Research Article
BibTex RIS Cite
Year 2023, Volume: 7 Issue: 4, 295 - 308, 31.12.2023
https://doi.org/10.30939/ijastech..1340339

Abstract

References

  • [1] Yavuz, B. N., & Kahraman, H. (2023). Performance Analysis of Geometric Properties of Fuel Cell Components. International Journal of Automotive Science And Technology, 7(1), 11-17.
  • [2] Soloy, A., Bartoli, T., & Haidar, F. (2023). Modelling and fault diagnosis of lithium-ion battery for electric powertrain. Interna-tional Journal of Automotive Science And Technology, 7(3), 234-247.
  • [3] Redempta, U., Julie, U., Pacifique, T. Impact of Energy Acces-sibil-ity to Household Welfare in Developing Countries: Case Study Rwanda. Engineering Perspective, 3 (3): 35-41. http://dx.doi.org/10.29228/eng.pers.70681
  • [4] Cozzi, L., Gould, T., Bouckart, S., Crow, D., Kim, T. Y., McGlade, C., ... & Wetzel, D. (2020). World energy outlook 2020. International Energy Agency: Paris, France, 1-461.
  • [5] Trinh HA, Truong HVA, Ahn KK. Development of Fuzzy-Adaptive Control Based Energy Management Strategy for PEM Fuel Cell Hybrid Tramway System. Applied Sciences. 2022;12(8):3880. doi:10.3390/app12083880.
  • [6] Ajanovic A, Haas R. Economic and environmental prospects for battery electric- and fuel cell vehicles: A review. Fuel Cells. 2019;19:515-529. https://doi.org/10.1002/fuce.201800171.
  • [7]. Kurt, Y. F., & Tolga, Ö. Z. E. R. 13S Battery Pack and Battery Management System Design and Implementation for Electric Bicycles. International Journal of Automotive Science And Technology, 7(2), 87-94.
  • [8] Kocakulak, T., & Arslan, T. A. Investigation of the Use of Fuel Cell Hybrid Systems for Different Purposes. Engineering Perspective, (1): 1-8. http://dx.doi.org/10.29228/eng.pers.68466
  • [9] Bishop J, Martin NP, Boies AM. Cost-effectiveness of alterna-tive powertrains for reduced energy use and CO2 emissions in passenger vehicles. Applied Energy. 2014;124:44-61. https://doi.org/10.1016/j.apenergy.2014.02.019.
  • [10] Tanç B, Arat HT, Baltacıoğlu E, Aydın K. Overview of the next quarter-century vision of hydrogen fuel cell electric vehi-cles. International Journal of Hydrogen Energy. 2019;44:10120-10128. https://doi.org/10.1016/j.ijhydene.2018.10.112.
  • [11] Thomas C. Fuel cell and battery electric vehicles compared. International Journal of Hydrogen Energy. 2009;34:6005-6020. https://doi.org/10.1016/j.ijhydene.2009.06.003.
  • [12] Yang Z, Guo Q, Chen H, Ding S, Miao W, Huang J. The Fuzzy Logic Control Strategy for PEM Fuel Cell Hybrid Energy Sys-tem. In: 2022 5th International Conference on Energy, Electri-cal and Power Engineering (CEEPE); 2022. Shanghai, China. 2022:1-6. doi:10.1109/CEEPE55110.2022.9783241.
  • [13] Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell, and Plug-In Hybrid Electric Vehicles: State of the Art. IEEE Transactions on Vehic-ular Technology. 2010;59:2806-2814. doi:10.1109/TVT.2010.2047877.
  • [14] Yildiz A, Özel MA. A comparative study of energy consump-tion and recovery of autonomous fuel-cell hydrogen–electric vehicles using different powertrains based on regenerative braking and electronic stability control system. Applied Scienc-es. 2021;11(6):2515. https://doi.org/10.3390/app11062515.
  • [15] Bethoux O. Hydrogen Fuel Cell Road Vehicles: State of the Art and Perspectives. Energies. 2020;13:5843. https://doi.org/10.3390/en13215843.
  • [16] Luciani S, Tonoli A. Control strategy assessment for improving PEM fuel cell system efficiency in fuel cell hybrid vehicles. Energies. 2022;15(6):2004. https://doi.org/10.3390/en15062004.
  • [17] Carello M, de Carvalho Pinheiro H, Longega L, Di Napoli L. Design and modelling of the powertrain of a hybrid fuel cell electric vehicle. SAE International Journal of Advanced & Cur-rent Practices in Mobility. 2021;3(6):2878-2892. https://doi.org/10.4271/2021-01-0734.
  • [18] Hilkert M. Pathways for a Transition to a Sustainable Hydro-gen Transportation Fuel Infrastructure in California. Karlsruhe Institute of Technology (KIT): Karlsruhe, Germany; 2004.
  • [19] Yoshida T, Kojima K. Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society. The Electrochemical Society Interface. 2015;24(2):45. DOI: 10.1149/2.F03152if.
  • [20] Tran DD, Vafaeipour M, El Baghdadi M, Barrero R, Van Mierlo J, Hegazy O. Thorough state-of-the-art analysis of elec-tric and hybrid vehicle powertrains: Topologies and integrated energy management strategies. Renewable and Sustainable En-ergy Reviews. 2020;119:109596. https://doi.org/10.1016/j.rser.2019.109596.
  • [21] Xu N, Kong Y, Chu L, Ju H, Yang Z, Xu Z, Xu Z. Towards a smarter energy management system for hybrid vehicles: A comprehensive review of control strategies. Applied Sciences. 2019;9(10):2026. https://doi.org/10.3390/app9102026.
  • [22] Yang Z, Guo Q, Chen H, Ding S, Miao W, Huang J. The Fuzzy Logic Control Strategy for PEM Fuel Cell Hybrid Energy Sys-tem. In: 2022 5th International Conference on Energy, Electri-cal and Power Engineering (CEEPE); 2022. Shanghai, China. 2022:1-6. doi:10.1109/CEEPE55110.2022.9783241.
  • [23] Luciani S, Tonoli A. Control strategy assessment for improving PEM fuel cell system efficiency in fuel cell hybrid vehicles. Energies. 2022;15(6):2004. https://doi.org/10.3390/en15062004.
  • [24] Trinh Ha, Truong Hva, Ahn Kk. Development of fuzzy-adaptive control-based energy management strategy for PEM fuel cell hybrid tramway system. Applied Sciences. 2022;12(8):3880. https://doi.org/10.3390/app12083880.
  • [25] Truong HVA, Dao HV, Do TC, Ho CM, To XD, Dang TD, Ahn KK. Mapping fuzzy energy management strategy for PEM Fuel Cell–Battery–Supercapacitor hybrid excavator. Energies. 2020;13(13):3387. https://doi.org/10.3390/en13133387.
  • [26] Dao HV, To XD, Truong HVA, Do TC, Ho CM, Dang TD, Ahn KK. Optimization-based fuzzy energy management strate-gy for PEM fuel cell/battery/supercapacitor hybrid construction excavator. International Journal of Precision Engineering and Manufacturing-Green Technology. 2021;8:1267-1285. https://doi.org/10.1007/s40684-020-00262-y.
  • [27] Weyers C, Bocklisch T. Simulation-based investigation of energy management concepts for fuel cell–battery–hybrid ener-gy storage systems in mobile applications. Energy Procedia. 2018;155:295-308. https://doi.org/10.1016/j.egypro.2018.11.048.
  • [28] Peng F, Zhao Y, Li X, Liu Z, Chen W, Liu Y, Zhou D. Devel-opment of master-slave energy management strategy based on fuzzy logic hysteresis state machine and differential power pro-cessing compensation for a PEMFC-LIB-SC hybrid tramway. Applied Energy. 2017;206:346-363. https://doi.org/10.1016/j.apenergy.2017.08.128.
  • [29] Regad, M., Helaimi, M., Taleb, R., Gabbar, H. A., & Othman, A. M. (2019, August). Fractional order PID control of hybrid power system with renewable generation using genetic algo-rithm. In 2019 IEEE 7th International Conference on Smart En-ergy Grid Engineering (SEGE) (pp. 139-144). IEEE. doi: 10.1109/SEGE.2019.8859970.
  • [30] Bingül Ö, Yıldız A. Fuzzy logic and proportional integral de-rivative based multi-objective optimization of active suspension system of a 4× 4 in-wheel motor driven electrical vehicle. J Vi-bration Control. 2023;29(5-6):1366-1386. doi:10.1177/1077546321106269.
  • [31] Yıldız A, Özel MA. A comparative study of energy consump-tion and recovery of autonomous fuel-cell hydrogen–electric vehicles using different powertrains based on regenerative braking and electronic stability control system. Appl Sci. 2021;11(6):2515. doi:10.3390/app11062515.
  • [32] Hemi H, Ghouili J, Cheriti A. A real-time fuzzy logic power management strategy for a fuel cell vehicle. Energy Conversion and Management. 2014;80:63-70. https://doi.org/10.1016/j.enconman.2013.12.040.
  • [33] Mishra GK, Pandey AK, Maurya A. Combined armature and field speed control of DC motor for efficiency enhancement. SSRG International Journal of Electrical and Electronics Engi-neering (SSRG-IJEEE). 2014;1:34-39. DOI: 10.14445/23488379/IJEEE-V1I6P104.
  • [34] Tao X, Zhou K, Wagner JR, Hofmann H. An electric motor thermal management system for hybrid vehicles: modelling and control. Int J Veh Perform. 2016;2(3):207-227. doi:10.1504/IJVP.2016.078557.
  • [35] Karaman, M., & Korucu, S. (2023). Modeling the Vehicle Move-ment and Braking Effect of the Hydrostatic Regenerative Braking System. Engineering Perspective, 3(2) :18-26. http://dx.doi.org/10.29228/eng.pers.69826
  • [36] Goud, P. V. S., & Chary, A. S. V. P. Evaluation of Electrifi-cation of 4W Light Commercial Vehicle. Engineering Perspective, 3 (1): 9-17. http://dx.doi.org/10.29228/eng.pers.69296
  • [37] Spiegel C. Designing and Building Fuel Cells. Vol. 87. New York: McGraw-Hill; 2007.
  • [38] Jouin M, Gouriveau R, Hissel D, Péra MC, Zerhouni N. Prog-nostics and Health Management of PEMFC – State of the art and remaining challenges. International Journal of Hydrogen Energy. 2013;38(35):15307-15317. https://doi.org/10.1016/j.ijhydene.2013.09.051.
  • [39] O'hayre R, Cha SW, Colella W, Prinz FB. Fuel Cell Fundamen-tals. John Wiley & Sons; 2016.
  • [40] Tanaka S, Nagumo K, Yamamoto M, Chiba H, Yoshida K, Okano R. Fuel cell system for Honda CLARITY fuel cell. ETransportation. 2020;3:100046. https://doi.org/10.1016/j.etran.2020.100046.
  • [41] Lohse-Busch H, Stutenberg K, Duoba M, Iliev S. Technology assessment of a fuel cell vehicle: 2017 Toyota Mirai (No. ANL/ESD-18/12). Argonne National Lab.(ANL), Argonne, IL (United States). https://doi.org/10.2172/1463251.
  • [42] Şefkat G, Özel MA. PEM yakıt hücresinin Simulink modeli ve analizi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi. 2018;23(2):351-366. DOI: 10.17482/uumfd.400337.
  • [43] Karaoğlan MU, Kuralay NS. PEM yakıt hücresi modeli. Mühendis ve Makina. 2014;51-58
  • [44] Barbir F. PEM fuel cells: theory and practice. Academic Press; 2012.
  • [45] Zhang J, Wu J, Zhang H. PEM fuel cell testing and diagnosis. Newnes; 2013.
  • [46] Tifour B, Boukhnifer M, Hafaifa A, Tanougast C. An optimal fuzzy logic control for a fuel cell hybrid electric vehicle based on particle swarm and advisor. In: 2021 IEEE Green Technolo-gies Conference (GreenTech). IEEE; April 2021. pp. 148-154. DOI: 10.1109/GreenTech48523.2021.00033.
  • [47] Sulaiman N, Hannan MA, Mohamed A, Majlan EH, Daud WW. A review on energy management system for fuel cell hybrid electric vehicle: Issues and challenges. Renewable and Sustain-able Energy Reviews. 2015; 52:802-814.

Modeling and Control of a PEM Fuel Cell Hybrid Energy System Used in a Vehicle with Fuzzy Logic Method

Year 2023, Volume: 7 Issue: 4, 295 - 308, 31.12.2023
https://doi.org/10.30939/ijastech..1340339

Abstract

PEM (Proton Exchange Membrane) fuel cells, which are commonly used in vehicles, are critical for sustainable transportation in the future. In this study, it is aimed to en-hance the system efficiency of the PEM fuel cell and provide fuel economy. To achieve this goal, the hybrid energy system with a PEM fuel cell and battery pack is controlled with two different strategies. The first control strategy is designed using Fuzzy Logic (FL), while the other control strategy is designed with the classical on-off method with the 'Relay' block. Power output of the fuel cell is determined depending on the change in the charging state of the battery pack and the power consumed by the electric vehicle in this study. The aim is to provide that the fuel cell operates in a high-efficiency range and can generate enough power when needed. Vehicle and fuel cell modeling were per-formed in Matlab/Simulink environment. NEDC (New European Driving Cycle) and WLTP (Worldwide Harmonized Light Vehicles Test Procedure) driving cycles were considered and fuel cell efficiency and hydrogen consumption were compared at dif-ferent state of charge values of the battery. The analyses were carried out over long dis-tances by repeating the driving cycles. It was observed that fuzzy logic control provid-ed 11.6% less fuel consumption than classic on-off control in NEDC and WLTP driving cycles repeated five times. The values obtained as a result of the study showed that fuzzy logic control is more advantageous to increase the energy efficiency of fuel cells.

References

  • [1] Yavuz, B. N., & Kahraman, H. (2023). Performance Analysis of Geometric Properties of Fuel Cell Components. International Journal of Automotive Science And Technology, 7(1), 11-17.
  • [2] Soloy, A., Bartoli, T., & Haidar, F. (2023). Modelling and fault diagnosis of lithium-ion battery for electric powertrain. Interna-tional Journal of Automotive Science And Technology, 7(3), 234-247.
  • [3] Redempta, U., Julie, U., Pacifique, T. Impact of Energy Acces-sibil-ity to Household Welfare in Developing Countries: Case Study Rwanda. Engineering Perspective, 3 (3): 35-41. http://dx.doi.org/10.29228/eng.pers.70681
  • [4] Cozzi, L., Gould, T., Bouckart, S., Crow, D., Kim, T. Y., McGlade, C., ... & Wetzel, D. (2020). World energy outlook 2020. International Energy Agency: Paris, France, 1-461.
  • [5] Trinh HA, Truong HVA, Ahn KK. Development of Fuzzy-Adaptive Control Based Energy Management Strategy for PEM Fuel Cell Hybrid Tramway System. Applied Sciences. 2022;12(8):3880. doi:10.3390/app12083880.
  • [6] Ajanovic A, Haas R. Economic and environmental prospects for battery electric- and fuel cell vehicles: A review. Fuel Cells. 2019;19:515-529. https://doi.org/10.1002/fuce.201800171.
  • [7]. Kurt, Y. F., & Tolga, Ö. Z. E. R. 13S Battery Pack and Battery Management System Design and Implementation for Electric Bicycles. International Journal of Automotive Science And Technology, 7(2), 87-94.
  • [8] Kocakulak, T., & Arslan, T. A. Investigation of the Use of Fuel Cell Hybrid Systems for Different Purposes. Engineering Perspective, (1): 1-8. http://dx.doi.org/10.29228/eng.pers.68466
  • [9] Bishop J, Martin NP, Boies AM. Cost-effectiveness of alterna-tive powertrains for reduced energy use and CO2 emissions in passenger vehicles. Applied Energy. 2014;124:44-61. https://doi.org/10.1016/j.apenergy.2014.02.019.
  • [10] Tanç B, Arat HT, Baltacıoğlu E, Aydın K. Overview of the next quarter-century vision of hydrogen fuel cell electric vehi-cles. International Journal of Hydrogen Energy. 2019;44:10120-10128. https://doi.org/10.1016/j.ijhydene.2018.10.112.
  • [11] Thomas C. Fuel cell and battery electric vehicles compared. International Journal of Hydrogen Energy. 2009;34:6005-6020. https://doi.org/10.1016/j.ijhydene.2009.06.003.
  • [12] Yang Z, Guo Q, Chen H, Ding S, Miao W, Huang J. The Fuzzy Logic Control Strategy for PEM Fuel Cell Hybrid Energy Sys-tem. In: 2022 5th International Conference on Energy, Electri-cal and Power Engineering (CEEPE); 2022. Shanghai, China. 2022:1-6. doi:10.1109/CEEPE55110.2022.9783241.
  • [13] Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell, and Plug-In Hybrid Electric Vehicles: State of the Art. IEEE Transactions on Vehic-ular Technology. 2010;59:2806-2814. doi:10.1109/TVT.2010.2047877.
  • [14] Yildiz A, Özel MA. A comparative study of energy consump-tion and recovery of autonomous fuel-cell hydrogen–electric vehicles using different powertrains based on regenerative braking and electronic stability control system. Applied Scienc-es. 2021;11(6):2515. https://doi.org/10.3390/app11062515.
  • [15] Bethoux O. Hydrogen Fuel Cell Road Vehicles: State of the Art and Perspectives. Energies. 2020;13:5843. https://doi.org/10.3390/en13215843.
  • [16] Luciani S, Tonoli A. Control strategy assessment for improving PEM fuel cell system efficiency in fuel cell hybrid vehicles. Energies. 2022;15(6):2004. https://doi.org/10.3390/en15062004.
  • [17] Carello M, de Carvalho Pinheiro H, Longega L, Di Napoli L. Design and modelling of the powertrain of a hybrid fuel cell electric vehicle. SAE International Journal of Advanced & Cur-rent Practices in Mobility. 2021;3(6):2878-2892. https://doi.org/10.4271/2021-01-0734.
  • [18] Hilkert M. Pathways for a Transition to a Sustainable Hydro-gen Transportation Fuel Infrastructure in California. Karlsruhe Institute of Technology (KIT): Karlsruhe, Germany; 2004.
  • [19] Yoshida T, Kojima K. Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society. The Electrochemical Society Interface. 2015;24(2):45. DOI: 10.1149/2.F03152if.
  • [20] Tran DD, Vafaeipour M, El Baghdadi M, Barrero R, Van Mierlo J, Hegazy O. Thorough state-of-the-art analysis of elec-tric and hybrid vehicle powertrains: Topologies and integrated energy management strategies. Renewable and Sustainable En-ergy Reviews. 2020;119:109596. https://doi.org/10.1016/j.rser.2019.109596.
  • [21] Xu N, Kong Y, Chu L, Ju H, Yang Z, Xu Z, Xu Z. Towards a smarter energy management system for hybrid vehicles: A comprehensive review of control strategies. Applied Sciences. 2019;9(10):2026. https://doi.org/10.3390/app9102026.
  • [22] Yang Z, Guo Q, Chen H, Ding S, Miao W, Huang J. The Fuzzy Logic Control Strategy for PEM Fuel Cell Hybrid Energy Sys-tem. In: 2022 5th International Conference on Energy, Electri-cal and Power Engineering (CEEPE); 2022. Shanghai, China. 2022:1-6. doi:10.1109/CEEPE55110.2022.9783241.
  • [23] Luciani S, Tonoli A. Control strategy assessment for improving PEM fuel cell system efficiency in fuel cell hybrid vehicles. Energies. 2022;15(6):2004. https://doi.org/10.3390/en15062004.
  • [24] Trinh Ha, Truong Hva, Ahn Kk. Development of fuzzy-adaptive control-based energy management strategy for PEM fuel cell hybrid tramway system. Applied Sciences. 2022;12(8):3880. https://doi.org/10.3390/app12083880.
  • [25] Truong HVA, Dao HV, Do TC, Ho CM, To XD, Dang TD, Ahn KK. Mapping fuzzy energy management strategy for PEM Fuel Cell–Battery–Supercapacitor hybrid excavator. Energies. 2020;13(13):3387. https://doi.org/10.3390/en13133387.
  • [26] Dao HV, To XD, Truong HVA, Do TC, Ho CM, Dang TD, Ahn KK. Optimization-based fuzzy energy management strate-gy for PEM fuel cell/battery/supercapacitor hybrid construction excavator. International Journal of Precision Engineering and Manufacturing-Green Technology. 2021;8:1267-1285. https://doi.org/10.1007/s40684-020-00262-y.
  • [27] Weyers C, Bocklisch T. Simulation-based investigation of energy management concepts for fuel cell–battery–hybrid ener-gy storage systems in mobile applications. Energy Procedia. 2018;155:295-308. https://doi.org/10.1016/j.egypro.2018.11.048.
  • [28] Peng F, Zhao Y, Li X, Liu Z, Chen W, Liu Y, Zhou D. Devel-opment of master-slave energy management strategy based on fuzzy logic hysteresis state machine and differential power pro-cessing compensation for a PEMFC-LIB-SC hybrid tramway. Applied Energy. 2017;206:346-363. https://doi.org/10.1016/j.apenergy.2017.08.128.
  • [29] Regad, M., Helaimi, M., Taleb, R., Gabbar, H. A., & Othman, A. M. (2019, August). Fractional order PID control of hybrid power system with renewable generation using genetic algo-rithm. In 2019 IEEE 7th International Conference on Smart En-ergy Grid Engineering (SEGE) (pp. 139-144). IEEE. doi: 10.1109/SEGE.2019.8859970.
  • [30] Bingül Ö, Yıldız A. Fuzzy logic and proportional integral de-rivative based multi-objective optimization of active suspension system of a 4× 4 in-wheel motor driven electrical vehicle. J Vi-bration Control. 2023;29(5-6):1366-1386. doi:10.1177/1077546321106269.
  • [31] Yıldız A, Özel MA. A comparative study of energy consump-tion and recovery of autonomous fuel-cell hydrogen–electric vehicles using different powertrains based on regenerative braking and electronic stability control system. Appl Sci. 2021;11(6):2515. doi:10.3390/app11062515.
  • [32] Hemi H, Ghouili J, Cheriti A. A real-time fuzzy logic power management strategy for a fuel cell vehicle. Energy Conversion and Management. 2014;80:63-70. https://doi.org/10.1016/j.enconman.2013.12.040.
  • [33] Mishra GK, Pandey AK, Maurya A. Combined armature and field speed control of DC motor for efficiency enhancement. SSRG International Journal of Electrical and Electronics Engi-neering (SSRG-IJEEE). 2014;1:34-39. DOI: 10.14445/23488379/IJEEE-V1I6P104.
  • [34] Tao X, Zhou K, Wagner JR, Hofmann H. An electric motor thermal management system for hybrid vehicles: modelling and control. Int J Veh Perform. 2016;2(3):207-227. doi:10.1504/IJVP.2016.078557.
  • [35] Karaman, M., & Korucu, S. (2023). Modeling the Vehicle Move-ment and Braking Effect of the Hydrostatic Regenerative Braking System. Engineering Perspective, 3(2) :18-26. http://dx.doi.org/10.29228/eng.pers.69826
  • [36] Goud, P. V. S., & Chary, A. S. V. P. Evaluation of Electrifi-cation of 4W Light Commercial Vehicle. Engineering Perspective, 3 (1): 9-17. http://dx.doi.org/10.29228/eng.pers.69296
  • [37] Spiegel C. Designing and Building Fuel Cells. Vol. 87. New York: McGraw-Hill; 2007.
  • [38] Jouin M, Gouriveau R, Hissel D, Péra MC, Zerhouni N. Prog-nostics and Health Management of PEMFC – State of the art and remaining challenges. International Journal of Hydrogen Energy. 2013;38(35):15307-15317. https://doi.org/10.1016/j.ijhydene.2013.09.051.
  • [39] O'hayre R, Cha SW, Colella W, Prinz FB. Fuel Cell Fundamen-tals. John Wiley & Sons; 2016.
  • [40] Tanaka S, Nagumo K, Yamamoto M, Chiba H, Yoshida K, Okano R. Fuel cell system for Honda CLARITY fuel cell. ETransportation. 2020;3:100046. https://doi.org/10.1016/j.etran.2020.100046.
  • [41] Lohse-Busch H, Stutenberg K, Duoba M, Iliev S. Technology assessment of a fuel cell vehicle: 2017 Toyota Mirai (No. ANL/ESD-18/12). Argonne National Lab.(ANL), Argonne, IL (United States). https://doi.org/10.2172/1463251.
  • [42] Şefkat G, Özel MA. PEM yakıt hücresinin Simulink modeli ve analizi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi. 2018;23(2):351-366. DOI: 10.17482/uumfd.400337.
  • [43] Karaoğlan MU, Kuralay NS. PEM yakıt hücresi modeli. Mühendis ve Makina. 2014;51-58
  • [44] Barbir F. PEM fuel cells: theory and practice. Academic Press; 2012.
  • [45] Zhang J, Wu J, Zhang H. PEM fuel cell testing and diagnosis. Newnes; 2013.
  • [46] Tifour B, Boukhnifer M, Hafaifa A, Tanougast C. An optimal fuzzy logic control for a fuel cell hybrid electric vehicle based on particle swarm and advisor. In: 2021 IEEE Green Technolo-gies Conference (GreenTech). IEEE; April 2021. pp. 148-154. DOI: 10.1109/GreenTech48523.2021.00033.
  • [47] Sulaiman N, Hannan MA, Mohamed A, Majlan EH, Daud WW. A review on energy management system for fuel cell hybrid electric vehicle: Issues and challenges. Renewable and Sustain-able Energy Reviews. 2015; 52:802-814.
There are 47 citations in total.

Details

Primary Language English
Subjects Hybrid and Electric Vehicles and Powertrains
Journal Section Articles
Authors

Nurettin Mert Boyacıoğlu 0009-0002-8337-451X

Tolga Kocakulak 0000-0002-1269-6370

Mustafa Batar 0000-0002-8231-6628

Ahmet Uyumaz 0000-0003-3519-0935

Hamit Solmaz 0000-0003-0689-6824

Publication Date December 31, 2023
Submission Date August 9, 2023
Acceptance Date October 21, 2023
Published in Issue Year 2023 Volume: 7 Issue: 4

Cite

APA Boyacıoğlu, N. M., Kocakulak, T., Batar, M., Uyumaz, A., et al. (2023). Modeling and Control of a PEM Fuel Cell Hybrid Energy System Used in a Vehicle with Fuzzy Logic Method. International Journal of Automotive Science And Technology, 7(4), 295-308. https://doi.org/10.30939/ijastech..1340339
AMA Boyacıoğlu NM, Kocakulak T, Batar M, Uyumaz A, Solmaz H. Modeling and Control of a PEM Fuel Cell Hybrid Energy System Used in a Vehicle with Fuzzy Logic Method. IJASTECH. December 2023;7(4):295-308. doi:10.30939/ijastech.1340339
Chicago Boyacıoğlu, Nurettin Mert, Tolga Kocakulak, Mustafa Batar, Ahmet Uyumaz, and Hamit Solmaz. “Modeling and Control of a PEM Fuel Cell Hybrid Energy System Used in a Vehicle With Fuzzy Logic Method”. International Journal of Automotive Science And Technology 7, no. 4 (December 2023): 295-308. https://doi.org/10.30939/ijastech. 1340339.
EndNote Boyacıoğlu NM, Kocakulak T, Batar M, Uyumaz A, Solmaz H (December 1, 2023) Modeling and Control of a PEM Fuel Cell Hybrid Energy System Used in a Vehicle with Fuzzy Logic Method. International Journal of Automotive Science And Technology 7 4 295–308.
IEEE N. M. Boyacıoğlu, T. Kocakulak, M. Batar, A. Uyumaz, and H. Solmaz, “Modeling and Control of a PEM Fuel Cell Hybrid Energy System Used in a Vehicle with Fuzzy Logic Method”, IJASTECH, vol. 7, no. 4, pp. 295–308, 2023, doi: 10.30939/ijastech..1340339.
ISNAD Boyacıoğlu, Nurettin Mert et al. “Modeling and Control of a PEM Fuel Cell Hybrid Energy System Used in a Vehicle With Fuzzy Logic Method”. International Journal of Automotive Science And Technology 7/4 (December 2023), 295-308. https://doi.org/10.30939/ijastech. 1340339.
JAMA Boyacıoğlu NM, Kocakulak T, Batar M, Uyumaz A, Solmaz H. Modeling and Control of a PEM Fuel Cell Hybrid Energy System Used in a Vehicle with Fuzzy Logic Method. IJASTECH. 2023;7:295–308.
MLA Boyacıoğlu, Nurettin Mert et al. “Modeling and Control of a PEM Fuel Cell Hybrid Energy System Used in a Vehicle With Fuzzy Logic Method”. International Journal of Automotive Science And Technology, vol. 7, no. 4, 2023, pp. 295-08, doi:10.30939/ijastech. 1340339.
Vancouver Boyacıoğlu NM, Kocakulak T, Batar M, Uyumaz A, Solmaz H. Modeling and Control of a PEM Fuel Cell Hybrid Energy System Used in a Vehicle with Fuzzy Logic Method. IJASTECH. 2023;7(4):295-308.

Cited By









International Journal of Automotive Science and Technology (IJASTECH) is published by Society of Automotive Engineers Turkey

by.png