Research Article
BibTex RIS Cite

Effects of The Exogenous IAA Applıcatıons on Salt Tolerance in Tomato (Solanum lycopersicum L.)

Year 2022, Volume: 8 Issue: 1, 25 - 37, 15.04.2022
https://doi.org/10.24180/ijaws.1033635

Abstract

In this study, the effectiveness of indole-3-acetic acid (IAA) applications in providing salt stress tolerance in tomato was investigated. TOM-141 (tolerant) and TOM-139 (sensitive) genotypes and AG5668 tomato cultivar were used as materials in the study. For stress plants, salt (200 mM NaCl) stress was initiated at 3 true leaf stages. Control plants were irrigated with nutrient solution. In IAA applications, 0.05, 0.25, 0.50, 0.75, 1.00 and 2.00 mM doses were used together with salt stress, and it was applied as a foliar spray once a week. Salt stress caused a decrease in plant growth parameters, YOSI, K and Ca ion concentration, total chlorophyll and carotenoid and total flavonoid content in tomato genotypes; Na and Cl ion concentration, MDA and total phenolic substance content increased. On the other and, in IAA applications with salt stress, on average 8-93% in fresh and dry weight; 7-65% in stem length and diameter; 22-329% in leaf number and area, 18-30% in YOSI values; 12-34% in K content; 9-37% in Ca content; 3-125% in total chlorophyll and carotenoid content; 7-107% improvement was achieved in total phenolic substance and flavonoid content compared to salt stress. This change was determined as 2-73% improvement in salt stress conditions in AG5668 tomato variety, 2-39% in TOM-141 genotype and 3-221% in TOM-139 genotype The decrease in Na, Cl and MDA levels at the genotype level with IAA application was 11-31% in AG5668, 12-21% in TOM141 and 16-35% in TOM 139. As a result of the study, it was determined that IAA applications improved the negativities caused by salt stress at varying rates and were effective in increasing tolerance, and 0.25 mm and 0.50 mM IAA applications came to the fore in terms of this positive effect among the applications.

Project Number

KYO080120L04

References

  • Abd El-Samad, H. M. (2013). The physiological response of wheat plants to exogenous application of gibberellic acid (GA3) or indole-3-acetic acid (IAA) with endogenous ethylene under salt stress conditions. International Journal of Plant Physiology and Biochemistry, 5, 58-64. https://doi.org/10.5897/IJPPB12.016
  • Abdel Latef, A. A. H., Tahjib-Ul-Arif, M., & Rhaman, M. S. (2021). Exogenous auxin- mediated salt stress alleviation in faba bean (Vicia faba L.). Agronomy, 11, 547. https://doi.org/10.3390/agronomy11030547
  • Alam, M., Khan, M. A., Imtiaz, M., Khan, M. A., Naeem, M., Shah, S. A., & Khan, L. (2020). Indole-3-acetic acid rescues plant growth and yield of salinity stressed tomato (Solanum lycopersicum L.). Gesunde Pflanzen, 72, 87-95. https://doi.org/10.1007/s10343-019-00489-z
  • Dasgan, H.Y., & Koc, S. (2009). Evaluation of salt tolerance in common bean genotypes by ion regulation and searching for screening parameters. Journal of Food, Agriculture Environment, 7, 363-372.
  • Dasgan, H.Y., Bayram, M., Kusvuran, S., Coban, G., & Akhoundnejad, Y. (2018). Screening of tomatoes for their resistance to salinity and drought stress. Journal of Biology, Agriculture and Healthcare, 8, 31-37.
  • Eren Guzelgun, B., Ince, E., & Gurer-Orhan, H. (2018). In vitro antioxidant/prooxidant effects of combineduse of flavonoids. Natural Product Research, 32, 1446-1450. https://doi.org/10.1080/14786419.2017.1346637
  • Es-Safi, N. E.,Ghidouche, S., & Ducrot, P.H. (2007). Flavonoids: hemisynthesis, reactivity, characterization and free radical scavenging activity. Molecules, 12, 2228-2258. https://doi.org/10.3390/12092228
  • Husen, A., Iqbal, M., & Aref, I. M. (2016). IAA-induced alteration in growth and photosynthesis of pea plants grown under salt stress Pisum sativum. Journal of Environmental Biology, 37, 421-429.
  • İşlek, C., Koç, E., & Sülün Üstün, A. (2010). Biber (Capsicum annuum L.) tohumlarında bazı bitki büyüme düzenleyicilerinin in vitro çimlenme üzerine etkisi. Balıkesir Üniversitesi Fen Bil. Enst. Dergisi, 12, 42-49.
  • Jovanović, S. V.,Kukavica, B., Vidović, M., Morina, F., & Menckhoff, L. (2018). Class III Peroxidases: functions, localization and redox regulation of isoenzymes. In: D.K. Gupta, J.M. Palma, & F.J. Corpas (Eds.) Antioxidants and antioxidant enzymes in higher plants (pp. 269-300). Springer, Cham.
  • Kaya, C., Tuna, A. L., Dikilitas, M., & Cullu, M. A. (2010). Responses of some enzymes and key growth parameters of salt-stressed maize plants to foliar and seed applications of kinetin and indole acetic acid. Journal of Plant Nutrition, 33, 405-422. https://doi.org/10.1080/01904160903470455
  • Kaya, C., & Okant T.A. (2013) Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turkish Journal Agriculture and Forestry, 34, 529–538. https://doi.org/10.3906/tar-0906-173
  • Khalid, A., & Aftab, F. (2020). Effect of exogenous application of IAA and GA3 on growth, protein content, andantioxidant enzymes of Solanum tuberosum L. grown in vitro under salt stress. In Vitro Cellular & Developmental Biology-Plant, 1-13. https://doi.org/10.1007/s11627-019-10047-x
  • Kumlay, A. M., & Eryiğit, T. (2011). Bitkilerde büyüme ve gelişmesini düzenleyici maddeler: bitki hormonları. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 1, 47-56.
  • Kuşvuran, A., Kiran, S.U., Nazlı, R.I., & Kusvuran S. (2015). Morphological response and ion regulation in maize (Zea mays L.) varieties under salt stress. Fresenius Environmental Bulletin, 24, 124-131.
  • Kusvuran, S., Kıran, S., & Altuntas, O. (2021). Influence of salt stress on different pepper genotypes: Ion homeostasis, antioxidant defense, and secondary metabolites. Global Journal of Botanical Science, 9, 14-20.
  • Liang, W., Ma, X., Wan, P., Liu, L. (2018). Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 495, 286-291. https://doi.org/10.1016/j.bbrc.2017.11.043
  • Molina-Quijada, D. M. A., Medina-Juárez, L. A., González-Aguilar, G. A., Robles-Sánchez, R. M., & Gámez-Meza, N. (2010). Phenolic compounds and antioxidant activity of table grape (Vitis vinifera L.) skin from northwest Mexico. CyTA-Journal of Food, 8, 57-63.
  • Michalak, A. (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies, 15, 523-530.
  • Nielsen, S. S. (2017). Sodium determination using ion-selective electrodes, Mohr titration, and test strips. In S.S. Nielsen (Eds.), Food Analysis Laboratory Manual (pp. 161-170). Springer, Cham.
  • Ünlükara, A., Cemek, B., & Karadavut, S. (2006). Farklı çevre koşulları ile sulama suyu tuzluluğu ilişkilerinin domatesin büyüme, gelişme, verim ve kalitesi üzerindeki etkileri. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi, 23, 15-23.
  • Yang, Y., & Guo, Y. (2018). Elucidating the molecular mechanisms mediating plant salt‐stress responses. New Phytologist, 217, 523-539. https://doi.org/10.1111/nph.14920
  • Yılmaz, E., Tuna, A., & Bürün, B. (2011). Bitkilerin tuz stresi etkilerine karşı geliştirdikleri tolerans stratejileri. Celal Bayar University Journal of Science, 7, 47–66.

Domateste (Solanum lycopersicum L.) Dışsal IAA Uygulamalarının Tuza Tolerans Üzerindeki Etkisi

Year 2022, Volume: 8 Issue: 1, 25 - 37, 15.04.2022
https://doi.org/10.24180/ijaws.1033635

Abstract

Bu çalışmada, domateste tuz stresine toleransın sağlanmasında indole-3-acetic acid (IAA) uygulamalarının etkinliği incelenmiştir. Çalışmada materyal olarak TOM-141 (tolerant) ve TOM-139 (hassas) genotipler ile AG5668 domates çeşidi kullanılmıştır. Stres bitkileri için, 3 gerçek yapraklı aşamada tuz (200 mM NaCl) stresine başlanmıştır. Kontrol bitkileri ise besin çözeltisi ile sulanmıştır. IAA uygulamalarında ise tuz stresi ile birlikte 0.05, 0.25, 0.50, 0.75, 1.00 ve 2.00 mM dozlarına yer verilmiş, haftada bir kez olmak üzere yapraktan spreyleme şeklinde uygulanmıştır. Tuz stresi domates genotiplerinde bitki büyüme parametreleri ile YOSİ, K ve Ca iyon konsantrasyonu, toplam klorofil ve karotenoid ve toplam flavanoid içeriğinde azalmaya neden olmuş; Na ve Cl iyon konsantrasyonu, MDA ve toplam fenolik madde içeriğinde ise artış meydana gelmiştir. Buna karşın, tuz stresi ile birlikte IAA uygulamalarında tuz stresine oranla ortalama olarak yaş ve kuru ağırlıkta %8-93; gövde boyunda ve çapında %7-65; yaprak sayısı ve alanında %22-329, YOSİ değerlerinde %18-30; K içeriğinde %12-34; Ca içeriğinde %9-37; toplam klorofil ve karotenoid içeriğinde %3-125; toplam fenolik madde ve flavanoid içeriğinde %7-107 oranlarında iyileşme sağlanmıştır. Bu değişim AG5668 domates çeşidinde %2-73; TOM-141 genotipinde %2-39 ve TOM-139 genotipinde ise %3-221 düzeyinde tuz stresi koşullarında iyileşme biçiminde kendini göstermiştir. IAA uygulaması ile genotipler düzeyinde Na, Cl ve MDA düzeyinde meydana gelen azalma AG5668’de %11-31, TOM141’de %12-21 ve TOM 139’da %16-35 düzeyinde gerçekleşmiştir. Çalışma sonucunda, IAA uygulamalarının tuz stresinden kaynaklanan olumsuzlukları değişen oranlarda iyileştirdiği ve toleransı artırmada etkili olduğu, uygulamalar arasında bu olumlu etki açısından 0.25 mM ve 0.50 mM IAA uygulamalarının ön plan çıktığı belirlenmiştir.

Supporting Institution

Çankırı Karatekin Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

KYO080120L04

Thanks

Bu çalışma Çankırı Karatekin Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından KYO080120L04 numaralı proje ile desteklenmiştir.

References

  • Abd El-Samad, H. M. (2013). The physiological response of wheat plants to exogenous application of gibberellic acid (GA3) or indole-3-acetic acid (IAA) with endogenous ethylene under salt stress conditions. International Journal of Plant Physiology and Biochemistry, 5, 58-64. https://doi.org/10.5897/IJPPB12.016
  • Abdel Latef, A. A. H., Tahjib-Ul-Arif, M., & Rhaman, M. S. (2021). Exogenous auxin- mediated salt stress alleviation in faba bean (Vicia faba L.). Agronomy, 11, 547. https://doi.org/10.3390/agronomy11030547
  • Alam, M., Khan, M. A., Imtiaz, M., Khan, M. A., Naeem, M., Shah, S. A., & Khan, L. (2020). Indole-3-acetic acid rescues plant growth and yield of salinity stressed tomato (Solanum lycopersicum L.). Gesunde Pflanzen, 72, 87-95. https://doi.org/10.1007/s10343-019-00489-z
  • Dasgan, H.Y., & Koc, S. (2009). Evaluation of salt tolerance in common bean genotypes by ion regulation and searching for screening parameters. Journal of Food, Agriculture Environment, 7, 363-372.
  • Dasgan, H.Y., Bayram, M., Kusvuran, S., Coban, G., & Akhoundnejad, Y. (2018). Screening of tomatoes for their resistance to salinity and drought stress. Journal of Biology, Agriculture and Healthcare, 8, 31-37.
  • Eren Guzelgun, B., Ince, E., & Gurer-Orhan, H. (2018). In vitro antioxidant/prooxidant effects of combineduse of flavonoids. Natural Product Research, 32, 1446-1450. https://doi.org/10.1080/14786419.2017.1346637
  • Es-Safi, N. E.,Ghidouche, S., & Ducrot, P.H. (2007). Flavonoids: hemisynthesis, reactivity, characterization and free radical scavenging activity. Molecules, 12, 2228-2258. https://doi.org/10.3390/12092228
  • Husen, A., Iqbal, M., & Aref, I. M. (2016). IAA-induced alteration in growth and photosynthesis of pea plants grown under salt stress Pisum sativum. Journal of Environmental Biology, 37, 421-429.
  • İşlek, C., Koç, E., & Sülün Üstün, A. (2010). Biber (Capsicum annuum L.) tohumlarında bazı bitki büyüme düzenleyicilerinin in vitro çimlenme üzerine etkisi. Balıkesir Üniversitesi Fen Bil. Enst. Dergisi, 12, 42-49.
  • Jovanović, S. V.,Kukavica, B., Vidović, M., Morina, F., & Menckhoff, L. (2018). Class III Peroxidases: functions, localization and redox regulation of isoenzymes. In: D.K. Gupta, J.M. Palma, & F.J. Corpas (Eds.) Antioxidants and antioxidant enzymes in higher plants (pp. 269-300). Springer, Cham.
  • Kaya, C., Tuna, A. L., Dikilitas, M., & Cullu, M. A. (2010). Responses of some enzymes and key growth parameters of salt-stressed maize plants to foliar and seed applications of kinetin and indole acetic acid. Journal of Plant Nutrition, 33, 405-422. https://doi.org/10.1080/01904160903470455
  • Kaya, C., & Okant T.A. (2013) Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turkish Journal Agriculture and Forestry, 34, 529–538. https://doi.org/10.3906/tar-0906-173
  • Khalid, A., & Aftab, F. (2020). Effect of exogenous application of IAA and GA3 on growth, protein content, andantioxidant enzymes of Solanum tuberosum L. grown in vitro under salt stress. In Vitro Cellular & Developmental Biology-Plant, 1-13. https://doi.org/10.1007/s11627-019-10047-x
  • Kumlay, A. M., & Eryiğit, T. (2011). Bitkilerde büyüme ve gelişmesini düzenleyici maddeler: bitki hormonları. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 1, 47-56.
  • Kuşvuran, A., Kiran, S.U., Nazlı, R.I., & Kusvuran S. (2015). Morphological response and ion regulation in maize (Zea mays L.) varieties under salt stress. Fresenius Environmental Bulletin, 24, 124-131.
  • Kusvuran, S., Kıran, S., & Altuntas, O. (2021). Influence of salt stress on different pepper genotypes: Ion homeostasis, antioxidant defense, and secondary metabolites. Global Journal of Botanical Science, 9, 14-20.
  • Liang, W., Ma, X., Wan, P., Liu, L. (2018). Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 495, 286-291. https://doi.org/10.1016/j.bbrc.2017.11.043
  • Molina-Quijada, D. M. A., Medina-Juárez, L. A., González-Aguilar, G. A., Robles-Sánchez, R. M., & Gámez-Meza, N. (2010). Phenolic compounds and antioxidant activity of table grape (Vitis vinifera L.) skin from northwest Mexico. CyTA-Journal of Food, 8, 57-63.
  • Michalak, A. (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies, 15, 523-530.
  • Nielsen, S. S. (2017). Sodium determination using ion-selective electrodes, Mohr titration, and test strips. In S.S. Nielsen (Eds.), Food Analysis Laboratory Manual (pp. 161-170). Springer, Cham.
  • Ünlükara, A., Cemek, B., & Karadavut, S. (2006). Farklı çevre koşulları ile sulama suyu tuzluluğu ilişkilerinin domatesin büyüme, gelişme, verim ve kalitesi üzerindeki etkileri. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi, 23, 15-23.
  • Yang, Y., & Guo, Y. (2018). Elucidating the molecular mechanisms mediating plant salt‐stress responses. New Phytologist, 217, 523-539. https://doi.org/10.1111/nph.14920
  • Yılmaz, E., Tuna, A., & Bürün, B. (2011). Bitkilerin tuz stresi etkilerine karşı geliştirdikleri tolerans stratejileri. Celal Bayar University Journal of Science, 7, 47–66.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Horticultural Production
Journal Section Horticultural Sciences
Authors

Serpil Havadar 0000-0003-0353-3163

Şebnem Kuşvuran 0000-0002-1270-6962

Hayriye Yıldız Daşgan 0000-0002-0403-1627

Project Number KYO080120L04
Publication Date April 15, 2022
Submission Date December 7, 2021
Acceptance Date February 14, 2022
Published in Issue Year 2022 Volume: 8 Issue: 1

Cite

APA Havadar, S., Kuşvuran, Ş., & Daşgan, H. Y. (2022). Domateste (Solanum lycopersicum L.) Dışsal IAA Uygulamalarının Tuza Tolerans Üzerindeki Etkisi. Uluslararası Tarım Ve Yaban Hayatı Bilimleri Dergisi, 8(1), 25-37. https://doi.org/10.24180/ijaws.1033635

17365       17368       17367        17366      17369     17370