Conference Paper
BibTex RIS Cite

MEMS FABRICATION USING PµSL TECHNIQUE BASED 3D PRINTER

Year 2020, Volume: 4 Issue: 1, 38 - 43, 30.04.2020

Abstract

This study aims to fabricate Electro-Thermal Micro Actuator based on Micro Electro Mechanical System (MEMS) with a 3D printer using Projection Micro Stereo Lithography (PµSL) technique. The production of the actuator produced by traditional MEMS fabrication methods with a 3D printer has been carried out in this study. The cost of traditional MEMS fabrication methods is high and there are many techniques to achieve the process. On the other hand, some methods have been developed to obtain better quality and low-cost production as a parallel to the development of technology. One of these methods is to use 3D printers employing the PµSL technique. By means of these printers, it is possible to reduce both the cost and workload of the production process the MEMS systems. In this study, it is investigated and stated that Nano level fabrication would be possible with 3D printers in the following years. It can also be predicted that traditional MEMS production methods will be replaced by 3D printers soon.

References

  • 1. Özsoy, K. Üç Boyutlu (3B) Yazıcı Teknolojisinin Eğitimde Uygulanabilirliği: Senirkent MYO Örneği. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, Volume 7, Issue 2, Pages 111-123, 2019.
  • 2. Lapeyre, M., Rouanet, P., Grizou, J., Nguyen, S., Depraetre, F., Le Falher, A., & Oudeyer, P. Y. (2014, September). Poppy project: open-source fabrication of 3D printed humanoid robot for science, education and art.
  • 3. Özsoy K. , Kayacan M. C., Ergiyik Biriktirme Yöntemiyle Hafifletilmiş Kişiye Özel Kafatası İmplantın Hızlı Prototiplenmesi”, Uluborlu Mesleki Bilim. Derg., cilt. 1, sayı 1, ss. 1-11, Ara. 2018.
  • 4. Kayacan, M. C., Delikanlı, Y. E., Duman, B., & Özsoy, K. Ti6Al4v toz alaşımı kullanılarak SLS ile üretilen geçişli (değişken) gözenekli numunelerin mekanik özelliklerinin incelenmesi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Vol. 33, Sayı 1, Sayfa 127-143,2018.
  • 5. Kayacan, M. Y., Özsoy, K., Duman, B., Yilmaz, N., & Kayacan, M. C. A study on elimination of failures resulting from layering and internal stresses in Powder Bed Fusion (PBF) additive manufacturing. Materials and Manufacturing Processes, Vol 34, Issue 13, Pages 1467-1475,2019.
  • 6. Fox, J. C., Moylan, S. P., & Lane, B. M. (2016). Effect of process parameters on the surface roughness of overhanging structures in laser powder bed fusion additive manufacturing. Procedia Cirp, 45, 131-134.
  • 7. Hossain, M. S., Gonzalez, J. A., Hernandez, R. M., Shuvo, M. A. I., Mireles, J., Choudhuri, A., ... & Wicker, R. B. (2016). Fabrication of smart parts using powder bed fusion additive manufacturing technology. Additive Manufacturing, 10, 58-66.
  • 8. Fang, Nicholas. "Projection Microstereolithography". Department of Mechanical Science & Engineering, University of Illinois. April 2015
  • 9. Sun, C., et al. "Projection micro-stereolithography using digital micro-mirror dynamic mask." Sensors and Actuators A: Physical121.1 Pages 113-120, 2005.
  • 10. Limaye, A. S., and David W. Rosen. "Process planning method for mask projection micro-stereolithography." Rapid Prototyping Journal Vol.13 Issue 2 , Pages 76-84,2007.
  • 11. Zheng, Xiaoyu, et al. "Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system." Review of Scientific Instruments Vol. 83, Issue 12, 125001, 2012.
  • 12. Skoog, Shelby A., Peter L. Goering, and Roger J. Narayan. "Stereolithography in tissue engineering." Journal of Materials Science: Materials in Medicine Vol. 25, Issue 3, Pages 845-856, 2014.
  • 13. Han, Li-Hsin, et al. "Projection microfabrication of three-dimensional scaffolds for tissue engineering." Journal of Manufacturing Science and Engineering 130.2 (2008): 021005.
  • 14. Choi, Jae-Won, et al. "Cure depth control for complex 3D microstructure fabrication in dynamic mask projection micro stereolithography." Rapid Prototyping Journal Vol. 15. Issue 1 (2009): 59-70.
  • 15. Ülkir, O , Ertugrul, İ . (2020). Mikro Kiriş Uzunluğu Değişiminin Deformasyona Etkisinin Araştırılması. Avrupa Bilim ve Teknoloji Dergisi , (18) , 136-141. DOI: 10.31590/ejosat.672464
  • 16. Ertugrul, İ , Ülkir, O . (2020). MEMS Tabanlı Mikro Rezonatörün Tasarımı ve Analizi. Avrupa Bilim ve Teknoloji Dergisi , (18) , 25-29 . DOI: 10.31590/ejosat.676368
  • 17. Rogers, Chad I., et al. "3D printed microfluidic devices with integrated valves." Biomicrofluidics Vol. 9. Issue 1 016501. 2015.
  • 18. Lee, Michael P., et al. "Development of a 3D printer using scanning projection stereolithography." Scientific Reports 5, 9875, 2015.
  • 19. Ertugrul, N. Akkus, H. Yuce, Fabrication of bidirectional electrothermal microactuator by two-photon polymerization. Materials and Technology. Vol. 53 Issue 5, Pages 665-670,2019.
  • 20. Fang, Nicholas. "Projection Microstereolithography". Department of Mechanical Science & Engineering, University of Illinois. April 2015
  • 21. Nanophotonics, http://web.mit.edu/nanophotonics/projects/pusl.htm , 29 Aralık, 2019
  • 22. Baker, Evan, et al. "Microstereolithography of three-dimensional polymeric springs for vibration energy harvesting." Smart Materials Research , 2012 (2012).
  • 23. BMFTEC, http://bmftec.com/, 29 Aralık, 2019

MEMS FABRICATION USING PµSL TECHNIQUE BASED 3D PRINTER

Year 2020, Volume: 4 Issue: 1, 38 - 43, 30.04.2020

Abstract

This study aims to fabricate Electro-Thermal Micro Actuator based on Micro Electro Mechanical System (MEMS) with a 3D printer using Projection Micro Stereo Lithography (PµSL) technique. The production of the actuator produced by traditional MEMS fabrication methods with a 3D printer has been carried out in this study. The cost of traditional MEMS fabrication methods is high and there are many techniques to achieve the process. On the other hand, some methods have been developed to obtain better quality and low-cost production as a parallel to the development of technology. One of these methods is to use 3D printers employing the PµSL technique. By means of these printers, it is possible to reduce both the cost and workload of the production process the MEMS systems. In this study, it is investigated and stated that Nano level fabrication would be possible with 3D printers in the following years. It can also be predicted that traditional MEMS production methods will be replaced by 3D printers soon.

References

  • 1. Özsoy, K. Üç Boyutlu (3B) Yazıcı Teknolojisinin Eğitimde Uygulanabilirliği: Senirkent MYO Örneği. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, Volume 7, Issue 2, Pages 111-123, 2019.
  • 2. Lapeyre, M., Rouanet, P., Grizou, J., Nguyen, S., Depraetre, F., Le Falher, A., & Oudeyer, P. Y. (2014, September). Poppy project: open-source fabrication of 3D printed humanoid robot for science, education and art.
  • 3. Özsoy K. , Kayacan M. C., Ergiyik Biriktirme Yöntemiyle Hafifletilmiş Kişiye Özel Kafatası İmplantın Hızlı Prototiplenmesi”, Uluborlu Mesleki Bilim. Derg., cilt. 1, sayı 1, ss. 1-11, Ara. 2018.
  • 4. Kayacan, M. C., Delikanlı, Y. E., Duman, B., & Özsoy, K. Ti6Al4v toz alaşımı kullanılarak SLS ile üretilen geçişli (değişken) gözenekli numunelerin mekanik özelliklerinin incelenmesi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Vol. 33, Sayı 1, Sayfa 127-143,2018.
  • 5. Kayacan, M. Y., Özsoy, K., Duman, B., Yilmaz, N., & Kayacan, M. C. A study on elimination of failures resulting from layering and internal stresses in Powder Bed Fusion (PBF) additive manufacturing. Materials and Manufacturing Processes, Vol 34, Issue 13, Pages 1467-1475,2019.
  • 6. Fox, J. C., Moylan, S. P., & Lane, B. M. (2016). Effect of process parameters on the surface roughness of overhanging structures in laser powder bed fusion additive manufacturing. Procedia Cirp, 45, 131-134.
  • 7. Hossain, M. S., Gonzalez, J. A., Hernandez, R. M., Shuvo, M. A. I., Mireles, J., Choudhuri, A., ... & Wicker, R. B. (2016). Fabrication of smart parts using powder bed fusion additive manufacturing technology. Additive Manufacturing, 10, 58-66.
  • 8. Fang, Nicholas. "Projection Microstereolithography". Department of Mechanical Science & Engineering, University of Illinois. April 2015
  • 9. Sun, C., et al. "Projection micro-stereolithography using digital micro-mirror dynamic mask." Sensors and Actuators A: Physical121.1 Pages 113-120, 2005.
  • 10. Limaye, A. S., and David W. Rosen. "Process planning method for mask projection micro-stereolithography." Rapid Prototyping Journal Vol.13 Issue 2 , Pages 76-84,2007.
  • 11. Zheng, Xiaoyu, et al. "Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system." Review of Scientific Instruments Vol. 83, Issue 12, 125001, 2012.
  • 12. Skoog, Shelby A., Peter L. Goering, and Roger J. Narayan. "Stereolithography in tissue engineering." Journal of Materials Science: Materials in Medicine Vol. 25, Issue 3, Pages 845-856, 2014.
  • 13. Han, Li-Hsin, et al. "Projection microfabrication of three-dimensional scaffolds for tissue engineering." Journal of Manufacturing Science and Engineering 130.2 (2008): 021005.
  • 14. Choi, Jae-Won, et al. "Cure depth control for complex 3D microstructure fabrication in dynamic mask projection micro stereolithography." Rapid Prototyping Journal Vol. 15. Issue 1 (2009): 59-70.
  • 15. Ülkir, O , Ertugrul, İ . (2020). Mikro Kiriş Uzunluğu Değişiminin Deformasyona Etkisinin Araştırılması. Avrupa Bilim ve Teknoloji Dergisi , (18) , 136-141. DOI: 10.31590/ejosat.672464
  • 16. Ertugrul, İ , Ülkir, O . (2020). MEMS Tabanlı Mikro Rezonatörün Tasarımı ve Analizi. Avrupa Bilim ve Teknoloji Dergisi , (18) , 25-29 . DOI: 10.31590/ejosat.676368
  • 17. Rogers, Chad I., et al. "3D printed microfluidic devices with integrated valves." Biomicrofluidics Vol. 9. Issue 1 016501. 2015.
  • 18. Lee, Michael P., et al. "Development of a 3D printer using scanning projection stereolithography." Scientific Reports 5, 9875, 2015.
  • 19. Ertugrul, N. Akkus, H. Yuce, Fabrication of bidirectional electrothermal microactuator by two-photon polymerization. Materials and Technology. Vol. 53 Issue 5, Pages 665-670,2019.
  • 20. Fang, Nicholas. "Projection Microstereolithography". Department of Mechanical Science & Engineering, University of Illinois. April 2015
  • 21. Nanophotonics, http://web.mit.edu/nanophotonics/projects/pusl.htm , 29 Aralık, 2019
  • 22. Baker, Evan, et al. "Microstereolithography of three-dimensional polymeric springs for vibration energy harvesting." Smart Materials Research , 2012 (2012).
  • 23. BMFTEC, http://bmftec.com/, 29 Aralık, 2019
There are 23 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

İshak Ertugrul 0000-0001-5070-5533

Nihat Akkuş 0000-0001-5070-5533

Ebuzer Aygül 0000-0001-5070-5533

Senai Yalcinkaya 0000-0001-7076-7766

Hüseyin Metin Ertunç 0000-0003-1874-3104

Publication Date April 30, 2020
Submission Date January 2, 2020
Published in Issue Year 2020 Volume: 4 Issue: 1

Cite

APA Ertugrul, İ., Akkuş, N., Aygül, E., Yalcinkaya, S., et al. (2020). MEMS FABRICATION USING PµSL TECHNIQUE BASED 3D PRINTER. International Journal of 3D Printing Technologies and Digital Industry, 4(1), 38-43.
AMA Ertugrul İ, Akkuş N, Aygül E, Yalcinkaya S, Ertunç HM. MEMS FABRICATION USING PµSL TECHNIQUE BASED 3D PRINTER. IJ3DPTDI. April 2020;4(1):38-43.
Chicago Ertugrul, İshak, Nihat Akkuş, Ebuzer Aygül, Senai Yalcinkaya, and Hüseyin Metin Ertunç. “MEMS FABRICATION USING PµSL TECHNIQUE BASED 3D PRINTER”. International Journal of 3D Printing Technologies and Digital Industry 4, no. 1 (April 2020): 38-43.
EndNote Ertugrul İ, Akkuş N, Aygül E, Yalcinkaya S, Ertunç HM (April 1, 2020) MEMS FABRICATION USING PµSL TECHNIQUE BASED 3D PRINTER. International Journal of 3D Printing Technologies and Digital Industry 4 1 38–43.
IEEE İ. Ertugrul, N. Akkuş, E. Aygül, S. Yalcinkaya, and H. M. Ertunç, “MEMS FABRICATION USING PµSL TECHNIQUE BASED 3D PRINTER”, IJ3DPTDI, vol. 4, no. 1, pp. 38–43, 2020.
ISNAD Ertugrul, İshak et al. “MEMS FABRICATION USING PµSL TECHNIQUE BASED 3D PRINTER”. International Journal of 3D Printing Technologies and Digital Industry 4/1 (April 2020), 38-43.
JAMA Ertugrul İ, Akkuş N, Aygül E, Yalcinkaya S, Ertunç HM. MEMS FABRICATION USING PµSL TECHNIQUE BASED 3D PRINTER. IJ3DPTDI. 2020;4:38–43.
MLA Ertugrul, İshak et al. “MEMS FABRICATION USING PµSL TECHNIQUE BASED 3D PRINTER”. International Journal of 3D Printing Technologies and Digital Industry, vol. 4, no. 1, 2020, pp. 38-43.
Vancouver Ertugrul İ, Akkuş N, Aygül E, Yalcinkaya S, Ertunç HM. MEMS FABRICATION USING PµSL TECHNIQUE BASED 3D PRINTER. IJ3DPTDI. 2020;4(1):38-43.

download

International Journal of 3D Printing Technologies and Digital Industry is lisenced under Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı