Research Article
BibTex RIS Cite

Experimental Comparison of Manufacturing Parameters in Automotive Friction Materials

Year 2024, Volume: 8 Issue: 2, 167 - 178, 30.06.2024
https://doi.org/10.30939/ijastech..1425382

Abstract

In this study, a fixed automotive friction material content was determined and the mechanical and tribological effects of manufacturing parameters on friction materials were investigated. Parameters; pre-forming time (1-3-5 min) and pre-forming pressure (8-10-12 MPa), hot pressing time (5-10-15 min) hot pressing pressure (8-10-12 MPa) and hot pressing temperature (125-150-175 °C), curing time (4-8-12 h) and curing temperature (120-150-180 °C) were determined. The friction test of the produced samples was carried out under 0.551 MPa pressure and 7 m/s rotation speed for 90 min. In addition, the average COF, friction stability, specific wear rate, density and hardness values of the samples were calculated. According to the results obtained, the average COF value increased as the pre-forming time and pressure increased. The lowest specific wear rate among all specimens was calculated as 7.622x10-6 cm3/Nm in PFP-12 specimen. With the increase in hot pressing time, the tribological properties of friction materials improved. The highest friction stability among all samples was calculated as 79.42% in the HPT-15 sample. Although there was an increase in the average COF value with increasing hot pressing pressure and temperature, the specific wear rates increased in these parameters. The highest average COF value among all samples was obtained in the CT-12 sample with a value of 0.553. The specific wear rate increased with the increase in curing time and temperature. The highest specific wear rate among all samples was calculated 10,743x10-6 cm3/Nm in the CTe-180 sample. Finally, it has been suggested that 3 min for pre-forming time, 12 MPa for pre-forming pressure; 15 min for hot pressing time, 12 MPa for hot pressing pressure, and 150°C for hot pressing temperature; and a curing time of 8 h and curing temperature of 150 °C may be sufficient.

Supporting Institution

Scientific Research Projects Unit/Afyon Kocatepe University

Project Number

21.FEN.BİL.06

Thanks

This study was supported by Scientific Research Projects Unit/Afyon Kocatepe University in frame of the project code of 21.FEN.BIL.06 as researchers, we thank the Scientific Research Projects Unit/Afyon Kocatepe University.

References

  • [1] Akbulut F, Mutlu İ. The Effect of Sintering Time on the Tribological Properties of Automotive Brake Pads. Int J Automot Eng Technol. 2023;12(1) :16-21. https://doi.org/10.18245/ijaet.1223599.
  • [2] Sugözü İ, Sugözü B. Investigation of Usage of Milled Pine Cone in Brake Pads. Int J Automot Sci Technol. 2020;4(4): 253 - 257 https://doi.org/10.30939/ijastech..770050
  • [3] Güney B, Mutlu I. Tribological Properties of Brake Discs Coated with Cr2O3-40% TiO2 by Plasma Spraying. Surf Rev Lett. 2019;26(10) https://doi.org/10.1142/S0218625X19500756.
  • [4] Güney B, Öz A. Microstructure and Chemical Analysis of Vehicle Brake Wear Particle Emissions. Eur J Sci Technol. 2020;19: 633-642 https://doi.org/10.31590/ejosat.744098
  • [5] Achebe CH, Obika EN, Chukwuneke JL, Ani OE. Optimisation of Hybridised Cane Wood–Palm Fruit Fibre Frictional Material. Proc Inst Mech Eng Part L J Mater Des Appl. 2019;233(12):2490-2497. https://doi.org/10.1177/1464420719863445.
  • [6] Karaman M, Korucu SA. Modeling the vehicle movement and braking effect of the hydrostatic regenerative braking system. Engineering Perspective. 2023;3(2). https://doi.org/10.5505/pajes.2013.55264
  • [7] Akincioğlu G, Akincioğlu S, Öktem H, Uygur İ. Brake Pad Performance Characteristic Assessment Methods. Int J Automot Sci Technol. 2021;5(1):67-78. https://doi.org/10.30939/ijastech..848266.
  • [8] Yavuz H, Bayrakçeken H. Investigation of Friction and Wear Behavior of Composite Brake Pads Produced with Huntite Mineral. Int J Automot Sci Technol. 2022;6(1):9-16. https://doi.org/10.30939/ijastech..1022247.
  • [9] Yavuz H, Bayrakçeken H. Friction and Wear Response of Automobile Brake Pad Composites Containing Volcanic Tuff. J Aust Ceram Soc. 2023;59(5):1465-1476. https://doi.org/10.1007/s41779-023-00952-1.
  • [10] Sugözü B, Sugözü İ. Investigation of the Use of a New Binder Material in Automotive Brake Pad. Int J Automot Sci Technol. 2020;4(4):258-263. https://doi.org/10.30939/ijastech..772922.
  • [11] Akıncıoğlu G. Evaluation of the Effect of the Novolac Resin Ratio on the High-Temperature Performance of the Brake Pads. Int J Automot Sci Technol. 2022;6(2):196-201. https://doi.org/10.30939/ijastech..1087420.
  • [12] Akbulut F, Kılıç H, Mutlu İ, Öztürk FS, Çaşın E, Seyrek M, vd. Investigation of Tribological Properties of Brake Friction Materials Developed from Industrial Waste Products. Int J Automot Sci Technol. 2023;7(4):309–315. https://doi.org/10.30939/ijastech..1373026.
  • [13] Hendre KN, Bachchhav BD. Friction and Wear Characteristics of Rubber Resin-Bonded Metallic Brake Pad Materials. Int J Eng Adv Technol. 2019;8(6):1312-1316. 10.35940/ijeat.F8514.088619.
  • [14] Akıncıoğlu G, Akıncıoğlu S, Öktem H, Uygur İ. Wear Response of Non-Asbestos Brake Pad Composites Reinforced with Walnut Shell Dust. J Aust Ceram Soc. 2020;56(3) https://doi.org/10.1007/s41779-020-00452-6.
  • [15] Akıncıoğlu G, Uygur İ, Akıncıoğlu S, Öktem H. Friction-wear Performance in Environmentally Friendly Brake Composites: A Comparison of Two Different Test Methods. Polym Compos. 2021;42(9) https://doi.org/10.1002/pc.26162.
  • [16] Singh T. Comparative Performance of Barium Sulphate and Cement by-pass Dust on Tribological Properties of Automotive Brake Friction Composites. Alexandria Eng J. 2023;72: 339-349. https://doi.org/10.1016/j.aej.2023.04.010
  • [17] Ma Y, Shen S, Tong J, Ye W, Yang Y, Zhou J. Effects of Bamboo Fibers on Friction Performance of Friction Materials. J Thermoplast Compos Mater. 2013;26(6):845-859 https://doi.org/10.1177/0892705712461513.
  • [18] Öktem H, Akıncıoğlu S, Uygur İ, Akıncıoğlu G. A Novel Study of Hybrid Brake Pad Composites: New Formulation, Tribological Behaviour and Characterisation of Microstructure. Plast Rubber Compos. 2021;50(5):249-261. https://doi.org/10.1080/14658011.2021.1898881
  • [19] Shinde D, Mistry KN. Asbestos base and Asbestos Free Brake Lining Materials: Comparative Study. Int J Sci World. 2017;5(1):192-198. https://doi.org/10.14419/ijsw.v5i1.7082.
  • [20] Sugözü B, Dağhan B, Akdemir A. Effect of the Size on the friction Characteristics of Brake Friction Materials: A Case Study with Al2O3. Ind Lubr Tribol. 2018;70(6):1020-1024. https://doi.org/10.1108/ILT-02-2017-0035.
  • [21] Hong US, Jung SL, Cho KH, Cho MH, Kim SJ, Jang H. Wear Mechanism of Multiphase Friction Materials With Different Phenolic Resin Matrices. Wear. 2009;266(7–8):739-744. https://doi.org/10.1016/j.wear.2008.08.008
  • [22] Bijwe J, Nidhi, Majumdar N, Satapathy BK. Influence of Modified Phenolic Resins on the Fade and Recovery Behavior of Friction Materials. Wear. 2005;259(7–12):1068-1078. https://doi.org/10.1016/j.wear.2005.01.011
  • [23] EL-Tayeb NSM, Liew KW. On the Dry and Wet Sliding Performance of Potentially New Frictional Brake Pad Materials for Automotive Industry. Wear. 2009;266(1–2):275-287. https://doi.org/10.1016/j.wear.2008.07.003
  • [24] Ertan R, Yavuz N. An Experimental Study on the Effects of Manufacturing Parameters on the Tribological Properties of Brake Lining Materials. Wear. 2010;268(11–12):1524–1532. https://doi.org/10.1016/j.wear.2010.02.026
  • [25] Wilairat T, Saechin N, Buggakupta W, Sujaridworakun P. Effects of Hot Molding Parameters on Physical and Mechanical Properties of Brake Pads. Key Engineering Materials. 2019;824:59–66. https://doi.org/10.4028/www.scientific.net/KEM.824.59
  • [26] Aleksendrić D, Senatore A. Optimization of Manufacturing Process Effects on Brake Friction Material Wear. J Compos Mater. 2012;46(22). 10.1177/0021998311432489
  • [27] Çengelci E, Bayrakçeken H. Investigation of the Use of Pumice Stone as Automotive Friction Material. J Mater Mechatronics A. 2023;4(1):50-63. https://doi.org/10.55546/jmm.1202932
  • [28] Ekpruke E, Ossia CV, Big-Alabo A. Recent Progress and Evolution in the Development of Non-Asbestos Based Automotive Brake Pad- A Review. J Manuf Eng. 2022;17(2):51-63. https://doi.org/10.37255/jme.v17i2pp051-063
  • [29] Jayashree P, Matějka V, Leonardi M, Straffelini G. The Influence of the Addition of Different Kinds of Slags on the Friction and Emission Behavior of a Commercially Employed Friction Material Formulation. Wear. 2023;522. https://doi.org/10.1016/j.wear.2023.204705
  • [30] Menapace C, Leonardi M, Matějka V, Gialanella S, Straffelini G. Dry Sliding Behavior and Friction Layer Formation in Copper-Free Barite Containing Friction Materials. Wear. 2018;398–399:191-200. https://doi.org/10.1016/j.wear.2017.12.008
  • [31] Venkatesh S, Murugapoopathiraja K. Scoping Review of Brake Friction Material for Automotive. Materials Today: Proceedings. 2019;16(2):927-933. https://doi.org/10.1016/j.matpr.2019.05.178
  • [32] Nogueira APG, da Silva Gehlen G, Neis PD, Ferreira NF, Gialanella S, Straffelini G. Rice Husk as a Natural Ingredient for Brake Friction Material: A pin-on-disc Investigation. Wear. 2022;494–495. https://doi.org/10.1016/j.wear.2022.204272
  • [33] Li C, Fu Y, Wang B, Zhang W, Bai Y, Zhang L, vd. Effect of Pore Structure on Mechanical and Tribological Properties of Paper-Based Friction Materials. Tribol Int. 2020;148. https://doi.org/10.1016/j.triboint.2020.106307
  • [34] Gehlen GS, Neis PD, Barros LY, Poletto JC, Ferreira NF, Amico SC. Tribological Performance of Eco-Friendly Friction Materials With Rice Husk. Wear. 2022;500–501. https://doi.org/10.1016/j.wear.2022.204374
  • [35] Gehlen GS, Nogueira APG, Carlevaris D, Barros LY, Poletto JC, Lasch G, vd. Tribological Assessment of Rice Husk Ash in Eco-Friendly Brake Friction Materials. Wear. 2023;516–517. https://doi.org/10.1016/j.wear.2022.204613
  • [36] Tavangar R, Moghadam HA, Khavandi A, Banaeifar S. Comparison of Dry Sliding Behavior and Wear Mechanism of Low Metallic and Copper-Free Brake Pads. Tribol Int. 2020;151. https://doi.org/10.1016/j.triboint.2020.106416
  • [37] Österle W, Dmitriev AI. The Role of solid lubricants for Brake Friction Materials. Lubricants. 2016;4(1):5,. https://doi.org/10.3390/lubricants4010005
  • [38] Makni F, Cristol AL, Elleuch R, Desplanques Y. Organic Brake Friction Composite Materials: Impact of Mixing Duration on Microstructure, Properties, Tribological Behavior and Wear Resistance. Polymers (Basel). 2022;14(9):1692. https://doi.org/10.3390/polym14091692
  • [39] Rupiyawet K, Kaewlob K, Sujaridworakun P, Buggakupta W. Optimization of Mixing Conditions on the Physical and Tribological Properties of Brake Pads. Key Engineering Materials. 2019;824:67-72.
  • [40] Sugozu I, Mutlu I, Sugozu KB. The Effect of Ulexite to the Tribological Properties of Brake Lining Materials. Polym Compos. 2018;39(1). https://doi.org/10.1002/pc.23901
  • [41] Sugözü İ, Sugözü B. Friction and Wear Properties of Automobile Brake Linings Containing Borax Powder with Different Grain Sizes. Int J Automot Sci Technol. 2021;5(3):224-227. https://doi.org/10.30939/ijastech..924897
  • [42] Mutlu I, Eldogan O, Findik F. Tribological Properties of Some Phenolic Composites Suggested for Automotive Brakes. Tribol Int. 2006;39(4):317-325. https://doi.org/10.1016/j.triboint.2005.02.002
  • [43] Lee PW, Filip P. Friction and Wear of Cu-free and Sb-free Environmental Friendly Automotive Brake Materials. Wear. 2013;302(1–2). https://doi.org/10.1016/j.wear.2012.12.046
  • [44] Yun R, Filip P, Lu Y. Performance and evaluation of Eco-Friendly Brake Friction Materials. Tribol Int. 2010;43(11). https://doi.org/10.1016/j.triboint.2010.05.001
  • [45] Mutlu I, Sugözü I, Keskin A. The Effects of porosity in Friction Performance of Brake Pad Using Waste Tire Dust. Polimeros. 2015;25(5). https://doi.org/10.1590/0104-1428.1860
Year 2024, Volume: 8 Issue: 2, 167 - 178, 30.06.2024
https://doi.org/10.30939/ijastech..1425382

Abstract

Project Number

21.FEN.BİL.06

References

  • [1] Akbulut F, Mutlu İ. The Effect of Sintering Time on the Tribological Properties of Automotive Brake Pads. Int J Automot Eng Technol. 2023;12(1) :16-21. https://doi.org/10.18245/ijaet.1223599.
  • [2] Sugözü İ, Sugözü B. Investigation of Usage of Milled Pine Cone in Brake Pads. Int J Automot Sci Technol. 2020;4(4): 253 - 257 https://doi.org/10.30939/ijastech..770050
  • [3] Güney B, Mutlu I. Tribological Properties of Brake Discs Coated with Cr2O3-40% TiO2 by Plasma Spraying. Surf Rev Lett. 2019;26(10) https://doi.org/10.1142/S0218625X19500756.
  • [4] Güney B, Öz A. Microstructure and Chemical Analysis of Vehicle Brake Wear Particle Emissions. Eur J Sci Technol. 2020;19: 633-642 https://doi.org/10.31590/ejosat.744098
  • [5] Achebe CH, Obika EN, Chukwuneke JL, Ani OE. Optimisation of Hybridised Cane Wood–Palm Fruit Fibre Frictional Material. Proc Inst Mech Eng Part L J Mater Des Appl. 2019;233(12):2490-2497. https://doi.org/10.1177/1464420719863445.
  • [6] Karaman M, Korucu SA. Modeling the vehicle movement and braking effect of the hydrostatic regenerative braking system. Engineering Perspective. 2023;3(2). https://doi.org/10.5505/pajes.2013.55264
  • [7] Akincioğlu G, Akincioğlu S, Öktem H, Uygur İ. Brake Pad Performance Characteristic Assessment Methods. Int J Automot Sci Technol. 2021;5(1):67-78. https://doi.org/10.30939/ijastech..848266.
  • [8] Yavuz H, Bayrakçeken H. Investigation of Friction and Wear Behavior of Composite Brake Pads Produced with Huntite Mineral. Int J Automot Sci Technol. 2022;6(1):9-16. https://doi.org/10.30939/ijastech..1022247.
  • [9] Yavuz H, Bayrakçeken H. Friction and Wear Response of Automobile Brake Pad Composites Containing Volcanic Tuff. J Aust Ceram Soc. 2023;59(5):1465-1476. https://doi.org/10.1007/s41779-023-00952-1.
  • [10] Sugözü B, Sugözü İ. Investigation of the Use of a New Binder Material in Automotive Brake Pad. Int J Automot Sci Technol. 2020;4(4):258-263. https://doi.org/10.30939/ijastech..772922.
  • [11] Akıncıoğlu G. Evaluation of the Effect of the Novolac Resin Ratio on the High-Temperature Performance of the Brake Pads. Int J Automot Sci Technol. 2022;6(2):196-201. https://doi.org/10.30939/ijastech..1087420.
  • [12] Akbulut F, Kılıç H, Mutlu İ, Öztürk FS, Çaşın E, Seyrek M, vd. Investigation of Tribological Properties of Brake Friction Materials Developed from Industrial Waste Products. Int J Automot Sci Technol. 2023;7(4):309–315. https://doi.org/10.30939/ijastech..1373026.
  • [13] Hendre KN, Bachchhav BD. Friction and Wear Characteristics of Rubber Resin-Bonded Metallic Brake Pad Materials. Int J Eng Adv Technol. 2019;8(6):1312-1316. 10.35940/ijeat.F8514.088619.
  • [14] Akıncıoğlu G, Akıncıoğlu S, Öktem H, Uygur İ. Wear Response of Non-Asbestos Brake Pad Composites Reinforced with Walnut Shell Dust. J Aust Ceram Soc. 2020;56(3) https://doi.org/10.1007/s41779-020-00452-6.
  • [15] Akıncıoğlu G, Uygur İ, Akıncıoğlu S, Öktem H. Friction-wear Performance in Environmentally Friendly Brake Composites: A Comparison of Two Different Test Methods. Polym Compos. 2021;42(9) https://doi.org/10.1002/pc.26162.
  • [16] Singh T. Comparative Performance of Barium Sulphate and Cement by-pass Dust on Tribological Properties of Automotive Brake Friction Composites. Alexandria Eng J. 2023;72: 339-349. https://doi.org/10.1016/j.aej.2023.04.010
  • [17] Ma Y, Shen S, Tong J, Ye W, Yang Y, Zhou J. Effects of Bamboo Fibers on Friction Performance of Friction Materials. J Thermoplast Compos Mater. 2013;26(6):845-859 https://doi.org/10.1177/0892705712461513.
  • [18] Öktem H, Akıncıoğlu S, Uygur İ, Akıncıoğlu G. A Novel Study of Hybrid Brake Pad Composites: New Formulation, Tribological Behaviour and Characterisation of Microstructure. Plast Rubber Compos. 2021;50(5):249-261. https://doi.org/10.1080/14658011.2021.1898881
  • [19] Shinde D, Mistry KN. Asbestos base and Asbestos Free Brake Lining Materials: Comparative Study. Int J Sci World. 2017;5(1):192-198. https://doi.org/10.14419/ijsw.v5i1.7082.
  • [20] Sugözü B, Dağhan B, Akdemir A. Effect of the Size on the friction Characteristics of Brake Friction Materials: A Case Study with Al2O3. Ind Lubr Tribol. 2018;70(6):1020-1024. https://doi.org/10.1108/ILT-02-2017-0035.
  • [21] Hong US, Jung SL, Cho KH, Cho MH, Kim SJ, Jang H. Wear Mechanism of Multiphase Friction Materials With Different Phenolic Resin Matrices. Wear. 2009;266(7–8):739-744. https://doi.org/10.1016/j.wear.2008.08.008
  • [22] Bijwe J, Nidhi, Majumdar N, Satapathy BK. Influence of Modified Phenolic Resins on the Fade and Recovery Behavior of Friction Materials. Wear. 2005;259(7–12):1068-1078. https://doi.org/10.1016/j.wear.2005.01.011
  • [23] EL-Tayeb NSM, Liew KW. On the Dry and Wet Sliding Performance of Potentially New Frictional Brake Pad Materials for Automotive Industry. Wear. 2009;266(1–2):275-287. https://doi.org/10.1016/j.wear.2008.07.003
  • [24] Ertan R, Yavuz N. An Experimental Study on the Effects of Manufacturing Parameters on the Tribological Properties of Brake Lining Materials. Wear. 2010;268(11–12):1524–1532. https://doi.org/10.1016/j.wear.2010.02.026
  • [25] Wilairat T, Saechin N, Buggakupta W, Sujaridworakun P. Effects of Hot Molding Parameters on Physical and Mechanical Properties of Brake Pads. Key Engineering Materials. 2019;824:59–66. https://doi.org/10.4028/www.scientific.net/KEM.824.59
  • [26] Aleksendrić D, Senatore A. Optimization of Manufacturing Process Effects on Brake Friction Material Wear. J Compos Mater. 2012;46(22). 10.1177/0021998311432489
  • [27] Çengelci E, Bayrakçeken H. Investigation of the Use of Pumice Stone as Automotive Friction Material. J Mater Mechatronics A. 2023;4(1):50-63. https://doi.org/10.55546/jmm.1202932
  • [28] Ekpruke E, Ossia CV, Big-Alabo A. Recent Progress and Evolution in the Development of Non-Asbestos Based Automotive Brake Pad- A Review. J Manuf Eng. 2022;17(2):51-63. https://doi.org/10.37255/jme.v17i2pp051-063
  • [29] Jayashree P, Matějka V, Leonardi M, Straffelini G. The Influence of the Addition of Different Kinds of Slags on the Friction and Emission Behavior of a Commercially Employed Friction Material Formulation. Wear. 2023;522. https://doi.org/10.1016/j.wear.2023.204705
  • [30] Menapace C, Leonardi M, Matějka V, Gialanella S, Straffelini G. Dry Sliding Behavior and Friction Layer Formation in Copper-Free Barite Containing Friction Materials. Wear. 2018;398–399:191-200. https://doi.org/10.1016/j.wear.2017.12.008
  • [31] Venkatesh S, Murugapoopathiraja K. Scoping Review of Brake Friction Material for Automotive. Materials Today: Proceedings. 2019;16(2):927-933. https://doi.org/10.1016/j.matpr.2019.05.178
  • [32] Nogueira APG, da Silva Gehlen G, Neis PD, Ferreira NF, Gialanella S, Straffelini G. Rice Husk as a Natural Ingredient for Brake Friction Material: A pin-on-disc Investigation. Wear. 2022;494–495. https://doi.org/10.1016/j.wear.2022.204272
  • [33] Li C, Fu Y, Wang B, Zhang W, Bai Y, Zhang L, vd. Effect of Pore Structure on Mechanical and Tribological Properties of Paper-Based Friction Materials. Tribol Int. 2020;148. https://doi.org/10.1016/j.triboint.2020.106307
  • [34] Gehlen GS, Neis PD, Barros LY, Poletto JC, Ferreira NF, Amico SC. Tribological Performance of Eco-Friendly Friction Materials With Rice Husk. Wear. 2022;500–501. https://doi.org/10.1016/j.wear.2022.204374
  • [35] Gehlen GS, Nogueira APG, Carlevaris D, Barros LY, Poletto JC, Lasch G, vd. Tribological Assessment of Rice Husk Ash in Eco-Friendly Brake Friction Materials. Wear. 2023;516–517. https://doi.org/10.1016/j.wear.2022.204613
  • [36] Tavangar R, Moghadam HA, Khavandi A, Banaeifar S. Comparison of Dry Sliding Behavior and Wear Mechanism of Low Metallic and Copper-Free Brake Pads. Tribol Int. 2020;151. https://doi.org/10.1016/j.triboint.2020.106416
  • [37] Österle W, Dmitriev AI. The Role of solid lubricants for Brake Friction Materials. Lubricants. 2016;4(1):5,. https://doi.org/10.3390/lubricants4010005
  • [38] Makni F, Cristol AL, Elleuch R, Desplanques Y. Organic Brake Friction Composite Materials: Impact of Mixing Duration on Microstructure, Properties, Tribological Behavior and Wear Resistance. Polymers (Basel). 2022;14(9):1692. https://doi.org/10.3390/polym14091692
  • [39] Rupiyawet K, Kaewlob K, Sujaridworakun P, Buggakupta W. Optimization of Mixing Conditions on the Physical and Tribological Properties of Brake Pads. Key Engineering Materials. 2019;824:67-72.
  • [40] Sugozu I, Mutlu I, Sugozu KB. The Effect of Ulexite to the Tribological Properties of Brake Lining Materials. Polym Compos. 2018;39(1). https://doi.org/10.1002/pc.23901
  • [41] Sugözü İ, Sugözü B. Friction and Wear Properties of Automobile Brake Linings Containing Borax Powder with Different Grain Sizes. Int J Automot Sci Technol. 2021;5(3):224-227. https://doi.org/10.30939/ijastech..924897
  • [42] Mutlu I, Eldogan O, Findik F. Tribological Properties of Some Phenolic Composites Suggested for Automotive Brakes. Tribol Int. 2006;39(4):317-325. https://doi.org/10.1016/j.triboint.2005.02.002
  • [43] Lee PW, Filip P. Friction and Wear of Cu-free and Sb-free Environmental Friendly Automotive Brake Materials. Wear. 2013;302(1–2). https://doi.org/10.1016/j.wear.2012.12.046
  • [44] Yun R, Filip P, Lu Y. Performance and evaluation of Eco-Friendly Brake Friction Materials. Tribol Int. 2010;43(11). https://doi.org/10.1016/j.triboint.2010.05.001
  • [45] Mutlu I, Sugözü I, Keskin A. The Effects of porosity in Friction Performance of Brake Pad Using Waste Tire Dust. Polimeros. 2015;25(5). https://doi.org/10.1590/0104-1428.1860
There are 45 citations in total.

Details

Primary Language English
Subjects Automotive Engineering Materials
Journal Section Articles
Authors

Furkan Akbulut 0000-0001-6826-7199

İbrahim Mutlu 0000-0001-5563-1000

Project Number 21.FEN.BİL.06
Publication Date June 30, 2024
Submission Date January 25, 2024
Acceptance Date March 15, 2024
Published in Issue Year 2024 Volume: 8 Issue: 2

Cite

APA Akbulut, F., & Mutlu, İ. (2024). Experimental Comparison of Manufacturing Parameters in Automotive Friction Materials. International Journal of Automotive Science And Technology, 8(2), 167-178. https://doi.org/10.30939/ijastech..1425382
AMA Akbulut F, Mutlu İ. Experimental Comparison of Manufacturing Parameters in Automotive Friction Materials. IJASTECH. June 2024;8(2):167-178. doi:10.30939/ijastech.1425382
Chicago Akbulut, Furkan, and İbrahim Mutlu. “Experimental Comparison of Manufacturing Parameters in Automotive Friction Materials”. International Journal of Automotive Science And Technology 8, no. 2 (June 2024): 167-78. https://doi.org/10.30939/ijastech. 1425382.
EndNote Akbulut F, Mutlu İ (June 1, 2024) Experimental Comparison of Manufacturing Parameters in Automotive Friction Materials. International Journal of Automotive Science And Technology 8 2 167–178.
IEEE F. Akbulut and İ. Mutlu, “Experimental Comparison of Manufacturing Parameters in Automotive Friction Materials”, IJASTECH, vol. 8, no. 2, pp. 167–178, 2024, doi: 10.30939/ijastech..1425382.
ISNAD Akbulut, Furkan - Mutlu, İbrahim. “Experimental Comparison of Manufacturing Parameters in Automotive Friction Materials”. International Journal of Automotive Science And Technology 8/2 (June 2024), 167-178. https://doi.org/10.30939/ijastech. 1425382.
JAMA Akbulut F, Mutlu İ. Experimental Comparison of Manufacturing Parameters in Automotive Friction Materials. IJASTECH. 2024;8:167–178.
MLA Akbulut, Furkan and İbrahim Mutlu. “Experimental Comparison of Manufacturing Parameters in Automotive Friction Materials”. International Journal of Automotive Science And Technology, vol. 8, no. 2, 2024, pp. 167-78, doi:10.30939/ijastech. 1425382.
Vancouver Akbulut F, Mutlu İ. Experimental Comparison of Manufacturing Parameters in Automotive Friction Materials. IJASTECH. 2024;8(2):167-78.


International Journal of Automotive Science and Technology (IJASTECH) is published by Society of Automotive Engineers Turkey

by.png