Research Article
BibTex RIS Cite

AN EXPERIMENTAL INVESTIGATION ON THE EFFECT OF TEST SPEED ON THE TENSILE PROPERTIES OF THE PETG PRODUCED BY ADDITIVE MANUFACTURING

Year 2022, Volume: 6 Issue: 2, 250 - 260, 31.08.2022
https://doi.org/10.46519/ij3dptdi.1069544

Abstract

References

  • 1. Srinivasan, R., Nirmal Kumar, K., Jenish Ibrahim, A., Anandu, K.V., Gurudhevan R., “Impact of fused deposition process parameter (infill pattern) on the strength of PETG part”, Materials Today: Proceedings, Vol. 27, Issue 2, Pages 1801-1805, 2020.
  • 2. Mostafaei, A., Elliott, A.M., Barnes, J.E., Li, F., Tan, W., Cramer, C.L., Nandwana, P., Chmielus, M., “Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges”, Progress in Materials Science, Vol. 119, Pages 100707, 2021.
  • 3. Ergene, B., Şekeroğlu, İ., Bolat, Ç., Yalçın, B., “An experimental investigation on mechanical performances of 3D printed lightweight ABS pipes with different cellular wall thickness”, Journal of Mechanical Engineering and Sciences, Vol. 15, Issue 2, Pages 8169–8177, 2021.
  • 4. Yao, T., Deng, Z., Zhang, K., Li, S., “A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different printing orientations”, Composites Part B: Engineering, Vol. 163, Pages 393-402, 2019.
  • 5. Stan, F., Stanciu, N.V., Sandu, I.L., Fetecau, C., Serban, A., “Effect of low and extreme-low temperature on mechanical properties of 3D printed polyethylene terephthalate glycol copolymer”, The Romanian Journal of Technical Sciences. Applied Mechanics, Vol. 64, Issue 1, Pages 21-41, 2019.
  • 6. Kong, D., Ni, X., Dong, C., Lei, X., Zhang, L., Man, C., Yao, J., Cheng, X., Li, X., “Bio-functional and anti-corrosive 3D printing 316L stainless steel fabricated by selective laser melting”, Materials & Design, Vol. 152, Pages 88-101, 2018.
  • 7. Deshpande, A., Hsu, K., “Acoustoplastic metal direct-write: Towards solid aluminum 3D printing in ambient conditions”, Additive Manufacturing, Vol. 19, Pages 73-80, 2018.
  • 8. Popov, V.V., Muller-Kamskii, G., Kovalevsky, A., Dzhenzhera, G., Strokin, E., Kolomiets, A., Ramon, J., “Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases”. Biomed. Eng. Lett., Vol. 8, Pages 337–344, 2018.
  • 9. Guo, J., Zeng, Y., Li, P., Chen, J., “Fine lattice structural titanium dioxide ceramic produced by DLP 3D printing”, Ceramics International, Vol. 45, Issue 17, Pages 23007-23012, 2019.
  • 10. Faes, M, Valkenaers, H., Vogeler, F., Vleugels, J., Ferraris, E., “Extrusion-based 3D Printing of Ceramic Components”, Procedia CIRP, Vol. 28, Pages 76-81, 2015.
  • 11. Zhang, X., Fan, W., Liu, T., “Fused deposition modeling 3D printing of polyamide-based composites and its applications”, Composites Communications, Vol. 21, Pages 100413, 2020.
  • 12. Dickson, A.N., Abourayana, H.M., Dowling, D.P., “3D Printing of Fibre-Reinforced Thermoplastic Composites Using Fused Filament Fabrication—A Review”, Polymers, Vol. 12, Issue 10, Pages 2188, 2020.
  • 13. Tuan, D. Ngo, Alireza Kashani, Gabriele Imbalzano, Kate, T.Q. Nguyen, David Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering, Vol. 143, Pages 172-196, 2018.
  • 14. Popescu, D., Zapciu, A., Amza, C., Baciu, F., Marinescu, R., “FDM process parameters influence over the mechanical properties of polymer specimens: A review”, Polymer Testing, Vol. 69, Pages 157-166, 2018.
  • 15. Garzon-Hernandez, S., Garcia-Gonzalez, D., Jérusalem, A., Arias, A., “Design of FDM 3D printed polymers: An experimental-modelling methodology for the prediction of mechanical properties”, Materials & Design, Vol. 188, Pages 108414, 2020.
  • 16. Taniguchi, I., Yoshida, S., Hiraga, K., Miyamoto, K., Kimura, Y., Oda, K., “Biodegradation of PET: Current Status and Application Aspects”, ACS Catal., Vol. 9, Pages 4089–4105, 2019.
  • 17. Birnfeld, H., Touguinha, G.C., Santos, R.R., Alva-Sánchez, M.S., Millão, L., “Evaluation of PETG as a material for immobilization device used in radiation therapy for head and neck”, Brazilian Journal of Radiation Sciences, Vol. 8, Issue 3, Pages 1-16, 2020.
  • 18. Szykiedans, K., Credo, W., Osiński, D., “Selected Mechanical Properties of PETG 3-D Prints”, Procedia Engineering, Vol. 177, Pages 455-461, 2017.
  • 19. Durgashyam, K, Reddy, M.I., Balakrishna, A., Satyanarayana, K., “Experimental investigation on mechanical properties of PETG material processed by fused deposition modeling method”, Materials Today: Proceedings, Vol. 18, Issue 6, Pages 2052-2059, 2019.
  • 20. Agarwal, P.P., Dadmode, T.S., Kadav, M.R., Ogale, A.P., Mangave, P.P., “Experimental Analysis of Mechanical properties of PETG Material 3D Printed Material by Using Fused Deposition Modelling Technique”, Mechanical and Mechanics Engineering, Vol. 6, Issue 1, Pages 20-27, 2020.
  • 21. Kam, M., Saruhan, H., İpekçi, A., “Investigation on the effects of 3D printer system vibrations on mechanical properties of the printed products, Sigma J Eng & Nat Sci, Vol. 36, Issue 3, Pages 655-666, 2018.
  • 22. Hanon, M.M., Marczis, R., Zsidai, L., “Anisotropy Evaluation of Different Raster Directions, Spatial Orientations, and Fill Percentage of 3D Printed PETG Tensile Test Specimens”, KEM, Vol. 821, Pages 167–173, 2019.
  • 23. Özen, A., Auhl, D., Völlmecke, C., Kiendl, J., Abali, B.E., “Optimization of Manufacturing Parameters and Tensile Specimen Geometry for Fused Deposition Modeling (FDM) 3D-Printed PETG”, Materials, Vol. 14, Pages 2556, 2021.
  • 24. Kannan, S., Ramamoorthy, M., Sudhagar, E., Gunji, B., "Mechanical characterization and vibrational analysis of 3D printed PETG and PETG reinforced with short carbon fiber", AIP Conference Proceedings, Vol. 2270, Issue 1, Pages 030004, 2020.
  • 25. Özen, A., Abali, B.E., Völlmecke, C. et al. “Exploring the Role of Manufacturing Parameters on Microstructure and Mechanical Properties in Fused Deposition Modeling (FDM) Using PETG”, Appl Compos Mater, Vol. 28, Pages 1799-1828, 2021.
  • 26. Amza, C.G., Zapciu, A., Baciu, F., Vasile, M.I., Nicoara, A.I., “Accelerated Aging Effect on Mechanical Properties of Common 3D-Printing Polymers”, Polymers, Vol. 13, Pages 4132, 2021.
  • 27. Bhandari, S., Lopez-Anido, R.A., Gardner, D.J., “Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing”, Additive Manufacturing, Vol. 30, Pages 100922, 2019.
  • 28. Dolzyk, G., Jung, S., “Tensile and Fatigue Analysis of 3D-Printed Polyethylene Terephthalate Glycol”, J Fail. Anal. and Preven., Vol. 19, Pages 511–518, 2019.
  • 29. Sepahi, M.T., Abusalma, H., Jovanovic, V., Eisazadeh, H., “Mechanical Properties of 3D-Printed Parts Made of Polyethylene Terephthalate Glycol”, J. of Materi Eng and Perform, Vol. 30, Pages 6851–6861, 2021.
  • 30. Tanveer, Q., Mishra, G., Mishra, S., Sharma, R., “Effect of infill pattern and infill density on mechanical behaviour of FDM 3D printed Parts- a current review”, Materials Today: Proceedings, 2022, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2022.02.31.
  • 31. Atakok, G., Kam, M., Koc, H.B., “Tensile, three-point bending and impact strength of 3D printed parts using PLA and recycled PLA filaments: A statistical investigation”, Journal of Materials Research and Technology, Vol. 18, Pages 1542-1554, 2022.
  • 32. Ergene, B., Atlıhan, G., Pinar, A., “Investigation of the effect of taper angle and boundary condition on natural frequency of the 3D-Printed PET-G beams”, International Journal of 3D Printing Technologies and Digital Industry, Vol. 5, Pages 31-39, 2022.
  • 33. ASTM D638-14. Standard test method for tensile properties of plastics. Technical Report. West Conshohocken, PA; 2014.
  • 34. ASTM International. ASTM D2240-15e1, Standard Test Method for Rubber Property—Durometer Hardness. 2015.
  • 35. Mat, M.A.C., Ramli, F.R., Alkahari, M.R., Sudin, M.N., Abdollah, M.F.B., Mat, S., “Influence of layer thickness and infill design on the surface roughness of PLA, PETG and metal copper materials”, Proceedings of Mechanical Engineering Research Day, Pages 64-66, 2020.
  • 36. Ergene, B., Bolat, Ç., “An experimental study on the role of manufacturing parameters on the dry sliding wear performance of additively manufactured PETG”, International Polymer Processing, Article in Press, 2022. https://doi.org/10.1515/ipp-2022-0015.
  • 37. Vidakis, N., Petousis, M., Velidakis, E., Liebscher, M., Mechtcherine, V., Tzounis, L., “On the Strain Rate Sensitivity of Fused Filament Fabrication (FFF) Processed PLA, ABS, PETG, PA6, and PP Thermoplastic Polymers”, Polymers, Vol. 12, Pages 2924, 2020.

AN EXPERIMENTAL INVESTIGATION ON THE EFFECT OF TEST SPEED ON THE TENSILE PROPERTIES OF THE PETG PRODUCED BY ADDITIVE MANUFACTURING

Year 2022, Volume: 6 Issue: 2, 250 - 260, 31.08.2022
https://doi.org/10.46519/ij3dptdi.1069544

Abstract

Additive manufacturing (AM) is a highly popular, versatile, and practical production technique due to its great ability of very fast prototyping. Compared to other traditional ways, the number of studies on AM techniques has increased in a noteworthy manner day by day on account of their promising potential for future works. In this paper, fused deposition modeling (FDM) technology was used to fabricate polyethylene terephthalate glycol (PETG) specimens and to analyze the effect of the test speed on their tensile properties. As for the printing parameters, solely layer thickness values (0.1 mm, 0.2 mm, and 0.4 mm) were altered while the other factors were kept constant. In order to ascertain the production effectiveness, hardness and surface roughness measurements were carried out. Uniaxial tensile tests were performed at three different test speeds: 5 mm/min, 25 mm/min, and 50 mm/min. Furthermore, after deformation inspections were conducted both in macro and micro scales to evaluate the failure better. From the damage analyses, it was seen that ductile dominant mixed type failure is valid for lower test speeds even though brittle dominant mixed type failure is detected for 50 mm/min test speed.

References

  • 1. Srinivasan, R., Nirmal Kumar, K., Jenish Ibrahim, A., Anandu, K.V., Gurudhevan R., “Impact of fused deposition process parameter (infill pattern) on the strength of PETG part”, Materials Today: Proceedings, Vol. 27, Issue 2, Pages 1801-1805, 2020.
  • 2. Mostafaei, A., Elliott, A.M., Barnes, J.E., Li, F., Tan, W., Cramer, C.L., Nandwana, P., Chmielus, M., “Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges”, Progress in Materials Science, Vol. 119, Pages 100707, 2021.
  • 3. Ergene, B., Şekeroğlu, İ., Bolat, Ç., Yalçın, B., “An experimental investigation on mechanical performances of 3D printed lightweight ABS pipes with different cellular wall thickness”, Journal of Mechanical Engineering and Sciences, Vol. 15, Issue 2, Pages 8169–8177, 2021.
  • 4. Yao, T., Deng, Z., Zhang, K., Li, S., “A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different printing orientations”, Composites Part B: Engineering, Vol. 163, Pages 393-402, 2019.
  • 5. Stan, F., Stanciu, N.V., Sandu, I.L., Fetecau, C., Serban, A., “Effect of low and extreme-low temperature on mechanical properties of 3D printed polyethylene terephthalate glycol copolymer”, The Romanian Journal of Technical Sciences. Applied Mechanics, Vol. 64, Issue 1, Pages 21-41, 2019.
  • 6. Kong, D., Ni, X., Dong, C., Lei, X., Zhang, L., Man, C., Yao, J., Cheng, X., Li, X., “Bio-functional and anti-corrosive 3D printing 316L stainless steel fabricated by selective laser melting”, Materials & Design, Vol. 152, Pages 88-101, 2018.
  • 7. Deshpande, A., Hsu, K., “Acoustoplastic metal direct-write: Towards solid aluminum 3D printing in ambient conditions”, Additive Manufacturing, Vol. 19, Pages 73-80, 2018.
  • 8. Popov, V.V., Muller-Kamskii, G., Kovalevsky, A., Dzhenzhera, G., Strokin, E., Kolomiets, A., Ramon, J., “Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases”. Biomed. Eng. Lett., Vol. 8, Pages 337–344, 2018.
  • 9. Guo, J., Zeng, Y., Li, P., Chen, J., “Fine lattice structural titanium dioxide ceramic produced by DLP 3D printing”, Ceramics International, Vol. 45, Issue 17, Pages 23007-23012, 2019.
  • 10. Faes, M, Valkenaers, H., Vogeler, F., Vleugels, J., Ferraris, E., “Extrusion-based 3D Printing of Ceramic Components”, Procedia CIRP, Vol. 28, Pages 76-81, 2015.
  • 11. Zhang, X., Fan, W., Liu, T., “Fused deposition modeling 3D printing of polyamide-based composites and its applications”, Composites Communications, Vol. 21, Pages 100413, 2020.
  • 12. Dickson, A.N., Abourayana, H.M., Dowling, D.P., “3D Printing of Fibre-Reinforced Thermoplastic Composites Using Fused Filament Fabrication—A Review”, Polymers, Vol. 12, Issue 10, Pages 2188, 2020.
  • 13. Tuan, D. Ngo, Alireza Kashani, Gabriele Imbalzano, Kate, T.Q. Nguyen, David Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering, Vol. 143, Pages 172-196, 2018.
  • 14. Popescu, D., Zapciu, A., Amza, C., Baciu, F., Marinescu, R., “FDM process parameters influence over the mechanical properties of polymer specimens: A review”, Polymer Testing, Vol. 69, Pages 157-166, 2018.
  • 15. Garzon-Hernandez, S., Garcia-Gonzalez, D., Jérusalem, A., Arias, A., “Design of FDM 3D printed polymers: An experimental-modelling methodology for the prediction of mechanical properties”, Materials & Design, Vol. 188, Pages 108414, 2020.
  • 16. Taniguchi, I., Yoshida, S., Hiraga, K., Miyamoto, K., Kimura, Y., Oda, K., “Biodegradation of PET: Current Status and Application Aspects”, ACS Catal., Vol. 9, Pages 4089–4105, 2019.
  • 17. Birnfeld, H., Touguinha, G.C., Santos, R.R., Alva-Sánchez, M.S., Millão, L., “Evaluation of PETG as a material for immobilization device used in radiation therapy for head and neck”, Brazilian Journal of Radiation Sciences, Vol. 8, Issue 3, Pages 1-16, 2020.
  • 18. Szykiedans, K., Credo, W., Osiński, D., “Selected Mechanical Properties of PETG 3-D Prints”, Procedia Engineering, Vol. 177, Pages 455-461, 2017.
  • 19. Durgashyam, K, Reddy, M.I., Balakrishna, A., Satyanarayana, K., “Experimental investigation on mechanical properties of PETG material processed by fused deposition modeling method”, Materials Today: Proceedings, Vol. 18, Issue 6, Pages 2052-2059, 2019.
  • 20. Agarwal, P.P., Dadmode, T.S., Kadav, M.R., Ogale, A.P., Mangave, P.P., “Experimental Analysis of Mechanical properties of PETG Material 3D Printed Material by Using Fused Deposition Modelling Technique”, Mechanical and Mechanics Engineering, Vol. 6, Issue 1, Pages 20-27, 2020.
  • 21. Kam, M., Saruhan, H., İpekçi, A., “Investigation on the effects of 3D printer system vibrations on mechanical properties of the printed products, Sigma J Eng & Nat Sci, Vol. 36, Issue 3, Pages 655-666, 2018.
  • 22. Hanon, M.M., Marczis, R., Zsidai, L., “Anisotropy Evaluation of Different Raster Directions, Spatial Orientations, and Fill Percentage of 3D Printed PETG Tensile Test Specimens”, KEM, Vol. 821, Pages 167–173, 2019.
  • 23. Özen, A., Auhl, D., Völlmecke, C., Kiendl, J., Abali, B.E., “Optimization of Manufacturing Parameters and Tensile Specimen Geometry for Fused Deposition Modeling (FDM) 3D-Printed PETG”, Materials, Vol. 14, Pages 2556, 2021.
  • 24. Kannan, S., Ramamoorthy, M., Sudhagar, E., Gunji, B., "Mechanical characterization and vibrational analysis of 3D printed PETG and PETG reinforced with short carbon fiber", AIP Conference Proceedings, Vol. 2270, Issue 1, Pages 030004, 2020.
  • 25. Özen, A., Abali, B.E., Völlmecke, C. et al. “Exploring the Role of Manufacturing Parameters on Microstructure and Mechanical Properties in Fused Deposition Modeling (FDM) Using PETG”, Appl Compos Mater, Vol. 28, Pages 1799-1828, 2021.
  • 26. Amza, C.G., Zapciu, A., Baciu, F., Vasile, M.I., Nicoara, A.I., “Accelerated Aging Effect on Mechanical Properties of Common 3D-Printing Polymers”, Polymers, Vol. 13, Pages 4132, 2021.
  • 27. Bhandari, S., Lopez-Anido, R.A., Gardner, D.J., “Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing”, Additive Manufacturing, Vol. 30, Pages 100922, 2019.
  • 28. Dolzyk, G., Jung, S., “Tensile and Fatigue Analysis of 3D-Printed Polyethylene Terephthalate Glycol”, J Fail. Anal. and Preven., Vol. 19, Pages 511–518, 2019.
  • 29. Sepahi, M.T., Abusalma, H., Jovanovic, V., Eisazadeh, H., “Mechanical Properties of 3D-Printed Parts Made of Polyethylene Terephthalate Glycol”, J. of Materi Eng and Perform, Vol. 30, Pages 6851–6861, 2021.
  • 30. Tanveer, Q., Mishra, G., Mishra, S., Sharma, R., “Effect of infill pattern and infill density on mechanical behaviour of FDM 3D printed Parts- a current review”, Materials Today: Proceedings, 2022, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2022.02.31.
  • 31. Atakok, G., Kam, M., Koc, H.B., “Tensile, three-point bending and impact strength of 3D printed parts using PLA and recycled PLA filaments: A statistical investigation”, Journal of Materials Research and Technology, Vol. 18, Pages 1542-1554, 2022.
  • 32. Ergene, B., Atlıhan, G., Pinar, A., “Investigation of the effect of taper angle and boundary condition on natural frequency of the 3D-Printed PET-G beams”, International Journal of 3D Printing Technologies and Digital Industry, Vol. 5, Pages 31-39, 2022.
  • 33. ASTM D638-14. Standard test method for tensile properties of plastics. Technical Report. West Conshohocken, PA; 2014.
  • 34. ASTM International. ASTM D2240-15e1, Standard Test Method for Rubber Property—Durometer Hardness. 2015.
  • 35. Mat, M.A.C., Ramli, F.R., Alkahari, M.R., Sudin, M.N., Abdollah, M.F.B., Mat, S., “Influence of layer thickness and infill design on the surface roughness of PLA, PETG and metal copper materials”, Proceedings of Mechanical Engineering Research Day, Pages 64-66, 2020.
  • 36. Ergene, B., Bolat, Ç., “An experimental study on the role of manufacturing parameters on the dry sliding wear performance of additively manufactured PETG”, International Polymer Processing, Article in Press, 2022. https://doi.org/10.1515/ipp-2022-0015.
  • 37. Vidakis, N., Petousis, M., Velidakis, E., Liebscher, M., Mechtcherine, V., Tzounis, L., “On the Strain Rate Sensitivity of Fused Filament Fabrication (FFF) Processed PLA, ABS, PETG, PA6, and PP Thermoplastic Polymers”, Polymers, Vol. 12, Pages 2924, 2020.
There are 37 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Berkay Ergene 0000-0001-6145-1970

Çağın Bolat 0000-0002-4356-4696

Early Pub Date July 22, 2022
Publication Date August 31, 2022
Submission Date February 7, 2022
Published in Issue Year 2022 Volume: 6 Issue: 2

Cite

APA Ergene, B., & Bolat, Ç. (2022). AN EXPERIMENTAL INVESTIGATION ON THE EFFECT OF TEST SPEED ON THE TENSILE PROPERTIES OF THE PETG PRODUCED BY ADDITIVE MANUFACTURING. International Journal of 3D Printing Technologies and Digital Industry, 6(2), 250-260. https://doi.org/10.46519/ij3dptdi.1069544
AMA Ergene B, Bolat Ç. AN EXPERIMENTAL INVESTIGATION ON THE EFFECT OF TEST SPEED ON THE TENSILE PROPERTIES OF THE PETG PRODUCED BY ADDITIVE MANUFACTURING. IJ3DPTDI. August 2022;6(2):250-260. doi:10.46519/ij3dptdi.1069544
Chicago Ergene, Berkay, and Çağın Bolat. “AN EXPERIMENTAL INVESTIGATION ON THE EFFECT OF TEST SPEED ON THE TENSILE PROPERTIES OF THE PETG PRODUCED BY ADDITIVE MANUFACTURING”. International Journal of 3D Printing Technologies and Digital Industry 6, no. 2 (August 2022): 250-60. https://doi.org/10.46519/ij3dptdi.1069544.
EndNote Ergene B, Bolat Ç (August 1, 2022) AN EXPERIMENTAL INVESTIGATION ON THE EFFECT OF TEST SPEED ON THE TENSILE PROPERTIES OF THE PETG PRODUCED BY ADDITIVE MANUFACTURING. International Journal of 3D Printing Technologies and Digital Industry 6 2 250–260.
IEEE B. Ergene and Ç. Bolat, “AN EXPERIMENTAL INVESTIGATION ON THE EFFECT OF TEST SPEED ON THE TENSILE PROPERTIES OF THE PETG PRODUCED BY ADDITIVE MANUFACTURING”, IJ3DPTDI, vol. 6, no. 2, pp. 250–260, 2022, doi: 10.46519/ij3dptdi.1069544.
ISNAD Ergene, Berkay - Bolat, Çağın. “AN EXPERIMENTAL INVESTIGATION ON THE EFFECT OF TEST SPEED ON THE TENSILE PROPERTIES OF THE PETG PRODUCED BY ADDITIVE MANUFACTURING”. International Journal of 3D Printing Technologies and Digital Industry 6/2 (August 2022), 250-260. https://doi.org/10.46519/ij3dptdi.1069544.
JAMA Ergene B, Bolat Ç. AN EXPERIMENTAL INVESTIGATION ON THE EFFECT OF TEST SPEED ON THE TENSILE PROPERTIES OF THE PETG PRODUCED BY ADDITIVE MANUFACTURING. IJ3DPTDI. 2022;6:250–260.
MLA Ergene, Berkay and Çağın Bolat. “AN EXPERIMENTAL INVESTIGATION ON THE EFFECT OF TEST SPEED ON THE TENSILE PROPERTIES OF THE PETG PRODUCED BY ADDITIVE MANUFACTURING”. International Journal of 3D Printing Technologies and Digital Industry, vol. 6, no. 2, 2022, pp. 250-6, doi:10.46519/ij3dptdi.1069544.
Vancouver Ergene B, Bolat Ç. AN EXPERIMENTAL INVESTIGATION ON THE EFFECT OF TEST SPEED ON THE TENSILE PROPERTIES OF THE PETG PRODUCED BY ADDITIVE MANUFACTURING. IJ3DPTDI. 2022;6(2):250-6.

download

International Journal of 3D Printing Technologies and Digital Industry is lisenced under Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı