu amaçla sahadan alınan 25 adet örneklem verisi analiz edilerek toprakların fiziko-kimyasal özellikleri saptanmıştır. Söz konusu toprak özellikleri girdi olarak kullanılarak, erozyon duyarlılık parametreleri (CF, DO, SSI) yapay sinir ağı (YSA) ile tahmin edilmiştir. Bulgular, toprakların organik madde içeriklerinin yüksek olması, topraklarda kabuk oluşumuna dolayısıyla da fiziksel bozunumun oldukça düşük düzeylerde kalmasına neden olurken; kum oranının yüksek olmasının ise SSI ve DO değerinin de yüksek olmasına neden olduğu görülmüştür. Ayrıca YSA ile tahmin edilen yüksek erodobilite faktörü % 82 ile CF olmuştur.
Supporting Institution
Ardahan Üniversitesi
Thanks
Yazarlar, çalışmayı 2020-001 numaralı proje ile destekleyen Ardahan Üniversitesi, Bilimsel Araştırma Projeleri Koordinatörlüğü’ne içtenlikle teşekkür eder.
References
- Abbot, J., & Marohasy, J. (2012). Application of artificial neural Networks to rainfall forecasting in Queensland,
Australia. Adv.Atmos. Sci., 29, 717-730. https://doi.org/10.1007/s00376-012-1259-9
- Acheampong, A. O., & Boateng, E. B. (2019). Modelling carbon emissions intensity: Application of artificial neural
network. J. Clean. Prod., 225, 833-856. https://doi.org/10.1016/j.jclepro.2019.03.352
- Alaboz, P., Dengiz, O., Demir, S., & Şenol, H. (2021). Digital mapping of soil erodibility factors based on decision
tree using geostatistical approaches in terrestrial ecosystem. Catena, 207-105634.
https://doi.org/10.1016/j.catena.2021.105634
- Alexakis, D. D., Tapoglou, E., & Vozinaki, A.E.K. (2019). Integrated use of satellite remote sensing, artificial neural
networks, fileds pectroscopy, and GIS in estimating crucial soil parameters in terms of soil erosion. Remote
Sens., 11(9), 1106. https://doi.org/ 10.3390/rs11091106
- Almeida, C. M., Gleriani, J. M., & Castejon, E. F. (2008). Using neural networks and cellular automata for modelling
intra-urban land use dynamics. Int. J. Geogr. Inf. Sci., 22(9), 943–963. https://doi.org/10.1080/13658810701731168
- Aşkın, T., Türkmen F., & Tarakçıoğlu, C. (2016). Ordu ili merkez ilçe topraklarında erozyon riskinin jeoistatistiksel
tekniklerle değerlendirilmesi. Toprak Bilimi ve Bitki Besleme Dergisi, 4(2) 69-75.
- Bajracharya, R. M., Elliot, W. J., & Lal, R. (1992). Interrill erodibility of some Ohio soils based on field rainfall
simulation. Soil Science Society of America Journal, 56, 267-272.
- Barthes, B., & Roose, E. (2002). Aggregate stability as an indicator of soil susceptibility to runoff and erosion;
validation at several levels. Catena, 47(2), 133-149. https://doi.org/10.1016/S0341-8162(01)00180-1
- Bennett, H. H. (1955). Elements of soil conservation. (2.ed.) New York, McGraw-Hill, 358p.
- Bilgili, M. (2011). The use of artificial neural networks for forecasting the monthly mean soil temperatures in
Adana. Turkey. Turkish J. Agric. For., 35, 83-93. https://doi.org/10.3906/tar-1001-593
- Bissonnais, Y., Bruand, A., & Jamagne, M. (2007). Laboratory experimental study of soil crusting: Relations
between aggregate breakdown mechanisms and crust structure. Catena, 16, 377- 392.
- Blake, G. R., & Hartge, K. H. (1986). Bulk density. In A. Klute (Eds.), Methods of soil analysis: Part 1 Physical and
mineralogical methods, (pp. 363-375). SSSA Book Series.
- Bose, B. K. (1994). Expert-system, fuzzy-logic, and neural-network applications in power electronics and motion
control. Proceeding of the IEEE, 82(8), 1303-1323. https://doi.org/10.1109/5. 301690
- Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy
Journal, 54(5), 464-465. https://doi.org/10.2134/agronj1962.00021962005400050028x
- Bu, C. F., Wu, S. F., & Yang, K.B. (2014). Effects of physical soil crusts on infiltration and splash erosion in three
typical Chinese soils. International Journal of Sediment Research, 29(4), 491-501. https://doi.org/10.1016/S1001-
6279(14)60062-7
- Canpolat, M., & Demiralay, İ. (1995). Organik materyal ilave edilmiş toprakların agregat stabilitesi, briket hacim
ağırlığı ve kırılma değeri arasındaki ilişkiler. Türkiye Toprak İlmi Derneği Toprak ve Çevre Sempozyumu. Cilt II.
Yayın No: 7, ss: A-116 A-124, Ankara.
- Cebeci, D. (2013). Kurumsal kredi değerlendirmede bulanık AHP-yapay sinir ağları temelli bir yaklaşım ve bir
uygulama çalışması, (Yüksek Lisans Tezi, YTÜ Fen Bilimleri Enstitüsü, İstanbul).
- Celilov, C., & Dengiz, O. (2019). Erozyon duyarlılık parametrelerinin farklı enterpolasyon yöntemleriyle konumsal
dağılımlarının belirlenmesi: Türkiye, Ilgaz Milli Park toprakları. Türkiye Tarımsal Araştırmalar Dergisi, 6(3), 242-
256. https://doi.org/10.19159/tutad.502457
- Chaudhri, K. G., Brown, K.W., & Holder, C.B. (1976). Reduction of crust impedence to simulated seedling
emergence by the addition of manure. Soil Science, 122, 216–222.
- Colucci, R. R., Boccali, C., Zebre, M., & Guglielmin, M. (2016). Rock glaciers, protalus ramparts and pronival
ramparts in the South-eastern Alps. Geomorphology, 269, 112-121. https://doi.org/10.1016/j.geomorph.2016.06.039
- Coppola, E., Poulton, M., Charles, E., Dustman, J., & Szidarovszky, F. (2003). Application of artificial neural
Networks to complex ground water management problems. Natural Resources Research, 12, 303–320 (2003).
https://doi.org/10.1023/B:NARR.0000007808.11860.7e
- Çelik, P., & Dengiz, O. (2018). Akselendi ovası tarım topraklarının temel toprak özellikleri ve bitki besin elementi
durumlarının belirlenmesi ve dağılım haritalarının oluşturulması. Türkiye Tarımsal Araştırmalar Dergisi, 5(1), 9-
18. https://doi.org/10.19159/tutad.322336
- Çiçek, İ., Gürgen, G., Tunçel, H., & Doğu, A.F. (2004). Glacial morphology of Eastern Black Sea Mountains, Turkey.
Caucasian Geographical Review, 4, 46-51.
- Dede, V., Dengiz, O., Demirağ Turan, İ., Türkeş, M., Gökçe, C., & Serin, S. (2020). Ilgaz Dağları periglasyal
şekillerinde oluşmuş toprakların fizikokimyasal özellikleri ile bazı erozyon duyarlılık parametreleri arasındaki
ilişkilerin belirlenmesi. Ankara Üniversitesi, Coğrafi Bilimler Dergisi, 18, 99-123. https://doi.org/10.33688/
aucbd.689755
- Dengiz, O., & Başkan, O. (2010). Characterization of soil profile developmet on different ladscape in semi-arid
Region of Turkey a case study; Ankara-Soğulca catchmet. Anadolu Tarım Bilimleri Dergisi, 25(2),106-112.
- Drewes, J., Moreiras, S., & Korup, O. (2018). Permafrost activity and atmospheric warming in the Argentinian
Andes. Geomorphology, 323, 13-24. https://doi.org/10.1016/j.geomorph.2018.09.005
- Ebrahimi, M., Sarikhani, M. R., Sinegani, A. A. S., Ahmadi, A., & Keesstra, S. (2019). Estimating the soil respiration
under different landuses using artificial neural network and linear regression models. Catena, 174, 371–382.
https://doi.org/10.1016/j.catena.2018.11.035
- Fadare, D. A. (2010). The application of artificial neural Networks to mapping of wind speed profile for energy
application in Nigeria. Appl. Energy, 87(3), 934–42. https://doi.org/10.1016/j.apenergy.2009.09.005
- Farhat, A., & Cheok, K.C. (2017). Improving Adaptive Network Fuzzy Inference System with Levenberg Marquardt
Algorithm. 2017 Annual IEEE International Systems Conference (SysCon). Montreal, QC, Canada.
- Feng, L., & Zhang, J. (2014). Application of artificial neural networks in tendency forecasting of economic growth.
Econ. Model., 40, 76-80. https://doi.org/10.1016/j.econmod.2014.03.024
- Foth, H. D. (1990). Fundamentals of soil science. (8.ed.) New York, John Wiley & Sons, 1990. 368p.
- Gholami, V., Booij, M. J., Tehrani, E. N., & Hadian, M.A. (2018). Spatial soil erosion estimation using an artificial
neural network (ANN) and field plot data. Catena. 163, 210-218. https://doi.org/10.1016/j.catena.2017.12.027
- Gholami, V., Sahour, H., & Hadian Amri, M. A. (2021). Soil erosion modeling using erosion pinsand artificial neural
networks. Catena, 196, 104902. https://doi.org/10.1016/j. catena.2020.104902
- Giardino, J., & Vick, S. (1987). Geologic engineering aspects of rock glaciers, In: Giardino, J., Shroder, J., Vitek, J.,
(Eds.), Rock Glaciers, Allen and Unwin, London, 265-287.
- Hamilton, S., & Whalley, W. (1995). Rock glacier nomenclature: a reassesment. Geomorphology, 14, 73-80.
https://doi.org/10.1016/0169- 555X(95)00036-5
- Hosseinpour, S., Aghbashlo, M., Tabatabaei, M., & Khalife, E. (2016). Exact estimation of biodiesel cetane number
(CN) from its fatty acid methyl esters (FAMEs) profile using partial least square (PLS) adapted by artificial
neural network (ANN). Energy Conversion and Management 124:389-98.
https://doi.org/10.1016/j.enconman.2016.07.027
- Huang, W., & Foo, S. (2002). Neural network modeling of salinity variation in Apalachicola River. Water Research,
36(1), 356-362. https://doi.org/10.1016/s0043-1354(01)00195-6
- Humlum, O. (1998). The climatic significance of rock glaciers. Permafrost and Periglacial Processes, 9, 375-395.
https://doi.org/10.1002/(SICI)1099-1530(199810/12)9:4<375::AID-PPP301>3.0.CO;2-0
- İç, S., & Gülser, C. (2008). Tütün atığının farklı bünyeli toprakların bazı kimyasal ve fiziksel özelliklerine etkisi.
Anadolu Tarım Bilimleri Dergisi, 23(2), 104-109.
- İnce, A. (2018). Yapay sinir ağları ve rastgele orman yöntemleri ile Landsat 8 görüntülerinden otomatik kıyı
çizgisi çıkartılması, (Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul).
- Jackson, M. L. (1958). Organic matter determination for soils. Soil chemical analysis.
- Kalogirou, S. A. (2000). Applications of artificial neural-networks for energy systems. Applied Energy, 67(1-2),17-
35. https://doi.org/10.1016/S0306-2619(00)00005-2
- Kanar, E., & Dengiz, O. (2015). Madendere havzası topraklarında arazi kullanım/arazi örtüsü ile bazı erozyon
duyarlılık indeksleri arasındaki ilişkinin belirlenmesi. Türkiye Tarımsal Araştırmalar Dergisi, 2(1), 15-27.
- Karagöktaş, D., & Yakupoğlu, T. (2014). Erozyon araştırma sahasına dönüştürülmesi planlanan bir alanda
aşınabilirlik ve toprak özellikleri arasındaki ilişkiler. Toprak Bilimi ve Bitki Besleme Dergisi, 2(1), 6-12.
- Kemper, W. D., & Rosenau, R. C. (1986). Aggregate stability and size distribution. In A. Klute (Eds.), Methods of soil
analysis: Part 1 Physical and mineralogical methods, (pp. 363-375). SSSA Book Series.
- Keskin, İ. (2013). 1/ 100.000 Ölçekli Türkiye Jeoloji Haritaları, Ardahan E-49 ve F-49 Paftaları. MTA Genel
Müdürlüğü, Jeoloji Etütleri Dairesi, No: 181.
- Kim, M., & Gilley, J. E. (2008). Artificial Neural Network estimation of soil erosion and nutrient concentrations in
runoff from land application areas. Comput. Electron. Agric. 64, 268-275.
https://doi.org/10.1016/j.compag.2008.05.021
- Knight, J., Harrison, S., & Jones, D.B. (2019). Rock glaciers and the geomorphological evolution of deglacierizing
mountains. Geomorphology, 324, 14-24. https://doi.org/10.1016/j.geomorph.2018.09.020
- Kurter, A. (1991). Glaciers of Middle East and Africa Glaciers of Turkey, Satellite Image Atlas of the World, (Ed. R. S.
Williams ve J. G. Ferrigno) USGS Professional Paper, 1386-G-1, 1-30.
- Kurter, A., & Sungur, K. (1980). Present Glaciation in Turkey, World Glacier Inventory, Proceedings of the workshop
at Riederalp, Switzerland, 17-22 September 1978. International Association of Hydrologial Sciences, 126,155-160.
- Lal, R. (1998). Soil quality and agricultural sustainability. CRC press.
- Leo, M. W. (1963). A rapid method for estimating structural stability of soils. Soil Science, 96(5), 342-346.
- Li, Q., Yue, T., Wang, C., Zhang, W., Yu, Y., Li, B., Yang, J., & Bai, G. (2013). Spatially distributed modeling of soil
organic matter across China: an application of artificial neural network approach. Catena, 104, 210-218.
https://doi.org/10.1016/j.catena.2012.11.012
- Licznar, P., & Nearing, M. A. (2003). Artificial neural networks of soil erosion and runoff prediction at the plot
scale. Catena, 51, 89-114. https://doi.org/10.1016/S0341-8162(02)00147-9
- Lozinski, von W. (1909). Über die Mechanische Vermitterung der Sandsteine im Gemassigten Klima. Bulletin
International de I’Academiedes Sciences de Cracovie class des Sciences Mathematique et Naturalles, 1, 1-25.
- Luk, K. C., Ball, J. E., & Sharma, A. (2001). An application of artificial neural Networks for rainfall forecasting. Math
Comput Model, 33, 683–93. https://doi.org/10.1016/S0895-7177(00)00272-7
- Lutz, J. H., & Chandler, F. R. (1947). Forest Soils. John Wiley and Sons, Inc. New York.
- Mallants, D., Mohanty, B. P., Jacques, D., & Feyen, J. (1996). Spatial variability of hydraulic properties in a multi-
layered soil profile. Soil Science, 161(3), 167-181.
- Miller, W. P., & Baharrudin, M.K. (1987). Interrill erodibility of highly weathered soils. Communication in Soil
Science and Plant Analysis, 18, 933-945.
- Moghadam, H., Tayyebi, A., & Helbich, M. (2017). Transition index maps for urban growth simulation: application
of artificial neural networks, weight of evidence and fuzzy multi-criteria evaluation. Environ Monit Assess, 189,
300. https://doi.org/10.1007/s10661-017-5986-3
- Mohammadi, B., Mehdizadeh, S., Ahmadi, F., Lien, N. T. T., Linh, N. T. T., & Pham, Q. B. (2021). Developing hybrid time
series and artificial intelligence models for estimating air temperatures. Stoch Env Res Risk Assess, 35, 1189–
1204. https://doi.org/10.1007/ s00477-020-01898-7
- Najah, A., El-Shafie, A., Karim, O. A., & El-Shafie, A. H. (2013). Application of artificial neural Networks for water
quality prediction. Neural Comput & Applic 22, 187-201. https://doi.org/10.1007/s00521-012-0940-3
- Ngatunga, E.L.N., Lal, I., & Singer, M. J. (1984). Effect of surface management on runoff and soil eroison from
some plot at Milangano, Tanzania. Geoderma, 33, 1-12.
- Odabaş, M. S., Kayhan, G., Ergun, E., & Şenyer, N. (2016). Using artificial neural network and multiple linear
regression for predicting the chlorophyll concentration index of Saint John’s Wort Leaves. Commun Soil Sci
Plant Anal, 47(2), 237-245.
- Odabaş, M.S., Leelaruban, N., Şimsek, H., & Padmanabhan, G. (2014). Quantify ingimpact of droughts on barley
yield in North Dakota, usa using multiple linear regression and artificial neural network. Neural Network World,
24(4), 343–355, 1.
- Oliva, M., Sarıkaya, M. A. & Hughes, P., (2020). Holocene and earlier glaciations in the Mediterranean Mountains.
Mediterranean Geoscience Reviews, 2, 1-4. https://doi.org/10.1007/s42990-020-00025-6
- Oliva, M., Serrano, E., Gomez-Ortiz, A., Gonzalez-Amuchastequi, M.J., Nieuwendan, A., Palacios, D., Perez-Alberti, A.,
Pellitero-Ondicol, R., Ruiz-Fernandez, J., Valcarcel, M., Vieira, G., & Antoniades, D. (2016). Spatial and temporal
variability of periglaciation of the Iberian Peninsula. Quaternary Science Reviews, 137, 176-199.
- Oliva, M., Zebre, M., Guglielmin, M., Hughes, P., Çiner, A., Vieira, G., Bodin, X., Andres, N., Colucci, R.R., Garcia-
Hernandez, C., Mora, C., Nofre, J., Palacios, D., Perez-Alberti, A., Ribolini, A., Ruiz-Fernandez, J., Sarıkaya, M. A.,
Serrano, E., Urdea, P., Valcarcel, M., Woodward, J. C., & Yıldırım, C. (2018). Permafrost conditions in the
Mediterranean region since the Last Glaciation. Earth-Science Reviews, 185, 397-436.
- Özdemir, N. (2013). Toprak ve su koruma. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Yayınları, No:22, Üçüncü
Baskı, 232s, Samsun.
- Öztürk, E. (2013). Organik düzenleyicilerin toprak kaybı ve toprak kalitesi üzerindeki etkilerinin laboratuvar
koşullarında belirlenmesi. (Doktora Tezi, Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü, 151s, Samsun).
- Öztürk, E., & Özdemir, N. (2006). Topraklarda kabuk tabakası oluşumu, çeşitleri ve önlenmesi. Anadolu Tarım
Bilimleri Dergisi, 21(2), 275-282.
- Pacci, S., Kaya, N. S., Demirağ Turan, İ., Odabaş, M. S., & Dengiz, O. (2022). Comparative approach for soil quality
index based on spatial multi-criteria analysis and artificial neural network. Arabian Journal of Geosciences,
15(1), 1-15. https://doi.org/10.1007/s12517-021-09343-x
- Parlak, M., Yiğini, Y., & Ekinci, H. (2014). Çanakkale Umurbey ovası topraklarının erozyona duyarlılığının mevsimsel
değişimi. ÇOMÜ Ziraat Fakültesi Dergisi, 2(1), 123-131.
- Pieri, C. (1989). Fertilité des terres de savane. Bilan de trente annéesderecherche et de développement agricole
ausuddu Sahara. IRAT, Paris, 444 pp.
- Saygın, F., Dengiz, O., İç, S., & İmamoğlu, A. (2019). Bazı fiziko-kimyasal toprak özellikleri ile bazı erodibilite
parametreleri arasındaki ilişkilerin mikro havza ölçeğinde değerlendirilmesi. Artvin Çoruh Üniversitesi Orman
Fakültesi Dergisi, 20(1), 82-91. https://doi.org/10.17474/artvinofd.481642
- Suo, X. M., Jiang, Y.T., Yang, M., Li, S. K., & Wang, C.T. (2010). Artificial neural network to predict leaf population
chlorophyll content from cotton plant images. Agric. Science in China, 9(1), 38-45. https://doi.org/10.1016/S1671-
2927(09)60065-1
- Temizel, K.E., Odabaş, M. S. Şenyer, N. Kayhan, G. Bajwa, S. Çalışkan, O., & Ergun, E. (2014). Comparision of some
models for estimation of reflectance of hypericum leaves under stress conditions. Central European Journal of
Biology, 9 (12): 1226-1234. https://doi.org/10.2478/s11535-014-0356-4
- Uxa, T., Mida, P., & Krizek, M. (2017). Effect of climate on morphology and development of sorted circles and
polygons. Permafrost and Periglacial Processes, 28, 663-674. https://doi.org/10.1002/ppp.1949
- Velichko, A. A., & Nechaev, V. P. (1992). Cryogenic regions during the Last Glacial Maximum (permafrost). In
Frenzel, B., Pecsi, M., and Velichko, A. A., Gustav Fischer Verlag (Eds.) Atlas of Paleoclimates and
Paleoenvironments of the Northern Hemisphere, Stuttgart 108-109.
- Wahrhaftig, C., & Cox, A. (1959). Rock glaciers in the Alaska Range. Geological Society of America Bulletin, 70(4),
383-436.
- Whalley, W. B., & Martin, H.E. (1992). Rock glaciers: II models and mechanism. Progress in Physical Geography,
16(2), 127-186. https://doi.org/10.1177/030913339201600201
- Wilding, L. P. (1985). Spatial variability: it's documentation, accommodation and implication to soil surveys. In
Nielsen, D. R. and J. Bouma (Eds.). Soil Spatial Variability. Pudoc, Wageningen, The Netherlands, p. 166-194.
- Yıldız, N., Akbulut, Ö., & Bircan, H. (1998). İstatistiğe giriş. Şafak Yayınevi. Erzurum.
- Yılmaz, E., Alagöz, Z. V. & Öktüren, F. (2005). Toprakta agregat oluşumu ve stabilitesi. S.Ü. Ziraat Fakültesi Dergisi,
19(36), 78-86.
- Yılmaz, K., Çelik, İ., Kapur, S., & Ryan, J. (2005). Clay minerals, Ca/Mg ratioand Fe-Al-oxides in relation to
structural stability, hydraulic conductivity and soil erosion in southeastern Turkey. Turkish journal of agriculture
and forestry, 29(1), 29-37.
Determination of erosion susceptibilities of soils formed on the periglacial landforms of mount Ilgar and its estimation using artificial neural network (ANN)
Year 2022,
Issue: 47, 258 - 279, 30.09.2022
Volkan Dede
,
Orhan Dengiz
,
İnci Demirağ Turan
,
Kuttusi Zorlu
,
Sena Pacci
,
Soner Serin
Abstract
Periglacial landforms are formations that develop depending on the climatic conditions of the past period and show alteration under today's climatic conditions. These landforms are distributed in the high mountain areas of the low latitudes as well as the high latitudes of the Earth. Mount Ilgar (2918 m a.s.l.), located on the Lesser Caucasus (4090 m a.s.l.) in Northeastern Anatolia, is among the important points where the landforms are distributed. The geology of Mount Ilgar, which has the appearance of a typical volcanic cone, is composed of Upper Miocene and Lower Pliocene aged basalt, tuff and agglomerate, while Pleistocene aged andesites form the summits. Periglacial landforms consisting of non sorted steps, mud circles and stony earth circles are observed on the slopes of parasite cones called Öküzkoku and Mısıkan of Mount Ilgar. In this study, it was aimed to (1) determine the physico-chemical properties of soils developed on the periglacial landforms of Mount Ilgar and (2) estimate various erosion susceptibility parameters (Structural stability index-SSI, dispersion ratio-DR and crust formation-CF). For this purpose, the physico-chemical properties of the soils were determined by analyzing 25 sample data, collected from the field. Erosion susceptibility parameters (SSI, DR, CF) were estimated by artificial neural network (ANN) by using the soil properties as input. The results show that the high organic matter content of the soils causes the crust formation in the soils, thus keeping the physical degradation at very low levels; it was observed that the high sand content caused the SSI and DO values to be high. In addition, the highest erodibility factor estimated by ANN was CF with 82%.
References
- Abbot, J., & Marohasy, J. (2012). Application of artificial neural Networks to rainfall forecasting in Queensland,
Australia. Adv.Atmos. Sci., 29, 717-730. https://doi.org/10.1007/s00376-012-1259-9
- Acheampong, A. O., & Boateng, E. B. (2019). Modelling carbon emissions intensity: Application of artificial neural
network. J. Clean. Prod., 225, 833-856. https://doi.org/10.1016/j.jclepro.2019.03.352
- Alaboz, P., Dengiz, O., Demir, S., & Şenol, H. (2021). Digital mapping of soil erodibility factors based on decision
tree using geostatistical approaches in terrestrial ecosystem. Catena, 207-105634.
https://doi.org/10.1016/j.catena.2021.105634
- Alexakis, D. D., Tapoglou, E., & Vozinaki, A.E.K. (2019). Integrated use of satellite remote sensing, artificial neural
networks, fileds pectroscopy, and GIS in estimating crucial soil parameters in terms of soil erosion. Remote
Sens., 11(9), 1106. https://doi.org/ 10.3390/rs11091106
- Almeida, C. M., Gleriani, J. M., & Castejon, E. F. (2008). Using neural networks and cellular automata for modelling
intra-urban land use dynamics. Int. J. Geogr. Inf. Sci., 22(9), 943–963. https://doi.org/10.1080/13658810701731168
- Aşkın, T., Türkmen F., & Tarakçıoğlu, C. (2016). Ordu ili merkez ilçe topraklarında erozyon riskinin jeoistatistiksel
tekniklerle değerlendirilmesi. Toprak Bilimi ve Bitki Besleme Dergisi, 4(2) 69-75.
- Bajracharya, R. M., Elliot, W. J., & Lal, R. (1992). Interrill erodibility of some Ohio soils based on field rainfall
simulation. Soil Science Society of America Journal, 56, 267-272.
- Barthes, B., & Roose, E. (2002). Aggregate stability as an indicator of soil susceptibility to runoff and erosion;
validation at several levels. Catena, 47(2), 133-149. https://doi.org/10.1016/S0341-8162(01)00180-1
- Bennett, H. H. (1955). Elements of soil conservation. (2.ed.) New York, McGraw-Hill, 358p.
- Bilgili, M. (2011). The use of artificial neural networks for forecasting the monthly mean soil temperatures in
Adana. Turkey. Turkish J. Agric. For., 35, 83-93. https://doi.org/10.3906/tar-1001-593
- Bissonnais, Y., Bruand, A., & Jamagne, M. (2007). Laboratory experimental study of soil crusting: Relations
between aggregate breakdown mechanisms and crust structure. Catena, 16, 377- 392.
- Blake, G. R., & Hartge, K. H. (1986). Bulk density. In A. Klute (Eds.), Methods of soil analysis: Part 1 Physical and
mineralogical methods, (pp. 363-375). SSSA Book Series.
- Bose, B. K. (1994). Expert-system, fuzzy-logic, and neural-network applications in power electronics and motion
control. Proceeding of the IEEE, 82(8), 1303-1323. https://doi.org/10.1109/5. 301690
- Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy
Journal, 54(5), 464-465. https://doi.org/10.2134/agronj1962.00021962005400050028x
- Bu, C. F., Wu, S. F., & Yang, K.B. (2014). Effects of physical soil crusts on infiltration and splash erosion in three
typical Chinese soils. International Journal of Sediment Research, 29(4), 491-501. https://doi.org/10.1016/S1001-
6279(14)60062-7
- Canpolat, M., & Demiralay, İ. (1995). Organik materyal ilave edilmiş toprakların agregat stabilitesi, briket hacim
ağırlığı ve kırılma değeri arasındaki ilişkiler. Türkiye Toprak İlmi Derneği Toprak ve Çevre Sempozyumu. Cilt II.
Yayın No: 7, ss: A-116 A-124, Ankara.
- Cebeci, D. (2013). Kurumsal kredi değerlendirmede bulanık AHP-yapay sinir ağları temelli bir yaklaşım ve bir
uygulama çalışması, (Yüksek Lisans Tezi, YTÜ Fen Bilimleri Enstitüsü, İstanbul).
- Celilov, C., & Dengiz, O. (2019). Erozyon duyarlılık parametrelerinin farklı enterpolasyon yöntemleriyle konumsal
dağılımlarının belirlenmesi: Türkiye, Ilgaz Milli Park toprakları. Türkiye Tarımsal Araştırmalar Dergisi, 6(3), 242-
256. https://doi.org/10.19159/tutad.502457
- Chaudhri, K. G., Brown, K.W., & Holder, C.B. (1976). Reduction of crust impedence to simulated seedling
emergence by the addition of manure. Soil Science, 122, 216–222.
- Colucci, R. R., Boccali, C., Zebre, M., & Guglielmin, M. (2016). Rock glaciers, protalus ramparts and pronival
ramparts in the South-eastern Alps. Geomorphology, 269, 112-121. https://doi.org/10.1016/j.geomorph.2016.06.039
- Coppola, E., Poulton, M., Charles, E., Dustman, J., & Szidarovszky, F. (2003). Application of artificial neural
Networks to complex ground water management problems. Natural Resources Research, 12, 303–320 (2003).
https://doi.org/10.1023/B:NARR.0000007808.11860.7e
- Çelik, P., & Dengiz, O. (2018). Akselendi ovası tarım topraklarının temel toprak özellikleri ve bitki besin elementi
durumlarının belirlenmesi ve dağılım haritalarının oluşturulması. Türkiye Tarımsal Araştırmalar Dergisi, 5(1), 9-
18. https://doi.org/10.19159/tutad.322336
- Çiçek, İ., Gürgen, G., Tunçel, H., & Doğu, A.F. (2004). Glacial morphology of Eastern Black Sea Mountains, Turkey.
Caucasian Geographical Review, 4, 46-51.
- Dede, V., Dengiz, O., Demirağ Turan, İ., Türkeş, M., Gökçe, C., & Serin, S. (2020). Ilgaz Dağları periglasyal
şekillerinde oluşmuş toprakların fizikokimyasal özellikleri ile bazı erozyon duyarlılık parametreleri arasındaki
ilişkilerin belirlenmesi. Ankara Üniversitesi, Coğrafi Bilimler Dergisi, 18, 99-123. https://doi.org/10.33688/
aucbd.689755
- Dengiz, O., & Başkan, O. (2010). Characterization of soil profile developmet on different ladscape in semi-arid
Region of Turkey a case study; Ankara-Soğulca catchmet. Anadolu Tarım Bilimleri Dergisi, 25(2),106-112.
- Drewes, J., Moreiras, S., & Korup, O. (2018). Permafrost activity and atmospheric warming in the Argentinian
Andes. Geomorphology, 323, 13-24. https://doi.org/10.1016/j.geomorph.2018.09.005
- Ebrahimi, M., Sarikhani, M. R., Sinegani, A. A. S., Ahmadi, A., & Keesstra, S. (2019). Estimating the soil respiration
under different landuses using artificial neural network and linear regression models. Catena, 174, 371–382.
https://doi.org/10.1016/j.catena.2018.11.035
- Fadare, D. A. (2010). The application of artificial neural Networks to mapping of wind speed profile for energy
application in Nigeria. Appl. Energy, 87(3), 934–42. https://doi.org/10.1016/j.apenergy.2009.09.005
- Farhat, A., & Cheok, K.C. (2017). Improving Adaptive Network Fuzzy Inference System with Levenberg Marquardt
Algorithm. 2017 Annual IEEE International Systems Conference (SysCon). Montreal, QC, Canada.
- Feng, L., & Zhang, J. (2014). Application of artificial neural networks in tendency forecasting of economic growth.
Econ. Model., 40, 76-80. https://doi.org/10.1016/j.econmod.2014.03.024
- Foth, H. D. (1990). Fundamentals of soil science. (8.ed.) New York, John Wiley & Sons, 1990. 368p.
- Gholami, V., Booij, M. J., Tehrani, E. N., & Hadian, M.A. (2018). Spatial soil erosion estimation using an artificial
neural network (ANN) and field plot data. Catena. 163, 210-218. https://doi.org/10.1016/j.catena.2017.12.027
- Gholami, V., Sahour, H., & Hadian Amri, M. A. (2021). Soil erosion modeling using erosion pinsand artificial neural
networks. Catena, 196, 104902. https://doi.org/10.1016/j. catena.2020.104902
- Giardino, J., & Vick, S. (1987). Geologic engineering aspects of rock glaciers, In: Giardino, J., Shroder, J., Vitek, J.,
(Eds.), Rock Glaciers, Allen and Unwin, London, 265-287.
- Hamilton, S., & Whalley, W. (1995). Rock glacier nomenclature: a reassesment. Geomorphology, 14, 73-80.
https://doi.org/10.1016/0169- 555X(95)00036-5
- Hosseinpour, S., Aghbashlo, M., Tabatabaei, M., & Khalife, E. (2016). Exact estimation of biodiesel cetane number
(CN) from its fatty acid methyl esters (FAMEs) profile using partial least square (PLS) adapted by artificial
neural network (ANN). Energy Conversion and Management 124:389-98.
https://doi.org/10.1016/j.enconman.2016.07.027
- Huang, W., & Foo, S. (2002). Neural network modeling of salinity variation in Apalachicola River. Water Research,
36(1), 356-362. https://doi.org/10.1016/s0043-1354(01)00195-6
- Humlum, O. (1998). The climatic significance of rock glaciers. Permafrost and Periglacial Processes, 9, 375-395.
https://doi.org/10.1002/(SICI)1099-1530(199810/12)9:4<375::AID-PPP301>3.0.CO;2-0
- İç, S., & Gülser, C. (2008). Tütün atığının farklı bünyeli toprakların bazı kimyasal ve fiziksel özelliklerine etkisi.
Anadolu Tarım Bilimleri Dergisi, 23(2), 104-109.
- İnce, A. (2018). Yapay sinir ağları ve rastgele orman yöntemleri ile Landsat 8 görüntülerinden otomatik kıyı
çizgisi çıkartılması, (Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul).
- Jackson, M. L. (1958). Organic matter determination for soils. Soil chemical analysis.
- Kalogirou, S. A. (2000). Applications of artificial neural-networks for energy systems. Applied Energy, 67(1-2),17-
35. https://doi.org/10.1016/S0306-2619(00)00005-2
- Kanar, E., & Dengiz, O. (2015). Madendere havzası topraklarında arazi kullanım/arazi örtüsü ile bazı erozyon
duyarlılık indeksleri arasındaki ilişkinin belirlenmesi. Türkiye Tarımsal Araştırmalar Dergisi, 2(1), 15-27.
- Karagöktaş, D., & Yakupoğlu, T. (2014). Erozyon araştırma sahasına dönüştürülmesi planlanan bir alanda
aşınabilirlik ve toprak özellikleri arasındaki ilişkiler. Toprak Bilimi ve Bitki Besleme Dergisi, 2(1), 6-12.
- Kemper, W. D., & Rosenau, R. C. (1986). Aggregate stability and size distribution. In A. Klute (Eds.), Methods of soil
analysis: Part 1 Physical and mineralogical methods, (pp. 363-375). SSSA Book Series.
- Keskin, İ. (2013). 1/ 100.000 Ölçekli Türkiye Jeoloji Haritaları, Ardahan E-49 ve F-49 Paftaları. MTA Genel
Müdürlüğü, Jeoloji Etütleri Dairesi, No: 181.
- Kim, M., & Gilley, J. E. (2008). Artificial Neural Network estimation of soil erosion and nutrient concentrations in
runoff from land application areas. Comput. Electron. Agric. 64, 268-275.
https://doi.org/10.1016/j.compag.2008.05.021
- Knight, J., Harrison, S., & Jones, D.B. (2019). Rock glaciers and the geomorphological evolution of deglacierizing
mountains. Geomorphology, 324, 14-24. https://doi.org/10.1016/j.geomorph.2018.09.020
- Kurter, A. (1991). Glaciers of Middle East and Africa Glaciers of Turkey, Satellite Image Atlas of the World, (Ed. R. S.
Williams ve J. G. Ferrigno) USGS Professional Paper, 1386-G-1, 1-30.
- Kurter, A., & Sungur, K. (1980). Present Glaciation in Turkey, World Glacier Inventory, Proceedings of the workshop
at Riederalp, Switzerland, 17-22 September 1978. International Association of Hydrologial Sciences, 126,155-160.
- Lal, R. (1998). Soil quality and agricultural sustainability. CRC press.
- Leo, M. W. (1963). A rapid method for estimating structural stability of soils. Soil Science, 96(5), 342-346.
- Li, Q., Yue, T., Wang, C., Zhang, W., Yu, Y., Li, B., Yang, J., & Bai, G. (2013). Spatially distributed modeling of soil
organic matter across China: an application of artificial neural network approach. Catena, 104, 210-218.
https://doi.org/10.1016/j.catena.2012.11.012
- Licznar, P., & Nearing, M. A. (2003). Artificial neural networks of soil erosion and runoff prediction at the plot
scale. Catena, 51, 89-114. https://doi.org/10.1016/S0341-8162(02)00147-9
- Lozinski, von W. (1909). Über die Mechanische Vermitterung der Sandsteine im Gemassigten Klima. Bulletin
International de I’Academiedes Sciences de Cracovie class des Sciences Mathematique et Naturalles, 1, 1-25.
- Luk, K. C., Ball, J. E., & Sharma, A. (2001). An application of artificial neural Networks for rainfall forecasting. Math
Comput Model, 33, 683–93. https://doi.org/10.1016/S0895-7177(00)00272-7
- Lutz, J. H., & Chandler, F. R. (1947). Forest Soils. John Wiley and Sons, Inc. New York.
- Mallants, D., Mohanty, B. P., Jacques, D., & Feyen, J. (1996). Spatial variability of hydraulic properties in a multi-
layered soil profile. Soil Science, 161(3), 167-181.
- Miller, W. P., & Baharrudin, M.K. (1987). Interrill erodibility of highly weathered soils. Communication in Soil
Science and Plant Analysis, 18, 933-945.
- Moghadam, H., Tayyebi, A., & Helbich, M. (2017). Transition index maps for urban growth simulation: application
of artificial neural networks, weight of evidence and fuzzy multi-criteria evaluation. Environ Monit Assess, 189,
300. https://doi.org/10.1007/s10661-017-5986-3
- Mohammadi, B., Mehdizadeh, S., Ahmadi, F., Lien, N. T. T., Linh, N. T. T., & Pham, Q. B. (2021). Developing hybrid time
series and artificial intelligence models for estimating air temperatures. Stoch Env Res Risk Assess, 35, 1189–
1204. https://doi.org/10.1007/ s00477-020-01898-7
- Najah, A., El-Shafie, A., Karim, O. A., & El-Shafie, A. H. (2013). Application of artificial neural Networks for water
quality prediction. Neural Comput & Applic 22, 187-201. https://doi.org/10.1007/s00521-012-0940-3
- Ngatunga, E.L.N., Lal, I., & Singer, M. J. (1984). Effect of surface management on runoff and soil eroison from
some plot at Milangano, Tanzania. Geoderma, 33, 1-12.
- Odabaş, M. S., Kayhan, G., Ergun, E., & Şenyer, N. (2016). Using artificial neural network and multiple linear
regression for predicting the chlorophyll concentration index of Saint John’s Wort Leaves. Commun Soil Sci
Plant Anal, 47(2), 237-245.
- Odabaş, M.S., Leelaruban, N., Şimsek, H., & Padmanabhan, G. (2014). Quantify ingimpact of droughts on barley
yield in North Dakota, usa using multiple linear regression and artificial neural network. Neural Network World,
24(4), 343–355, 1.
- Oliva, M., Sarıkaya, M. A. & Hughes, P., (2020). Holocene and earlier glaciations in the Mediterranean Mountains.
Mediterranean Geoscience Reviews, 2, 1-4. https://doi.org/10.1007/s42990-020-00025-6
- Oliva, M., Serrano, E., Gomez-Ortiz, A., Gonzalez-Amuchastequi, M.J., Nieuwendan, A., Palacios, D., Perez-Alberti, A.,
Pellitero-Ondicol, R., Ruiz-Fernandez, J., Valcarcel, M., Vieira, G., & Antoniades, D. (2016). Spatial and temporal
variability of periglaciation of the Iberian Peninsula. Quaternary Science Reviews, 137, 176-199.
- Oliva, M., Zebre, M., Guglielmin, M., Hughes, P., Çiner, A., Vieira, G., Bodin, X., Andres, N., Colucci, R.R., Garcia-
Hernandez, C., Mora, C., Nofre, J., Palacios, D., Perez-Alberti, A., Ribolini, A., Ruiz-Fernandez, J., Sarıkaya, M. A.,
Serrano, E., Urdea, P., Valcarcel, M., Woodward, J. C., & Yıldırım, C. (2018). Permafrost conditions in the
Mediterranean region since the Last Glaciation. Earth-Science Reviews, 185, 397-436.
- Özdemir, N. (2013). Toprak ve su koruma. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Yayınları, No:22, Üçüncü
Baskı, 232s, Samsun.
- Öztürk, E. (2013). Organik düzenleyicilerin toprak kaybı ve toprak kalitesi üzerindeki etkilerinin laboratuvar
koşullarında belirlenmesi. (Doktora Tezi, Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü, 151s, Samsun).
- Öztürk, E., & Özdemir, N. (2006). Topraklarda kabuk tabakası oluşumu, çeşitleri ve önlenmesi. Anadolu Tarım
Bilimleri Dergisi, 21(2), 275-282.
- Pacci, S., Kaya, N. S., Demirağ Turan, İ., Odabaş, M. S., & Dengiz, O. (2022). Comparative approach for soil quality
index based on spatial multi-criteria analysis and artificial neural network. Arabian Journal of Geosciences,
15(1), 1-15. https://doi.org/10.1007/s12517-021-09343-x
- Parlak, M., Yiğini, Y., & Ekinci, H. (2014). Çanakkale Umurbey ovası topraklarının erozyona duyarlılığının mevsimsel
değişimi. ÇOMÜ Ziraat Fakültesi Dergisi, 2(1), 123-131.
- Pieri, C. (1989). Fertilité des terres de savane. Bilan de trente annéesderecherche et de développement agricole
ausuddu Sahara. IRAT, Paris, 444 pp.
- Saygın, F., Dengiz, O., İç, S., & İmamoğlu, A. (2019). Bazı fiziko-kimyasal toprak özellikleri ile bazı erodibilite
parametreleri arasındaki ilişkilerin mikro havza ölçeğinde değerlendirilmesi. Artvin Çoruh Üniversitesi Orman
Fakültesi Dergisi, 20(1), 82-91. https://doi.org/10.17474/artvinofd.481642
- Suo, X. M., Jiang, Y.T., Yang, M., Li, S. K., & Wang, C.T. (2010). Artificial neural network to predict leaf population
chlorophyll content from cotton plant images. Agric. Science in China, 9(1), 38-45. https://doi.org/10.1016/S1671-
2927(09)60065-1
- Temizel, K.E., Odabaş, M. S. Şenyer, N. Kayhan, G. Bajwa, S. Çalışkan, O., & Ergun, E. (2014). Comparision of some
models for estimation of reflectance of hypericum leaves under stress conditions. Central European Journal of
Biology, 9 (12): 1226-1234. https://doi.org/10.2478/s11535-014-0356-4
- Uxa, T., Mida, P., & Krizek, M. (2017). Effect of climate on morphology and development of sorted circles and
polygons. Permafrost and Periglacial Processes, 28, 663-674. https://doi.org/10.1002/ppp.1949
- Velichko, A. A., & Nechaev, V. P. (1992). Cryogenic regions during the Last Glacial Maximum (permafrost). In
Frenzel, B., Pecsi, M., and Velichko, A. A., Gustav Fischer Verlag (Eds.) Atlas of Paleoclimates and
Paleoenvironments of the Northern Hemisphere, Stuttgart 108-109.
- Wahrhaftig, C., & Cox, A. (1959). Rock glaciers in the Alaska Range. Geological Society of America Bulletin, 70(4),
383-436.
- Whalley, W. B., & Martin, H.E. (1992). Rock glaciers: II models and mechanism. Progress in Physical Geography,
16(2), 127-186. https://doi.org/10.1177/030913339201600201
- Wilding, L. P. (1985). Spatial variability: it's documentation, accommodation and implication to soil surveys. In
Nielsen, D. R. and J. Bouma (Eds.). Soil Spatial Variability. Pudoc, Wageningen, The Netherlands, p. 166-194.
- Yıldız, N., Akbulut, Ö., & Bircan, H. (1998). İstatistiğe giriş. Şafak Yayınevi. Erzurum.
- Yılmaz, E., Alagöz, Z. V. & Öktüren, F. (2005). Toprakta agregat oluşumu ve stabilitesi. S.Ü. Ziraat Fakültesi Dergisi,
19(36), 78-86.
- Yılmaz, K., Çelik, İ., Kapur, S., & Ryan, J. (2005). Clay minerals, Ca/Mg ratioand Fe-Al-oxides in relation to
structural stability, hydraulic conductivity and soil erosion in southeastern Turkey. Turkish journal of agriculture
and forestry, 29(1), 29-37.