Review
BibTex RIS Cite

3 Boyutlu Yazıcı Materyallerinin Cerrahi ve Hemşirelik Alanında Kullanımına Bakış

Year 2023, Issue: 20, 663 - 676, 09.09.2023
https://doi.org/10.38079/igusabder.1168001

Abstract

Son yıllarda bilgisayar yazılımlarındaki gelişmelerle birlikte, üç boyutlu yazıcıların farklı sektörlerdeki kullanımları daha sık gündeme gelmiş ve yaygınlıkları artmıştır. Günümüzde ise üç boyutlu baskı materyalleri sağlık alanında; özellikle cerrahi uygulamalarda, implant-doku tasarımlarında, eczacılık alanında, biyo baskı organ üretimi ve medikal enstrüman üretimlerinde yaygın olarak kullanılmakta, bunun yanında tıp-sağlık eğitimi gibi alanlarda ve sağlık bakım hizmetlerinde de yer almaktadır. Bu derlemede, üç boyutlu yazıcı materyallerinin sağlık alanındaki kullanım alanlarının açıklanması, cerrahi ve hemşirelik alanındaki kullanımının etkinliğinin incelenmesi amaçlanmıştır. Üç boyutlu yazıcı materyalleri kullanılarak verilen hemşirelik eğitimleri ile hemşirelerin daha teknik ve donanımlı hale gelerek, beceri kazanabilecekleri yönünde olumlu etkilerinin olacağı öngörülmektedir. Cerrahi alanda ise, üç boyutlu yazıcı materyallerinin öğrenci eğitimlerinde kullanımları sonucunda, özellikle zorlayıcı anatomik ve patolojik koşullarda öğrenmeyi daha iyi geliştirdiği ve eğitimlerin daha iyi anlaşıldığı, kadavra malzemeleriyle karşılaştırıldığında ise üç boyutlu yazıcı materyallerinin daha ucuz olduğu ve eğitimlerde insan dokusu yerine kullanılabileceği sonucuna ulaşılmıştır. Cerrahi ve hemşirelik alanındaki eğitimlerde; üç boyutlu yazıcı materyallerine daha kolay ulaşılabilmesi, eğitim uygulamalarında bu materyallerin etkinliğinin vurgulanması, materyallerin kullanımının artırılabilmesi açısından önemlidir.

References

  • Arslan N, Yaylacı B, Eyüpoğlu ND, Kürtüncü M. Sağlıkta gelişen teknoloji: üç boyutlu yazıcılar. International Journal Of Printing Technologies And Digital Industry. 2018;2(2):99-110.
  • Aydın L, Küçük S. Üç boyutlu yazıcı-tarayıcı ile hastaya özel medikal ortez tasarımı ve geliştirilmesi. Journal of Polytechnic. 2017;20(1):1-8.
  • Sezer H, Şahin H. 3D baskı materyalinin eğitimde kullanımı: qua vadis? Tıp Eğitimi Dünyası. 2016;46:5-13.
  • Aimar A, Palermo A, Innocenti B. The role of 3d printing in medical applications: a state of the art. Journal Of Healthcare Engineering. 2019;2019:5340616..
  • Atalay HA, Değirmentepe RB, Bozkurt M, Can O, Canat HL, Altunrende F. 3D teknolojinin tıpta ve ürolojide kullanım alanları. Endoüroloji Bülteni. 2016;9:65-71.
  • Schmaus D, Gerber N, Sodin R. 3D printing of models for surgical planning in patients with primary cardiac tumors. J Thorac Cardio Surg. 2013;145:1407-1408.
  • Ayoub F, Rehab M, O’Neil M, et al. A novel approach for planning orthognathic surgery: The integration of dental casts into 3D printed mandibular models. Int J Oral Maxillofac Surg. 2014;43(4):454-9.
  • Oliveira MAB, Santos CA, Brandi AC, Botelho PHH, Braile DM. Three-dimensional printing: is it useful for cardiac surgery? Brazilian Journal of Cardiovascular Surgery. 2020;35(4):549-554. DOI: 10.21470/1678-9741-2019-0475.
  • Moore RA, Riggs KW, Kourtidou S, et al. Three-dimensional printing and virtual surgery for congenital heart procedural planning. Birth Defects Res. 2018;110(13):1082-1090.doi: 10.1002/bdr2.1370.
  • Bhatla P, Tretter JT, Chikkabyrappa S, Chakravarti S, Mosca RS. Surgical planning for a complex double-outlet right ventricle using 3D printing. Echocardiography. 2017;34:802-804.
  • Olejník P, Nosal M, Havran T, et al. Utilisation of three-dimensional printed heart models for operative planning of complex congenital heart defects. Cardiol Pol. 2017;75(5):495–501. doi: 10.5603/KP.a2017.0033.
  • Valverde I, Gomez-Ciriza G, Hussain T, et al. Three-dimensional printed models for surgical planning of complex congenital heart defects: an international multicenter study. Eur J Cardiothorac Surgery. 2017;52:1139-1148.
  • Ma XJ, Tao L, Chen X, et al. Clinical Application of three-dimensional reconstruction and rapid prototyping technology of multislice spiral computed tomography angiography for the repair of ventricular septal defect of tetralogy of fallot. Genet Mol Res. 2015;14:1301-1309.
  • Tsai MJ, Wu CT. Study of mandible reconstruction using a fibula flap with application of additive manufacturing technology. Biomed Eng Online. 2014;13:57. doi:10.1186/1475-925X-13-57.
  • Azuma M, Yanagawa T, Ishibashi-Kanno N, et al. Mandibular reconstruction using plates prebent to fit rapid prototyping 3-dimensional printing models ameliorates contour deformity. Head Face Med. 2014;10:45. doi:10.1186/1746-160X-10-45.
  • Chae MP, Rozen WM, McMenamin PG, Findlay MW, Spycha RT, Hunter-Smith DJ. Emerging applications of beside 3D printing in plastic surgery. Front. Surg. 2015;2(25):1-14. doi: 10.3389/fsurg.2015.00025.
  • Tam MD, Laycock SD, Bell D, Chojnowski A. 3-D printout of a DICOM file to aid surgical planning in a 6 year old patient with a large scapular osteochondroma complicating congenital diaphyseal aclasia. J Radiol Case Rep. 2012;6:31–7. doi:10.3941/jrcr.v6i1.889.
  • Silberstein JL, Maddox MM, Dorsey P, Feibus A, Thomas R, Lee BR. Physical models of renal malignancies using standard cross-sectional imaging and 3-dimensional printers: a pilot study. Urology. 2014;84:268–72. doi:10.1016/j. urology.2014.03.042 57.
  • Daniel M, Watson J, Hoskison E, Sama A. Frontal sinus models and onlay templates in osteoplastic flap surgery. J Laryngol Otol. 2011;125:82–5. doi:10.1017/ S0022215110001799.
  • Igami T, Nakamura Y, Hirose T, et al. Application of a three-dimensional print of a liver in hepatectomy for small tumors invisible by intraoperative ultrasonography: preliminary experience. World J Surg. 2014;38(12):3163–6. doi:10.1007/s00268-014-2740-7 60.
  • Ikegami T, Maehara Y. Transplantation: 3D printing of the liver in living donor liver transplantation. Nat Rev Gastroenterol Hepatol. 2013;10:697–8. doi:10.1038/nrgastro.2013.195.
  • Zein NN, Hanouneh IA, Bishop PD, et al. Three-dimensional print of a liver for preoperative planning in living donor liver transplantation. Liver Transplantation. 2013;19:1304–10. doi:10.1002/lt.23729.
  • Abouhashem Y, Dayal M, Savanah S, Strkal G. The Application of 3D printing in anatomy education. Med Educ Online. 2015;20:29847.
  • Costello JP, Olivieri LJ, Krieger A, et al. Utilizing three-dimensional printing tecnology to assess the feasibility of high-fidelity synthetic ventricular septal defect models for simulation in medical education. World Journal of Pediatric Congenital Heart Surgery. 2014;5(3):421-426.
  • Olivieri LJ, Su L, Hynes CF, et al. ‘ Just-in-time’ simutation training using 3D printed cardiac models after congenital cardiac surgery. World Journal For Pediatric And Congenital Heart Surgery. 2016;7(2):164-168.
  • Biglino G, Capelli C, Leaver LK, Schievano S, Taylor AM, Wray J. Involving patients, families and medical staff in the evaluation of 3D printing models of congenital heart disease. Communication and Medicine. 2016;12(2-3):157-169. https://doi.org/10.1558/cam.28455.
  • Cantinoti M, Valverde I, Kuty S. Three-dimensional printed models in congenital heart disease. Int J Cardiovasc Imaging. 2017;33(1):137-144.
  • Malik H, Darwood R, Shaunak S, et al. Three-dimensional printing in surgery: a review of current surgical applications. J Surgic Res. 2015;199(2):512-522.
  • Emre Ş, Yolcu MB, Celayir S. Çocuk cerrahisi öğrenci eğitiminde üç boyutlu modellerin kullanılması: süreç ve ilk izlenimler. Çocuk Cerrahisi Dergisi. 2018;32(2):55-60.
  • Kuzu Demir EB, Çaka C, Tuğtekin U, Demir K, Islamoğlu H, Kuzu A. 3D yazdırma teknolojilerinin eğitim alanında kullanımı: Türkiye’deki uygulamalar. Ege Eğitim Dergisi. 2016;17(2):481-503.
  • Şen B. (2017). Sağlıkta yeni umut ışığı 3D yazıcılar. Erişim Tarihi: 20.08.2022. http://www.baglantinoktasi.com.tr/saglikta-yeni-umut-isigi-3d-yazicilar/.
  • Lioufas A, Quayle R, Leong C, McMenamin G. Three dimensioanl printed models of cleft palate pathology for surgical education. Plastic Reconstrüctif Surgical Global Open. 2016;4(9):1-6.
  • Starosolski A, Kan H, Rosenfeld D, Krishnamurthy R, Annapragada A. Application of 3D printing for creating physical models of pediatric orthopedic disorders. Pediatric Radiology. 2014;44:216-221.
  • Richard D. The 3D printing revoution. Harvard Business Review. 2015;93(5):41-48.
  • Levine P, Patel A, Sadeh B, Hirch L. Computer aided design and manufacturing in craniomaxillofacial surgery: the new state of the art. Journal of Craniofacial Surgery. 2012;23:288-293.
  • Akpek A. Triküspit kalp kapakçıklarının 3B biyobaskı metotları ile fabrikasyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2018;22(2):740-745.
  • Tan H, Huang E, Deng X, Ouyang S. Application of 3D printing technology combined with PBL teaching model in teaching clinical nursing in congenital heart surgery: A case-control study. Medicine. 2021;100(20):e25918.
  • Pugliese L, Marconi S, Negrello E, et al. The clinical use of 3D printing in surgery. Updates in Surgery. 2018;70:381–388. https://doi.org/10.1007/s13304-018-0586-5.
  • Louvrier A, Marty P, Barrabe A, Euvrard E, Chatelain B. How useful is 3D printing in maxillofacial surgery? J Stomatol Oral Maxillofacial Surgery. 2017;118:206-212.
  • Hsieh T, Cervenka B, Dedhia R, Bradley ES, Steele T. Assessment of a patient-specific, 3-dimensionally printed endoscopic sinus and skull base surgical model. JAMA Otolaryngol Head Neck Surg. 2018;144(7):574–579.
  • Lim KH, Loo ZY, Goldie SJ, Adams JW, McMenamin PG. Use of 3D printed models in medical education: A randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy. Anat Sci Educ. 2016;9(3):213-221.
  • Rengier F, Mehndiratta A, von Tengg-Kobligk H, et al. 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg. 2010;5(4):335-341.
  • Dai X, Ma C, Lan Q, Xu T. 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility. Biofabrication. 2016;8(4):045005.
  • Çallı L, Taşkın K. 3D yazıcı endüstrisinin oluşturacağı yeni pazarlar ve pazarlama uygulamaları. 1. Uluslararası Ekonomi ve İşletme Kongresi (Iceb'15) 10 – 14 Haziran 2015 Gostıvar /Makedonya
  • Çelebi A, Tosun H, Önçağ AÇ. Hasarlı bir kafatasının üç boyutlu yazıcı ile imalatı ve implant tasarımı. International Journal Of 3d Printing Technologies And Digital Industry. 2017;1(1):27-35.
  • Astin F, Carrol L, Ruppar T, et al. A core curriculum for the continuing professional development of nurses: Developed by the education committee on behalf of the council on cardiovascular nursing and allied professions of the ESC. Euro J Cardio Nurs. 2015;14(3):190-197.
  • Lioce L, Maddux G, Goddard N, et al. Application of 3D printing in the development of training simulations for nursing students. Proceedings of the 9th International Workshop on Innovative Simulation for Healthcare (IWISH 2020),7-12. doi:10.46354/i3m.2020.iwish.002.
  • Biglino G, Capelli C, Koniordou D, et al. Use of 3D models of congenital heart disease as an education tool for cardiac nurses. Congenital Heart Disease. 2017;12:113-118.
  • Kürtüncü M, Arslan N, Topçu T. 3B baskı teknoloji ile tasarlanan terapötik neblizatör cihazı ile yapılan inhaler tedavinin çocukların psikososyal semptomlarına etkisi: pilot çalışma. 4th International Congress on 3D Printing Technologies and Digital Industry 11-14 April 2019.
  • Couch A, Budisalich A, Maddux G, Budisalich K, Lioce L. Toenail removal simulator and earwax removal simulator: 3D printed models for enhancing simulation-based experiences for training nursing students. Peer Reviewed Paper Presented at AlaSim 2021
  • Lioce L, Maddux G, Goddard N, Fogle I. 3D printed anatomical models for training nursing students. Conference: Proceedings 13th International Conference of Education Research and Innovation (ICERI 2020), Seville, Spain. November 2020 DOI:10.21125/iceri.2020.0106.

Overview of the Use of 3D Printer Materials in Surgical and Nursing Areas

Year 2023, Issue: 20, 663 - 676, 09.09.2023
https://doi.org/10.38079/igusabder.1168001

Abstract

In recent years, with the developments in computer software, the use of three-dimensional printers in different sectors has come to the fore more frequently and their prevalence has increased. Today, three-dimensional printing materials in the field of health; it is widely used especially in surgical applications, implant-tissue designs, pharmacy, bio printed organ production and medical instrument production, as well as in fields such as medicine-health education and health care services. In this review, it is aimed to explain the usage areas of three-dimensional printer materials in the field of health and to examine the effectiveness of their use in the field of surgery and nursing. It is predicted that nurses will become more technical and equipped and have positive effects on gaining skills with the nursing education given using three-dimensional printer materials. In the surgical field, as a result of the use of three-dimensional printer materials in student education, it has been observed that learning is better developed especially in challenging anatomical and pathological conditions, and education is better understood. When compared to cadaver materials, it was concluded that three-dimensional printer materials are cheaper and can be used instead of human tissue in training. Easier access to three-dimensional printer materials in education in the field of surgery and nursing and emphasizing the effectiveness of these materials in educational practices are important in terms of increasing the use of materials.

References

  • Arslan N, Yaylacı B, Eyüpoğlu ND, Kürtüncü M. Sağlıkta gelişen teknoloji: üç boyutlu yazıcılar. International Journal Of Printing Technologies And Digital Industry. 2018;2(2):99-110.
  • Aydın L, Küçük S. Üç boyutlu yazıcı-tarayıcı ile hastaya özel medikal ortez tasarımı ve geliştirilmesi. Journal of Polytechnic. 2017;20(1):1-8.
  • Sezer H, Şahin H. 3D baskı materyalinin eğitimde kullanımı: qua vadis? Tıp Eğitimi Dünyası. 2016;46:5-13.
  • Aimar A, Palermo A, Innocenti B. The role of 3d printing in medical applications: a state of the art. Journal Of Healthcare Engineering. 2019;2019:5340616..
  • Atalay HA, Değirmentepe RB, Bozkurt M, Can O, Canat HL, Altunrende F. 3D teknolojinin tıpta ve ürolojide kullanım alanları. Endoüroloji Bülteni. 2016;9:65-71.
  • Schmaus D, Gerber N, Sodin R. 3D printing of models for surgical planning in patients with primary cardiac tumors. J Thorac Cardio Surg. 2013;145:1407-1408.
  • Ayoub F, Rehab M, O’Neil M, et al. A novel approach for planning orthognathic surgery: The integration of dental casts into 3D printed mandibular models. Int J Oral Maxillofac Surg. 2014;43(4):454-9.
  • Oliveira MAB, Santos CA, Brandi AC, Botelho PHH, Braile DM. Three-dimensional printing: is it useful for cardiac surgery? Brazilian Journal of Cardiovascular Surgery. 2020;35(4):549-554. DOI: 10.21470/1678-9741-2019-0475.
  • Moore RA, Riggs KW, Kourtidou S, et al. Three-dimensional printing and virtual surgery for congenital heart procedural planning. Birth Defects Res. 2018;110(13):1082-1090.doi: 10.1002/bdr2.1370.
  • Bhatla P, Tretter JT, Chikkabyrappa S, Chakravarti S, Mosca RS. Surgical planning for a complex double-outlet right ventricle using 3D printing. Echocardiography. 2017;34:802-804.
  • Olejník P, Nosal M, Havran T, et al. Utilisation of three-dimensional printed heart models for operative planning of complex congenital heart defects. Cardiol Pol. 2017;75(5):495–501. doi: 10.5603/KP.a2017.0033.
  • Valverde I, Gomez-Ciriza G, Hussain T, et al. Three-dimensional printed models for surgical planning of complex congenital heart defects: an international multicenter study. Eur J Cardiothorac Surgery. 2017;52:1139-1148.
  • Ma XJ, Tao L, Chen X, et al. Clinical Application of three-dimensional reconstruction and rapid prototyping technology of multislice spiral computed tomography angiography for the repair of ventricular septal defect of tetralogy of fallot. Genet Mol Res. 2015;14:1301-1309.
  • Tsai MJ, Wu CT. Study of mandible reconstruction using a fibula flap with application of additive manufacturing technology. Biomed Eng Online. 2014;13:57. doi:10.1186/1475-925X-13-57.
  • Azuma M, Yanagawa T, Ishibashi-Kanno N, et al. Mandibular reconstruction using plates prebent to fit rapid prototyping 3-dimensional printing models ameliorates contour deformity. Head Face Med. 2014;10:45. doi:10.1186/1746-160X-10-45.
  • Chae MP, Rozen WM, McMenamin PG, Findlay MW, Spycha RT, Hunter-Smith DJ. Emerging applications of beside 3D printing in plastic surgery. Front. Surg. 2015;2(25):1-14. doi: 10.3389/fsurg.2015.00025.
  • Tam MD, Laycock SD, Bell D, Chojnowski A. 3-D printout of a DICOM file to aid surgical planning in a 6 year old patient with a large scapular osteochondroma complicating congenital diaphyseal aclasia. J Radiol Case Rep. 2012;6:31–7. doi:10.3941/jrcr.v6i1.889.
  • Silberstein JL, Maddox MM, Dorsey P, Feibus A, Thomas R, Lee BR. Physical models of renal malignancies using standard cross-sectional imaging and 3-dimensional printers: a pilot study. Urology. 2014;84:268–72. doi:10.1016/j. urology.2014.03.042 57.
  • Daniel M, Watson J, Hoskison E, Sama A. Frontal sinus models and onlay templates in osteoplastic flap surgery. J Laryngol Otol. 2011;125:82–5. doi:10.1017/ S0022215110001799.
  • Igami T, Nakamura Y, Hirose T, et al. Application of a three-dimensional print of a liver in hepatectomy for small tumors invisible by intraoperative ultrasonography: preliminary experience. World J Surg. 2014;38(12):3163–6. doi:10.1007/s00268-014-2740-7 60.
  • Ikegami T, Maehara Y. Transplantation: 3D printing of the liver in living donor liver transplantation. Nat Rev Gastroenterol Hepatol. 2013;10:697–8. doi:10.1038/nrgastro.2013.195.
  • Zein NN, Hanouneh IA, Bishop PD, et al. Three-dimensional print of a liver for preoperative planning in living donor liver transplantation. Liver Transplantation. 2013;19:1304–10. doi:10.1002/lt.23729.
  • Abouhashem Y, Dayal M, Savanah S, Strkal G. The Application of 3D printing in anatomy education. Med Educ Online. 2015;20:29847.
  • Costello JP, Olivieri LJ, Krieger A, et al. Utilizing three-dimensional printing tecnology to assess the feasibility of high-fidelity synthetic ventricular septal defect models for simulation in medical education. World Journal of Pediatric Congenital Heart Surgery. 2014;5(3):421-426.
  • Olivieri LJ, Su L, Hynes CF, et al. ‘ Just-in-time’ simutation training using 3D printed cardiac models after congenital cardiac surgery. World Journal For Pediatric And Congenital Heart Surgery. 2016;7(2):164-168.
  • Biglino G, Capelli C, Leaver LK, Schievano S, Taylor AM, Wray J. Involving patients, families and medical staff in the evaluation of 3D printing models of congenital heart disease. Communication and Medicine. 2016;12(2-3):157-169. https://doi.org/10.1558/cam.28455.
  • Cantinoti M, Valverde I, Kuty S. Three-dimensional printed models in congenital heart disease. Int J Cardiovasc Imaging. 2017;33(1):137-144.
  • Malik H, Darwood R, Shaunak S, et al. Three-dimensional printing in surgery: a review of current surgical applications. J Surgic Res. 2015;199(2):512-522.
  • Emre Ş, Yolcu MB, Celayir S. Çocuk cerrahisi öğrenci eğitiminde üç boyutlu modellerin kullanılması: süreç ve ilk izlenimler. Çocuk Cerrahisi Dergisi. 2018;32(2):55-60.
  • Kuzu Demir EB, Çaka C, Tuğtekin U, Demir K, Islamoğlu H, Kuzu A. 3D yazdırma teknolojilerinin eğitim alanında kullanımı: Türkiye’deki uygulamalar. Ege Eğitim Dergisi. 2016;17(2):481-503.
  • Şen B. (2017). Sağlıkta yeni umut ışığı 3D yazıcılar. Erişim Tarihi: 20.08.2022. http://www.baglantinoktasi.com.tr/saglikta-yeni-umut-isigi-3d-yazicilar/.
  • Lioufas A, Quayle R, Leong C, McMenamin G. Three dimensioanl printed models of cleft palate pathology for surgical education. Plastic Reconstrüctif Surgical Global Open. 2016;4(9):1-6.
  • Starosolski A, Kan H, Rosenfeld D, Krishnamurthy R, Annapragada A. Application of 3D printing for creating physical models of pediatric orthopedic disorders. Pediatric Radiology. 2014;44:216-221.
  • Richard D. The 3D printing revoution. Harvard Business Review. 2015;93(5):41-48.
  • Levine P, Patel A, Sadeh B, Hirch L. Computer aided design and manufacturing in craniomaxillofacial surgery: the new state of the art. Journal of Craniofacial Surgery. 2012;23:288-293.
  • Akpek A. Triküspit kalp kapakçıklarının 3B biyobaskı metotları ile fabrikasyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2018;22(2):740-745.
  • Tan H, Huang E, Deng X, Ouyang S. Application of 3D printing technology combined with PBL teaching model in teaching clinical nursing in congenital heart surgery: A case-control study. Medicine. 2021;100(20):e25918.
  • Pugliese L, Marconi S, Negrello E, et al. The clinical use of 3D printing in surgery. Updates in Surgery. 2018;70:381–388. https://doi.org/10.1007/s13304-018-0586-5.
  • Louvrier A, Marty P, Barrabe A, Euvrard E, Chatelain B. How useful is 3D printing in maxillofacial surgery? J Stomatol Oral Maxillofacial Surgery. 2017;118:206-212.
  • Hsieh T, Cervenka B, Dedhia R, Bradley ES, Steele T. Assessment of a patient-specific, 3-dimensionally printed endoscopic sinus and skull base surgical model. JAMA Otolaryngol Head Neck Surg. 2018;144(7):574–579.
  • Lim KH, Loo ZY, Goldie SJ, Adams JW, McMenamin PG. Use of 3D printed models in medical education: A randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy. Anat Sci Educ. 2016;9(3):213-221.
  • Rengier F, Mehndiratta A, von Tengg-Kobligk H, et al. 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg. 2010;5(4):335-341.
  • Dai X, Ma C, Lan Q, Xu T. 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility. Biofabrication. 2016;8(4):045005.
  • Çallı L, Taşkın K. 3D yazıcı endüstrisinin oluşturacağı yeni pazarlar ve pazarlama uygulamaları. 1. Uluslararası Ekonomi ve İşletme Kongresi (Iceb'15) 10 – 14 Haziran 2015 Gostıvar /Makedonya
  • Çelebi A, Tosun H, Önçağ AÇ. Hasarlı bir kafatasının üç boyutlu yazıcı ile imalatı ve implant tasarımı. International Journal Of 3d Printing Technologies And Digital Industry. 2017;1(1):27-35.
  • Astin F, Carrol L, Ruppar T, et al. A core curriculum for the continuing professional development of nurses: Developed by the education committee on behalf of the council on cardiovascular nursing and allied professions of the ESC. Euro J Cardio Nurs. 2015;14(3):190-197.
  • Lioce L, Maddux G, Goddard N, et al. Application of 3D printing in the development of training simulations for nursing students. Proceedings of the 9th International Workshop on Innovative Simulation for Healthcare (IWISH 2020),7-12. doi:10.46354/i3m.2020.iwish.002.
  • Biglino G, Capelli C, Koniordou D, et al. Use of 3D models of congenital heart disease as an education tool for cardiac nurses. Congenital Heart Disease. 2017;12:113-118.
  • Kürtüncü M, Arslan N, Topçu T. 3B baskı teknoloji ile tasarlanan terapötik neblizatör cihazı ile yapılan inhaler tedavinin çocukların psikososyal semptomlarına etkisi: pilot çalışma. 4th International Congress on 3D Printing Technologies and Digital Industry 11-14 April 2019.
  • Couch A, Budisalich A, Maddux G, Budisalich K, Lioce L. Toenail removal simulator and earwax removal simulator: 3D printed models for enhancing simulation-based experiences for training nursing students. Peer Reviewed Paper Presented at AlaSim 2021
  • Lioce L, Maddux G, Goddard N, Fogle I. 3D printed anatomical models for training nursing students. Conference: Proceedings 13th International Conference of Education Research and Innovation (ICERI 2020), Seville, Spain. November 2020 DOI:10.21125/iceri.2020.0106.
There are 51 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Articles
Authors

Kıymet Öztepe Yeşilyurt 0000-0003-4106-8864

Early Pub Date August 31, 2023
Publication Date September 9, 2023
Acceptance Date July 7, 2023
Published in Issue Year 2023 Issue: 20

Cite

JAMA Öztepe Yeşilyurt K. 3 Boyutlu Yazıcı Materyallerinin Cerrahi ve Hemşirelik Alanında Kullanımına Bakış. IGUSABDER. 2023;:663–676.

 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)