Research Article
BibTex RIS Cite

Çay Artıklarından Elde Edilen Odun Sirkesinin Lahanada Fide Gelişimi ve Besin Maddesi İçeriği Üzerine Etkisi

Year 2024, Volume: 10 Issue: 1, 16 - 22, 29.04.2024
https://doi.org/10.24180/ijaws.1369931

Abstract

Bu çalışmada, çay bitkisi atıklarından elde edilen odun sirkesinin farklı dozlarda yapraktan ve topraktan uygulanarak lahana fidelerinde bitki gelişimi ve mineral madde içeriği üzerine etkisi incelenmiştir. Odun sirkesi (OS) farklı dozlarda (0, 1:25, 1:50, 1:75, 1:100, 1:250 ve 1:500; odun sirkesi/su) hazırlanarak lahana fidelerine iki şekilde (yapraklara püskürtülerek ve topraktan) uygulanmıştır. Uygulamalar birer hafta arayla 3 kez yapılmıştır. Odun sirkesinin yapraktan ve topraktan uygulamaları lahana fidelerinde bitki gelişimini istatistiksel anlamda önemli olarak etkilemiştir. En yüksek gövde çapı, bitki uzunluğu gövde yaş ağırlığı, gövde kuru ağırlığı ve kök kuru ağırlığı yapraktan 1:500 OS uygulamasından elde edilirken en yüksek kök taze ağırlığı yapraktan 1:250 OS uygulamasında tespit edilmiştir. En düşük değerler ise yaprak vetopraktan uygulanan en yüksek OS konsantrasyonundan (1:25) elde edilmiştir. Çalışmada yaprak veya topraktan farklı dozlarda uygulanan OS uygulamalarının lahana fidelerinde N, P, K, Ca, Mg, S, Mn, Fe, Zn, B ve Cu içeriğine etkisinin önemli olduğu ve genellikle bitki besin element içeriğini artırdığı tespit edilmiştir. Sonuç olarak özelikle düşük konsantrasyonda yapraktan veya topraktan OS uygulamaları lahana fidelerinde bitki gelişimini olumlu olarak etkilediği tespit edilmiştir.

References

  • Birol, M., & Günal, E. (2022). Odun Sirkesinin Tarımda Kullanımı. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(1), 596-608. https://doi.org/10.35193/bseufbd.1004736
  • Bremner, J. M. (1996). Nitrogen‐total. Methods of soil analysis: Part 3 Chemical methods, 5, 1085-1121. De Guzman, R. S., & Cababaro, A. C. (2021). Utilization of wood vinegar as nutrient availability enhancer in eggplant (Solanum melongena L.). International Journal of Multidisciplinary: Applied Business and Education Research, 2(6), 485-492. https://doi.org/10.11594/ijmaber.02.06.04
  • Dissatian, A., Sanitchon, J., Pongdontri, P., Jongrungklang, N., & Jothityangkoon, D. (2018). Potential of wood vinegar for enhancing seed germination of three upland rice varieties by suppressing malondialdehyde production. Agrivita Journal of Agricultural Science, 40(2), 371-380. https://doi.org/10.17503/agrivita.v40i2.1332
  • Guo, S., Awasthi, M. K., Wang, Y., & Xu, P. (2021). Current understanding in conversion and application of tea waste biomass: A review. Bioresource Technology, 338, 125530. https://doi.org/10.1016/j.biortech.2021.125530
  • Hussain, S., Anjali, K. P., Hassan, S. T., & Dwivedi, P. B. (2018). Waste tea as a novel adsorbent: a review. Applied Water Science, 8, 1-16. https://doi.org/10.1007/s13201-018-0824-5
  • Idowu, O., Ndede, E. O., Kurebito, S., Tokunari, T., & Jindo, K. (2023). Effect of the Interaction between Wood Vinegar and Biochar Feedstock on Tomato Plants. Journal of Soil Science and Plant Nutrition, 23(2), 1599-1610. https://doi.org/10.1007/s42729-023-01227-1
  • Khan, R. U., Khan, M. Z., Khan, A., Saba, S., Hussain, F., & Jan, I. U. (2018). Effect of humic acid on growth and crop nutrient status of wheat on two different soils. Journal of plant nutrition, 41(4), 453-460. https://doi.org/10.1080/01904167.2017.1385807
  • Lashari, M. S., Liu, Y., Li, L., Pan, W., Fu, J., Pan, G., Zheng, J., Zheng, J., Zhang, X., & Yu, X. (2013). Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain. Field Crops Research, 144, 113-118. https://doi.org/10.1016/j.fcr.2012.11.015
  • Lei, M., Liu, B., & Wang, X. (2018, March). Effect of adding wood vinegar on cucumber (Cucumis sativus L) seed germination. In IOP Conference Series: Earth and Environmental Science, 128 (1), 012186. https://doi.org/10.1088/1755-1315/128/1/012186
  • Liu, L., Guo, X., Wang, S., Li, L., Zeng, Y., & Liu, G. (2018). Effects of wood vinegar on properties and mechanism of heavy metal competitive adsorption on secondary fermentation-based composts. Ecotoxicology and environmental safety, 150, 270-279. https://doi.org/10.1016/j.ecoenv.2017.12.037
  • Luo, X., Wang, Z., Meki, K., Wang, X., Liu, B., Zheng, H., Xiangwei, Y., & Li, F. (2019). Effect of co-application of wood vinegar and biochar on seed germination and seedling growth. Journal of Soils and Sediments, 19, 3934-3944. https://doi.org/10.1007/s11368-019-02365-9
  • Ma, J., Islam, F., Ayyaz, A., Fang, R., Hannan, F., Farooq, M. A., Ali, B., Huang, Q., Sun, R., & Zhou, W. (2022). Wood vinegar induces salinity tolerance by alleviating oxidative damages and protecting photosystem II in rapeseed cultivars. Industrial Crops and Products, 189, 115763. https://doi.org/10.1016/j.indcrop.2022.115763
  • Mirsoleimani, A., Najafi-Ghiri, M., Boostani, H. R., & Farrokhzadeh, S. (2023). Relationships between soil and plant nutrients of citrus rootstocks as influenced by potassium and wood vinegar application. Journal of Soils and Sediments, 23(3), 1439-1450. https://doi.org/10.1007/s11368-022-03408-4
  • Mohd Amnan, M. A., Teo, W. F. A., Aizat, W. M., Khaidizar, F. D., & Tan, B. C. (2023). Foliar application of oil palm wood vinegar enhances Pandanus amaryllifolius tolerance under drought stress. Plants, 12(4), 785. https://doi.org/10.3390/plants12040785
  • Mungkunkamchao, T., Kesmala, T., Pimratch, S., Toomsan, B., & Jothityangkoon, D. (2013). Wood vinegar and fermented bioextracts: Natural products to enhance growth and yield of tomato (Solanum lycopersicum L.). Scientia horticulturae, 154, 66-72. https://doi.org/10.1016/j.scienta.2013.02.020
  • Nardi, S., Schiavon, M., & Francioso, O. (2021). Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules, 26(8), 2256. https://doi.org/10.3390/molecules26082256.
  • Pan, X., Zhang, Y., Wang, X., & Liu, G. (2017). Effect of adding biochar with wood vinegar on the growth of cucumber. In IOP Conference Series: Earth and Environmental Science, 61 (1), p. 012149). IOP Publishing. https://doi.org/10.1088/1755-1315/61/1/012149
  • Sharma, T., Dreyer, I., Kochian, L., & Piñeros, M. A. (2016). The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security. Frontiers in Plant Science, 7, 1488. https://doi.org/10.3389/fpls.2016.01488
  • Theapparat, Y., Chandumpai, A., & Faroongsarng, D. (2018). Physicochemistry and utilization of wood vinegar from carbonization of tropical biomass waste. Tropical Forests-New Edition, 163-183. https://doi.org/10.5772/intechopen.77380
  • Vikram, N., Sagar, A., Gangwar, C., Husain, R., & Kewat, R. N. (2022). Properties of humic acid substances and their effect in soil quality and plant health. In Humus and Humic Substances-Recent Advances. IntechOpen. https://doi.org/10.5772/intechopen.105803
  • Wang, Y., Qiu, L., Song, Q., Wang, S., Wang, Y., & Ge, Y. (2019). Root proteomics reveals the effects of wood vinegar on wheat growth and subsequent tolerance to drought stress. International Journal of Molecular Sciences, 20(4), 943. https://doi.org/10.3390/ijms20040943
  • Win, K. T., Toyota, K., Motobayashi, T., & Hosomi, M. (2009). Suppression of ammonia volatilization from a paddy soil fertilized with anaerobically digested cattle slurry by wood vinegar application and floodwater management. Soil Science and Plant Nutrition, 55(1), 190-202. https://doi.org/10.1111/j.1747-0765.2008.00337.x
  • Yanan, L. (2020, June). Research progress of humic acid fertilizer on the soil. In Journal of Physics: Conference Series, 1549 (2), 022004. IOP Publishing. https://doi.org/10.1088/1742-6596/1549/2/022004
  • Yang, J. F., Yang, C. H., Liang, M. T., Gao, Z. J., Wu, Y. W., & Chuang, L. Y. (2016). Chemical composition, antioxidant, and antibacterial activity of wood vinegar from Litchi chinensis. Molecules, 21(9), 1150. https://doi.org/10.3390/molecules21091150
  • Zhu, K., Gu, S., Liu, J., Luo, T., Khan, Z., Zhang, K., & Hu, L. (2021). Wood vinegar as a complex growth regulator promotes the growth, yield, and quality of rapeseed. Agronomy, 11(3), 510. https://doi.org/10.3390/agronomy11030510

The Effect of Wood Vinegar Obtained from Tea Wastes on Seedling Growth and Nutrient Content in Cabbage

Year 2024, Volume: 10 Issue: 1, 16 - 22, 29.04.2024
https://doi.org/10.24180/ijaws.1369931

Abstract

The purpose of the study was determine to the effect of wood vinegar obtained from tea plant waste on plant growth and mineral content in cabbage seedlings applied to leaves and soil in different doses. Wood vinegar (OS) was prepared in different doses (0, 1:25, 1:50, 1:75, 1:100, 1:250 and 1:500; wood vinegar/water) and applied to cabbage seedlings in two ways (by spraying on the leaves or drench). Applications were made 3 times with one week intervals. Foliar and soil applications of wood vinegar had a statistically significant effect on plant growth in cabbage seedlings. While the highest stem diameter, plant length, stem fresh weight, stem dry weight and root dry weight were obtained from the foliar 1:500 OS application, the highest root fresh weight was determined from the foliar 1:250 OS application. The lowest values were obtained from the highest concentrations (1:25) applied to leaves and soil. In the study, it was determined that the effect of OS applications applied to leaves or soil at different doses on the N, P, K, Ca, Mg, S, Mn, Fe, Zn, B and Cu contents in cabbage seedlings was significant and generally increased the plant nutrient element content. In conclude, it was determined that foliar or soil OS applications, especially at low concentrations, positively affect plant growth in cabbage seedlings.

References

  • Birol, M., & Günal, E. (2022). Odun Sirkesinin Tarımda Kullanımı. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(1), 596-608. https://doi.org/10.35193/bseufbd.1004736
  • Bremner, J. M. (1996). Nitrogen‐total. Methods of soil analysis: Part 3 Chemical methods, 5, 1085-1121. De Guzman, R. S., & Cababaro, A. C. (2021). Utilization of wood vinegar as nutrient availability enhancer in eggplant (Solanum melongena L.). International Journal of Multidisciplinary: Applied Business and Education Research, 2(6), 485-492. https://doi.org/10.11594/ijmaber.02.06.04
  • Dissatian, A., Sanitchon, J., Pongdontri, P., Jongrungklang, N., & Jothityangkoon, D. (2018). Potential of wood vinegar for enhancing seed germination of three upland rice varieties by suppressing malondialdehyde production. Agrivita Journal of Agricultural Science, 40(2), 371-380. https://doi.org/10.17503/agrivita.v40i2.1332
  • Guo, S., Awasthi, M. K., Wang, Y., & Xu, P. (2021). Current understanding in conversion and application of tea waste biomass: A review. Bioresource Technology, 338, 125530. https://doi.org/10.1016/j.biortech.2021.125530
  • Hussain, S., Anjali, K. P., Hassan, S. T., & Dwivedi, P. B. (2018). Waste tea as a novel adsorbent: a review. Applied Water Science, 8, 1-16. https://doi.org/10.1007/s13201-018-0824-5
  • Idowu, O., Ndede, E. O., Kurebito, S., Tokunari, T., & Jindo, K. (2023). Effect of the Interaction between Wood Vinegar and Biochar Feedstock on Tomato Plants. Journal of Soil Science and Plant Nutrition, 23(2), 1599-1610. https://doi.org/10.1007/s42729-023-01227-1
  • Khan, R. U., Khan, M. Z., Khan, A., Saba, S., Hussain, F., & Jan, I. U. (2018). Effect of humic acid on growth and crop nutrient status of wheat on two different soils. Journal of plant nutrition, 41(4), 453-460. https://doi.org/10.1080/01904167.2017.1385807
  • Lashari, M. S., Liu, Y., Li, L., Pan, W., Fu, J., Pan, G., Zheng, J., Zheng, J., Zhang, X., & Yu, X. (2013). Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain. Field Crops Research, 144, 113-118. https://doi.org/10.1016/j.fcr.2012.11.015
  • Lei, M., Liu, B., & Wang, X. (2018, March). Effect of adding wood vinegar on cucumber (Cucumis sativus L) seed germination. In IOP Conference Series: Earth and Environmental Science, 128 (1), 012186. https://doi.org/10.1088/1755-1315/128/1/012186
  • Liu, L., Guo, X., Wang, S., Li, L., Zeng, Y., & Liu, G. (2018). Effects of wood vinegar on properties and mechanism of heavy metal competitive adsorption on secondary fermentation-based composts. Ecotoxicology and environmental safety, 150, 270-279. https://doi.org/10.1016/j.ecoenv.2017.12.037
  • Luo, X., Wang, Z., Meki, K., Wang, X., Liu, B., Zheng, H., Xiangwei, Y., & Li, F. (2019). Effect of co-application of wood vinegar and biochar on seed germination and seedling growth. Journal of Soils and Sediments, 19, 3934-3944. https://doi.org/10.1007/s11368-019-02365-9
  • Ma, J., Islam, F., Ayyaz, A., Fang, R., Hannan, F., Farooq, M. A., Ali, B., Huang, Q., Sun, R., & Zhou, W. (2022). Wood vinegar induces salinity tolerance by alleviating oxidative damages and protecting photosystem II in rapeseed cultivars. Industrial Crops and Products, 189, 115763. https://doi.org/10.1016/j.indcrop.2022.115763
  • Mirsoleimani, A., Najafi-Ghiri, M., Boostani, H. R., & Farrokhzadeh, S. (2023). Relationships between soil and plant nutrients of citrus rootstocks as influenced by potassium and wood vinegar application. Journal of Soils and Sediments, 23(3), 1439-1450. https://doi.org/10.1007/s11368-022-03408-4
  • Mohd Amnan, M. A., Teo, W. F. A., Aizat, W. M., Khaidizar, F. D., & Tan, B. C. (2023). Foliar application of oil palm wood vinegar enhances Pandanus amaryllifolius tolerance under drought stress. Plants, 12(4), 785. https://doi.org/10.3390/plants12040785
  • Mungkunkamchao, T., Kesmala, T., Pimratch, S., Toomsan, B., & Jothityangkoon, D. (2013). Wood vinegar and fermented bioextracts: Natural products to enhance growth and yield of tomato (Solanum lycopersicum L.). Scientia horticulturae, 154, 66-72. https://doi.org/10.1016/j.scienta.2013.02.020
  • Nardi, S., Schiavon, M., & Francioso, O. (2021). Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules, 26(8), 2256. https://doi.org/10.3390/molecules26082256.
  • Pan, X., Zhang, Y., Wang, X., & Liu, G. (2017). Effect of adding biochar with wood vinegar on the growth of cucumber. In IOP Conference Series: Earth and Environmental Science, 61 (1), p. 012149). IOP Publishing. https://doi.org/10.1088/1755-1315/61/1/012149
  • Sharma, T., Dreyer, I., Kochian, L., & Piñeros, M. A. (2016). The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security. Frontiers in Plant Science, 7, 1488. https://doi.org/10.3389/fpls.2016.01488
  • Theapparat, Y., Chandumpai, A., & Faroongsarng, D. (2018). Physicochemistry and utilization of wood vinegar from carbonization of tropical biomass waste. Tropical Forests-New Edition, 163-183. https://doi.org/10.5772/intechopen.77380
  • Vikram, N., Sagar, A., Gangwar, C., Husain, R., & Kewat, R. N. (2022). Properties of humic acid substances and their effect in soil quality and plant health. In Humus and Humic Substances-Recent Advances. IntechOpen. https://doi.org/10.5772/intechopen.105803
  • Wang, Y., Qiu, L., Song, Q., Wang, S., Wang, Y., & Ge, Y. (2019). Root proteomics reveals the effects of wood vinegar on wheat growth and subsequent tolerance to drought stress. International Journal of Molecular Sciences, 20(4), 943. https://doi.org/10.3390/ijms20040943
  • Win, K. T., Toyota, K., Motobayashi, T., & Hosomi, M. (2009). Suppression of ammonia volatilization from a paddy soil fertilized with anaerobically digested cattle slurry by wood vinegar application and floodwater management. Soil Science and Plant Nutrition, 55(1), 190-202. https://doi.org/10.1111/j.1747-0765.2008.00337.x
  • Yanan, L. (2020, June). Research progress of humic acid fertilizer on the soil. In Journal of Physics: Conference Series, 1549 (2), 022004. IOP Publishing. https://doi.org/10.1088/1742-6596/1549/2/022004
  • Yang, J. F., Yang, C. H., Liang, M. T., Gao, Z. J., Wu, Y. W., & Chuang, L. Y. (2016). Chemical composition, antioxidant, and antibacterial activity of wood vinegar from Litchi chinensis. Molecules, 21(9), 1150. https://doi.org/10.3390/molecules21091150
  • Zhu, K., Gu, S., Liu, J., Luo, T., Khan, Z., Zhang, K., & Hu, L. (2021). Wood vinegar as a complex growth regulator promotes the growth, yield, and quality of rapeseed. Agronomy, 11(3), 510. https://doi.org/10.3390/agronomy11030510
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Vegetable Growing and Treatment
Journal Section Horticultural Sciences
Authors

Merve Yüce 0000-0002-0113-7071

Güleray Ağar 0000-0002-8445-5082

Ertan Yıldırım 0000-0003-3369-0645

Early Pub Date April 26, 2024
Publication Date April 29, 2024
Submission Date October 2, 2023
Acceptance Date December 19, 2023
Published in Issue Year 2024 Volume: 10 Issue: 1

Cite

APA Yüce, M., Ağar, G., & Yıldırım, E. (2024). Çay Artıklarından Elde Edilen Odun Sirkesinin Lahanada Fide Gelişimi ve Besin Maddesi İçeriği Üzerine Etkisi. International Journal of Agricultural and Wildlife Sciences, 10(1), 16-22. https://doi.org/10.24180/ijaws.1369931

17365       17368       17367        17366      17369     17370