4D YAZDIRMA ÜZERİNDE BİR KISA İNCELEME
Yıl 2018,
Cilt: 2 Sayı: 2, 59 - 67, 27.07.2018
Fraz Ahmad Khan
,
H. Kursat Celik
,
Okan Oral
,
Allan E. W. Rennie
Öz
Katmanlı imalat; üç boyutlu objelerin uygun malzemeler kullanılarak katman-katman
inşa edilmesi süreci olarak tanımlanabilmektedir. Genellikle kullanılan
malzemeler plastik, metal veya seramikler olmakla birlikte son günlerde akıllı
malzemelerinde bu teknolojide yer aldığı görülmektedir. Günümüzde yaygınlaşan
bu teknolojide “üç boyutlu yazdırma (3D Printing)” kavramı genel
terminoloji olan “katmanlı imalat” yerine de kullanılabilmektedir. Nümerik
hesaplama yöntemleri, üç boyutlu katı modelleme uygulamaları, katman imalatta
kullanılan malzemeler, bu işlemlerde yer alan makine elemanları/sistemleri katmanlı
imalat teknolojilerinin başlıca gereklilikleri arasında yer almaktadır ve gün
geçtikçe bu alanlarda yeni teknolojik gelişmeler görülmektedir. Bu bağlamda üç boyutlu
yazdırma kavramının ötesinde ileri düzey teknoloji eğilimi ile yeni bir kavram
olan “dört boyutlu yazdırma (4D Printing)” teknolojileri günümüzde artık
uygulamaya konan yeni nesil bir katmanlı imalat yöntemi olarak karşımıza
çıkmaktadır. 4D katmanlı imalat; akıllı malzemelere, katmanlı imalat makinelerinin
işlevselliğine ve imalat yöntemine özgü tasarım süreçlerine bağımlı olarak
ilerlemektedir. Bu konuda başarılı çalışmalar ortaya konsada hali hazırda imalat/ürün
işlevselliği ve uygulamaları konularında önemli sınırlamalar bulunmaktadır. Bu
çalışmanın amacı 4D katmanlı imalat konusundaki teknolojik gelişmeleri ve
uygulamada karşılaşılan sınırlamaları göz önüne alan genel bir bakış ortaya
koymaktır. Çalışma sonucunda bu konuda faydalı literatür bilgileri toparlanmış
ve 4D katmanlı imalat uygulamalarının ileri düzey imalat teknolojileri
içerisinde yer alması için umut verici bir potansiyele sahip olduğu ancak bu
konuda daha çok araştırmanın yürütülmesi gerekliliği vurgulanmıştır.
Kaynakça
- [1]. Donnell JO, Ahmadkhanlou F, Yoon HS, Washington G. All-printed smart structures: a viable option? Active and Passive Smart Structures and Integrated Systems. 2014; 9057.
- [2]. Pei E. 4D printing - revolution or fad? Assembly Automation. 2014; 34:123-127.
- [3]. Pei E. 4D printing: dawn of an emerging technology cycle. Assembly Automation. 2014; 34: 310-314.
- [4]. Tibbits S. The emergence of "4D printing", TED Conference. 2013.
- [5]. Chua CK and Leong KF. 3D printing and additive manufacturing: principles and applications. 4th ed. Singapore: World Scientific Publishers. 2014.
- [6]. Seliktar D, Dikovsky D, Napadensky E. Bioprinting and tissue engineering: recent advances and future perspectives. Israel Journal of Chemistry. 2013; 53:795-804.
- [7]. Huang SH, Liu P, Mokasdar A, Hou L. Additive manufacturing and its societal impact: a literature review. International Journal of Advanced Manufacturing Technology. 2013; 67:1191-1203.
- [8]. Chua CK and Yeong WY. Bioprinting: principles and applications. Singapore: World Scientific Publishing Co. Pte. Ltd. 2015.
- [9]. Murphy SV and Atala A. 2014. 3D bioprinting of tissues and organs. Nature Biotechnology. 2014; 32:773-785.
- [10]. Maidin S, Campbell RI, Pei E. Development of a design feature database to support design for additive manufacturing. Assembly Automation. 2012; 32(3):235-244.
- [11]. https://www.statista.com/statistics/284863/additive-manufacturing-projected-global-market-size/.
- [12]. Bogue R. Smart materials: a review of capabilities and applications. Assembly Automation. 2014; 34:3-7.
- [13]. Leo DJ. Engineering analysis of smart material systems. Hoboken, NJ, Canada: John Wiley & Sons, Inc. 2007.
- [14]. Varadan VV, Chin LC, Varadan VK. Modelling integrated sensor/actuator functions in realistic environments. In First European Conference on Smart Structures and Materials, Forte Crest Hotel, Glasgow. 1992.
- [15]. Momeni F, Hassani SMM, Xun Liu N, Jun Ni J. A review of 4D printing. Materials and Design. 2017; 122: 42 79.
- [16]. Choi J, Kwon OC, Jo W, Lee HJ, Moon MW. 4D printing technology: a review. 3D Printing and Additive Manufacturing. 2015; 2:159-167.
- [17]. Jacobsen M. Clearing the way for pivotal 21st-century innovation. Giftedness and Talent in the 21st Century, Springer. 2016; 10:163-179.
- [18]. Khoo ZX, Teoh JEM, Liu Y, Chua CK, Yang S, An J, Leong KF, Yeong WY. 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual and Physical Prototyping. 2015; 10:103-122.
- [19]. Ge Qi, Qi HJ, Dunn ML. Active materials by four dimensions printing. Applied Physics Letters. 2013; 103:131901-1-5.
- [20]. Tibbits S. 4D printing: multi-material shape change. Archit. Des. 2014; 84:116-121.
- [21]. Tibbits S, McKnelly C, Olguin, C, Dikovsky D, Hirsch S. 4D printing and universal transformation. ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478] Los Angeles 23-25 October 2014; pp. 539-548.
- [22]. University of Pittsburgh. [Pitt-led research team receives grant to develop four-dimensional printing to create adaptive materials]. Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, available at: www.engineering.pitt.edu/News.aspx?id¼2147508574. Accessed 1 February 2014.
- [23]. Varadan VK, Vinoy KJ, Gopalakrishnan S. Smart material systems and MEMS: design and development methodologies. Chichester: John Wiley & Sons Ltd, Great Britain. 2006.
- [24]. Kamila S. Introduction, classification and applications of smart materials: an overview. American Journal of Applied Sciences. 2013; 10:876-880.
- [25]. Meier, H, Haberland C, Frenzel J, Zarnetta R. Selective Laser Melting of NiTi shape memory components. 4th, International conference on advanced research and rapid prototyping; Innovative developments in design and manufacturing advanced research in virtual and rapid prototyping. 2009; Leiria, Portugal.
- [26]. Meier H, Haberland C, Frenzel J. Structural and functional properties of NiTi shape memory alloys produced by Selective Laser Melting. London: Innovative Developments in Virtual and Physical Prototyping. 2012; 291-296.
- [27]. Dadbakhsh S, Speirs M, Kruth JP, Schrooten J, Luyten J, Humbeeck JV. 2014. Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts. Advanced Engineering Materials. 2014; 16(9):1140-1146.
- [28]. Kim K, Zhu W, Qu X, et al. 3D optical printing of piezoelectric nanoparticle-polymer composite materials. ACS Nano. 2014; 8(10): 9799-9806.
- [29]. Lin D, Nian Q, Deng B, Jin S, Hu Y, Wang W, Cheng GJ. Three-dimensional printing of complex structures: man-made or toward nature? ACS Nano. 2014; 8(10):9710-9715.
- [30]. Uchino K. The development of piezoelectric materials and the new perspective. In: K. Uchino, ed. Advanced piezoelectric materials - science and technology. Padstow, Cornwall: Woodhead Publishing. 2010; 1-43.
- [31]. Lang SB, and Muensit S. Review of some lesser-known applications of piezoelectric and pyroelectric polymers. Applied Physics A -Materials Science and Processing. 2006; 85:125-134.
- [32]. Vijaya MS. Piezoelectric materials and devices-applications in engineering and medical sciences. Boca Raton, FL: CRC Press. 2013.
- [33]. Wong, CH, Dahari Z, Manaf AA, Miskam MA. Harvesting raindrop energy with piezo electrics: a review. Journal of Electronic Materials. 2015; 44(1): 13-21.
- [34]. Rajabi AH, Jaffe M, and Arinzeh, TL. Piezoelectric materials for tissue regeneration: a review. Acta Biomater. 2015; 24:12-23.
- [35]. Fremond M, and Miyazaki S. Shape memory alloys. Wien: Springer - Verlag GmbH. 1996.
- [36]. Trasher MA, et al. Thermal cycling of shape memory alloy wires using semiconductor heat pump modules. Presented at the First European Conference on Smart Structures and Materials, Forte Crest Hotel, Glasgow. 1992.
- [37]. Leo DJ. Engineering analysis of smart material systems. Hoboken, NJ, Canada: John Wiley & Sons, Inc. 2007.
- [38]. Frenzel J, George EP, Dlouhy A, Somsen C, Wagner MFX, Eggeler G. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Materialia. 2010; 58:3444-3458.
- [39]. Bormann T, Schumacher R, Muller B, Mertmann M, de Wild M. Tailoring selective laser melting process parameters for NiTi implants. Journal of Materials Engineering and Performance. 2012; 21:2519-2524.
- [40]. Elahinia MH, Hashemi M, Majid T, Bhaduri SB. Manufacturing and processing of NiTi implants: a review. Progress in Materials Science. 2012; 57:911-946.
- [41]. Sharma N, Raj T, and Jangra KK. Applications of nickel-titanium alloy. Journal of Engineering and Technology. 2015; 5:1-7.
- [42]. Lendlein A, and Kelch S. Shape-memory polymers. Angewandte Chemie International Edition. 2002; 41: 2034 2057.
- [43]. Yu K, Ritchie A, Mao Y, Dunn ML, Qi HJ. Controlled sequential shape changing components by 3D printing of shape memory polymer multi-materials. Procedia IUTAM. 2015; 12:193-203.
- [44]. Rossiter J, Walters P, and Stoimenov B. Printing 3D dielectric elastomers actuators for soft robotics. Proc. Of SPIE. 2009; 7287.
- [45]. Bauer S, Gogonea SB, Graz I, Kaltenbrunner M, Keplinger C, Schwodiauer R. 25th anniversary article: a soft future: from robots and sensor skin to energy harvesters. Advanced Materials. 2014; 26(1):149-162.
- [46]. Ahn SH, Lee KT, Kim HJ, Wu R, Kim JS, Song SH. Smart soft composite: an integrated 3D soft morphing structure using bend-twist coupling of anisotropic materials. International Journal of Precision Engineering and Manufacturing. 2012; 13(4):631-634.
- [47]. Raviv D, Zhao W, Mchnelly C, et al. Active printed materials for complex self-evolving deformations. Scientific Report, 4. 2014.
- [48]. Bar-Cohen Y. Electroactive polymers as actuators. In: K. Uchino, ed. Advanced piezoelectric materials - science and technology. Padstow, Cornwall: Woodhead Publishing. 2010; pp, 287-317.
- [49]. Ge Qi, Dunn CK, Qi HJ, Dunn ML. Active origami by 4D printing. Smart Materials and Structures. 2014 23(9) 1-15.
- [50]. Poietis. Bioprinting 4D by laser. 2014, 2015. (www.poietis.com)
- [51]. Ozbolat IT, and Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Transactions on Biomedical Engineering. 2013; 60:691-699.
- [52]. An J, Teoh JEM, Suntornnond R, Chua CK. Design and 3D printing of scaffolds and tissues. Engineering. 2015; 1(2): 261-268.
- [53]. Wang S, Lee JM, and Yeong WY. Smart hydrogels for 3D bioprinting. International Journal of Bioprinting. 2015; 1:3-14.
- [54]. Frazier, WE. Metal additive manufacturing: a review. Journal of Materials Engineering and Performance. 2014; 23:1917-1928.
- [55]. Loh XJ. Four-dimensional (4D) printing in consumer applications, Polymers for, Personal Care Products and Cosmetics. 2016; 20:108-116.
- [56]. Ge Q, Sakhaei AH, Lee H, Dunn CK, Fang NX, Dunn ML. Multi-material 4D printing with tailorable shape memory polymers. Sci. Rep. 2016; 6.
- [57]. Bodaghi M, Damanpack A, Liao W. Self-expanding/shrinking structures by 4D printing. Smart Mater. Struct. 2016; 25:105034.
- [58]. Zarek M, Mansour N, Shapira S, Cohn D. 4D printing of shape memory-based personalized endoluminal medical devices. Macromol. Rapid Commun. 2016; DOI.
- [59]. Wei H, Zhang Q, Yao Y, Liu L, Liu Y, Leng J. Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite. ACS Appl. Mater. Interfaces. 2016; DOI.
- [60]. Zhang Q, Zhang K, Hu G. Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique. Sci. Rep. 2016; 6.
- [61]. Jiang Y, Wang Q. Highly-stretchable 3D-architected mechanical metamaterials. Sci. Rep. 2016; 6.
- [62]. Nadgorny M, Xiao Z, Chen C, Connal LA. Three-dimensional printing of pH responsive and functional polymers on an affordable desktop printer, ACS Appl. Mater. Interfaces. 2016; 8:28946-28954.
- [63]. Wu J, Yuan C, Ding Z, Isakov M, Mao Y, Wang T, Dunn ML, Qi HJ. Multi-shape active composites by 3D printing of digital shape memory polymers, Sci. Rep. 2016; 6.
- [64]. Bakarich SE, Gorkin R, Spinks GM. 4D printing with mechanically robust, thermally actuating hydrogels. Macromol. Rapid Commun. 2015; 36:1211-1217.
- [65]. Kokkinis D, Schaffner M, Studart AR. Multi-material magnetically assisted 3D printing of composite materials. Nat. Commun. 2015; 6.
- [66]. Ge Q, Dunn CK, Qi HJ, Dunn ML. Active origami by 4D printing. Smart Mater. Struct. 2014; 23:094007.
- [67]. Villar G, Graham AD, Bayley H. A tissue-like printed material. Science. 2013; 340:48-52.
- [68]. Blaney, A., Alexander, J.M., Dunn, N.S., Richards, D.C., Rennie, A.E.W., Anwar, J., Adaptive materials: Utilising additive manufactured scaffolds to control self-organising material aggregation. In: Proceedings of the 14th Rapid Design, Prototyping and Manufacturing Conference. Lancaster University, Loughborough, pp. 49-57. ISBN: 9781526203038
- [69]. Mirabedini A., Aziz S., Spinks GM., and Foroughi J. Wet-Spun Biofiber for Torsional Artificial Muscles. Soft Robotics. December 2017, 4(4): 421-430. https://doi.org/10.1089/soro.2016.0057.
A SHORT REVIEW ON 4D PRINTING
Yıl 2018,
Cilt: 2 Sayı: 2, 59 - 67, 27.07.2018
Fraz Ahmad Khan
,
H. Kursat Celik
,
Okan Oral
,
Allan E. W. Rennie
Öz
Additive Manufacturing can be described as a process to build 3D objects
by adding layer-upon-layer of material, the material traditionally being plastics,
metals or ceramics, however ‘smart’ materials are now in use. Nowadays, the
term “3D Printing” has become a much-used synonym for additive manufacturing.
The use of computing, 3D solid modeling applications, layering materials and
machine equipment is common to majority of additive manufacturing technologies.
Advancing from this 3D printing technology, is an emerging trend for what is
being termed “4D printing”. 4D printing places dependency on smart materials,
the functionality of additive manufacturing machines and in ingenious design
processes. Although many developments have been made, limitations are still
very much in existence, particularly with regards to function and application.
The objective of this short review is to discuss the developments, challenges
and outlook for 4D printing technology. The review revealed that 4D printing
technology has application potential but further research work will be vital
for the future success of 4D printing.
Kaynakça
- [1]. Donnell JO, Ahmadkhanlou F, Yoon HS, Washington G. All-printed smart structures: a viable option? Active and Passive Smart Structures and Integrated Systems. 2014; 9057.
- [2]. Pei E. 4D printing - revolution or fad? Assembly Automation. 2014; 34:123-127.
- [3]. Pei E. 4D printing: dawn of an emerging technology cycle. Assembly Automation. 2014; 34: 310-314.
- [4]. Tibbits S. The emergence of "4D printing", TED Conference. 2013.
- [5]. Chua CK and Leong KF. 3D printing and additive manufacturing: principles and applications. 4th ed. Singapore: World Scientific Publishers. 2014.
- [6]. Seliktar D, Dikovsky D, Napadensky E. Bioprinting and tissue engineering: recent advances and future perspectives. Israel Journal of Chemistry. 2013; 53:795-804.
- [7]. Huang SH, Liu P, Mokasdar A, Hou L. Additive manufacturing and its societal impact: a literature review. International Journal of Advanced Manufacturing Technology. 2013; 67:1191-1203.
- [8]. Chua CK and Yeong WY. Bioprinting: principles and applications. Singapore: World Scientific Publishing Co. Pte. Ltd. 2015.
- [9]. Murphy SV and Atala A. 2014. 3D bioprinting of tissues and organs. Nature Biotechnology. 2014; 32:773-785.
- [10]. Maidin S, Campbell RI, Pei E. Development of a design feature database to support design for additive manufacturing. Assembly Automation. 2012; 32(3):235-244.
- [11]. https://www.statista.com/statistics/284863/additive-manufacturing-projected-global-market-size/.
- [12]. Bogue R. Smart materials: a review of capabilities and applications. Assembly Automation. 2014; 34:3-7.
- [13]. Leo DJ. Engineering analysis of smart material systems. Hoboken, NJ, Canada: John Wiley & Sons, Inc. 2007.
- [14]. Varadan VV, Chin LC, Varadan VK. Modelling integrated sensor/actuator functions in realistic environments. In First European Conference on Smart Structures and Materials, Forte Crest Hotel, Glasgow. 1992.
- [15]. Momeni F, Hassani SMM, Xun Liu N, Jun Ni J. A review of 4D printing. Materials and Design. 2017; 122: 42 79.
- [16]. Choi J, Kwon OC, Jo W, Lee HJ, Moon MW. 4D printing technology: a review. 3D Printing and Additive Manufacturing. 2015; 2:159-167.
- [17]. Jacobsen M. Clearing the way for pivotal 21st-century innovation. Giftedness and Talent in the 21st Century, Springer. 2016; 10:163-179.
- [18]. Khoo ZX, Teoh JEM, Liu Y, Chua CK, Yang S, An J, Leong KF, Yeong WY. 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual and Physical Prototyping. 2015; 10:103-122.
- [19]. Ge Qi, Qi HJ, Dunn ML. Active materials by four dimensions printing. Applied Physics Letters. 2013; 103:131901-1-5.
- [20]. Tibbits S. 4D printing: multi-material shape change. Archit. Des. 2014; 84:116-121.
- [21]. Tibbits S, McKnelly C, Olguin, C, Dikovsky D, Hirsch S. 4D printing and universal transformation. ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478] Los Angeles 23-25 October 2014; pp. 539-548.
- [22]. University of Pittsburgh. [Pitt-led research team receives grant to develop four-dimensional printing to create adaptive materials]. Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, available at: www.engineering.pitt.edu/News.aspx?id¼2147508574. Accessed 1 February 2014.
- [23]. Varadan VK, Vinoy KJ, Gopalakrishnan S. Smart material systems and MEMS: design and development methodologies. Chichester: John Wiley & Sons Ltd, Great Britain. 2006.
- [24]. Kamila S. Introduction, classification and applications of smart materials: an overview. American Journal of Applied Sciences. 2013; 10:876-880.
- [25]. Meier, H, Haberland C, Frenzel J, Zarnetta R. Selective Laser Melting of NiTi shape memory components. 4th, International conference on advanced research and rapid prototyping; Innovative developments in design and manufacturing advanced research in virtual and rapid prototyping. 2009; Leiria, Portugal.
- [26]. Meier H, Haberland C, Frenzel J. Structural and functional properties of NiTi shape memory alloys produced by Selective Laser Melting. London: Innovative Developments in Virtual and Physical Prototyping. 2012; 291-296.
- [27]. Dadbakhsh S, Speirs M, Kruth JP, Schrooten J, Luyten J, Humbeeck JV. 2014. Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts. Advanced Engineering Materials. 2014; 16(9):1140-1146.
- [28]. Kim K, Zhu W, Qu X, et al. 3D optical printing of piezoelectric nanoparticle-polymer composite materials. ACS Nano. 2014; 8(10): 9799-9806.
- [29]. Lin D, Nian Q, Deng B, Jin S, Hu Y, Wang W, Cheng GJ. Three-dimensional printing of complex structures: man-made or toward nature? ACS Nano. 2014; 8(10):9710-9715.
- [30]. Uchino K. The development of piezoelectric materials and the new perspective. In: K. Uchino, ed. Advanced piezoelectric materials - science and technology. Padstow, Cornwall: Woodhead Publishing. 2010; 1-43.
- [31]. Lang SB, and Muensit S. Review of some lesser-known applications of piezoelectric and pyroelectric polymers. Applied Physics A -Materials Science and Processing. 2006; 85:125-134.
- [32]. Vijaya MS. Piezoelectric materials and devices-applications in engineering and medical sciences. Boca Raton, FL: CRC Press. 2013.
- [33]. Wong, CH, Dahari Z, Manaf AA, Miskam MA. Harvesting raindrop energy with piezo electrics: a review. Journal of Electronic Materials. 2015; 44(1): 13-21.
- [34]. Rajabi AH, Jaffe M, and Arinzeh, TL. Piezoelectric materials for tissue regeneration: a review. Acta Biomater. 2015; 24:12-23.
- [35]. Fremond M, and Miyazaki S. Shape memory alloys. Wien: Springer - Verlag GmbH. 1996.
- [36]. Trasher MA, et al. Thermal cycling of shape memory alloy wires using semiconductor heat pump modules. Presented at the First European Conference on Smart Structures and Materials, Forte Crest Hotel, Glasgow. 1992.
- [37]. Leo DJ. Engineering analysis of smart material systems. Hoboken, NJ, Canada: John Wiley & Sons, Inc. 2007.
- [38]. Frenzel J, George EP, Dlouhy A, Somsen C, Wagner MFX, Eggeler G. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Materialia. 2010; 58:3444-3458.
- [39]. Bormann T, Schumacher R, Muller B, Mertmann M, de Wild M. Tailoring selective laser melting process parameters for NiTi implants. Journal of Materials Engineering and Performance. 2012; 21:2519-2524.
- [40]. Elahinia MH, Hashemi M, Majid T, Bhaduri SB. Manufacturing and processing of NiTi implants: a review. Progress in Materials Science. 2012; 57:911-946.
- [41]. Sharma N, Raj T, and Jangra KK. Applications of nickel-titanium alloy. Journal of Engineering and Technology. 2015; 5:1-7.
- [42]. Lendlein A, and Kelch S. Shape-memory polymers. Angewandte Chemie International Edition. 2002; 41: 2034 2057.
- [43]. Yu K, Ritchie A, Mao Y, Dunn ML, Qi HJ. Controlled sequential shape changing components by 3D printing of shape memory polymer multi-materials. Procedia IUTAM. 2015; 12:193-203.
- [44]. Rossiter J, Walters P, and Stoimenov B. Printing 3D dielectric elastomers actuators for soft robotics. Proc. Of SPIE. 2009; 7287.
- [45]. Bauer S, Gogonea SB, Graz I, Kaltenbrunner M, Keplinger C, Schwodiauer R. 25th anniversary article: a soft future: from robots and sensor skin to energy harvesters. Advanced Materials. 2014; 26(1):149-162.
- [46]. Ahn SH, Lee KT, Kim HJ, Wu R, Kim JS, Song SH. Smart soft composite: an integrated 3D soft morphing structure using bend-twist coupling of anisotropic materials. International Journal of Precision Engineering and Manufacturing. 2012; 13(4):631-634.
- [47]. Raviv D, Zhao W, Mchnelly C, et al. Active printed materials for complex self-evolving deformations. Scientific Report, 4. 2014.
- [48]. Bar-Cohen Y. Electroactive polymers as actuators. In: K. Uchino, ed. Advanced piezoelectric materials - science and technology. Padstow, Cornwall: Woodhead Publishing. 2010; pp, 287-317.
- [49]. Ge Qi, Dunn CK, Qi HJ, Dunn ML. Active origami by 4D printing. Smart Materials and Structures. 2014 23(9) 1-15.
- [50]. Poietis. Bioprinting 4D by laser. 2014, 2015. (www.poietis.com)
- [51]. Ozbolat IT, and Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Transactions on Biomedical Engineering. 2013; 60:691-699.
- [52]. An J, Teoh JEM, Suntornnond R, Chua CK. Design and 3D printing of scaffolds and tissues. Engineering. 2015; 1(2): 261-268.
- [53]. Wang S, Lee JM, and Yeong WY. Smart hydrogels for 3D bioprinting. International Journal of Bioprinting. 2015; 1:3-14.
- [54]. Frazier, WE. Metal additive manufacturing: a review. Journal of Materials Engineering and Performance. 2014; 23:1917-1928.
- [55]. Loh XJ. Four-dimensional (4D) printing in consumer applications, Polymers for, Personal Care Products and Cosmetics. 2016; 20:108-116.
- [56]. Ge Q, Sakhaei AH, Lee H, Dunn CK, Fang NX, Dunn ML. Multi-material 4D printing with tailorable shape memory polymers. Sci. Rep. 2016; 6.
- [57]. Bodaghi M, Damanpack A, Liao W. Self-expanding/shrinking structures by 4D printing. Smart Mater. Struct. 2016; 25:105034.
- [58]. Zarek M, Mansour N, Shapira S, Cohn D. 4D printing of shape memory-based personalized endoluminal medical devices. Macromol. Rapid Commun. 2016; DOI.
- [59]. Wei H, Zhang Q, Yao Y, Liu L, Liu Y, Leng J. Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite. ACS Appl. Mater. Interfaces. 2016; DOI.
- [60]. Zhang Q, Zhang K, Hu G. Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique. Sci. Rep. 2016; 6.
- [61]. Jiang Y, Wang Q. Highly-stretchable 3D-architected mechanical metamaterials. Sci. Rep. 2016; 6.
- [62]. Nadgorny M, Xiao Z, Chen C, Connal LA. Three-dimensional printing of pH responsive and functional polymers on an affordable desktop printer, ACS Appl. Mater. Interfaces. 2016; 8:28946-28954.
- [63]. Wu J, Yuan C, Ding Z, Isakov M, Mao Y, Wang T, Dunn ML, Qi HJ. Multi-shape active composites by 3D printing of digital shape memory polymers, Sci. Rep. 2016; 6.
- [64]. Bakarich SE, Gorkin R, Spinks GM. 4D printing with mechanically robust, thermally actuating hydrogels. Macromol. Rapid Commun. 2015; 36:1211-1217.
- [65]. Kokkinis D, Schaffner M, Studart AR. Multi-material magnetically assisted 3D printing of composite materials. Nat. Commun. 2015; 6.
- [66]. Ge Q, Dunn CK, Qi HJ, Dunn ML. Active origami by 4D printing. Smart Mater. Struct. 2014; 23:094007.
- [67]. Villar G, Graham AD, Bayley H. A tissue-like printed material. Science. 2013; 340:48-52.
- [68]. Blaney, A., Alexander, J.M., Dunn, N.S., Richards, D.C., Rennie, A.E.W., Anwar, J., Adaptive materials: Utilising additive manufactured scaffolds to control self-organising material aggregation. In: Proceedings of the 14th Rapid Design, Prototyping and Manufacturing Conference. Lancaster University, Loughborough, pp. 49-57. ISBN: 9781526203038
- [69]. Mirabedini A., Aziz S., Spinks GM., and Foroughi J. Wet-Spun Biofiber for Torsional Artificial Muscles. Soft Robotics. December 2017, 4(4): 421-430. https://doi.org/10.1089/soro.2016.0057.