Research Article
BibTex RIS Cite

Kuraklık ve Tuzluluk Stresinin Defne Bitkisinin (Laurus nobilis L.) Antioksidan Enzimler ve Verim Parametreleri Üzerine Etkileri

Year 2024, Volume: 10 Issue: 3, 406 - 419, 24.12.2024
https://doi.org/10.24180/ijaws.1486972

Abstract

Bitkiler yaşam döngüleri boyunca soğuk, kuraklık, yüksek sıcaklık, tuz ve ağır metaller dahil olmak üzere çeşitli çevresel stres faktörlerine maruz kalırlar. Abiyotik stresler olarak bilinen bu çevresel değişkenler oksidatif strese yol açmakta ve bitkilerde reaktif ve tehlikeli reaktif oksijen türlerinin oluşumunu teşvik etmektedir. Bu çalışmada, Defne bitkisi 2 farklı abiyotik stres koşuluna (tuzluluk (10 dS m-1), kuraklık) maruz bırakılmıştır. Her iki stres koşulunda da klorofil içeriği, stoma iletkenliği ve antioksidan enzim aktiviteleri Glutatyon S-transferaz (GST), glutatyon redüktaz (GR), guaiakol peroksidaz (GPx), askorbat peroksidaz (APx) belirlenmiştir. Klorofil içeriğinin kontrol uygulamasına kıyasla kuraklık ve tuzluluk uygulamaları için sırasıyla %58.53 ve %40.31 oranında azaldığı gözlenmiştir. Buna ek olarak, stoma iletkenliği kuraklık ve tuzluluk uygulamaları için sırasıyla %52.75 ve %35.15 oranında azalmıştır. Bu sonuçlar, defne bitkilerinin klorofil içeriği ve stoma iletkenliğinin kuraklık stresinden tuzluluğa göre daha fazla etkilendiğini göstermektedir. Tüm antioksidan enzimlerin aktivitesi hem kuraklık hem de tuzluluk stresinde azalmıştır. GR ve GPx, kontrol grubuna kıyasla kuraklık uygulamasında sırasıyla %49.29 ve %74.51 oranında önemli ölçüde azalmıştır. Ayrıca, GST ve APx aktivitesi tuzluluk stresinde kontrol grubuna kıyasla sırasıyla %22.01 ve %6.26 oranında azalmıştır. Elde edilen verilere göre, defne bitkisinde GR ve GPx enzim aktiviteleri kuraklık stresinden daha fazla etkilenirken, GST ve APx enzim aktiviteleri tuzluluk stresi altında daha önemli ölçüde azalmıştır.

References

  • Abdelaal, K., Attia, K. A., Niedbała, G., Wojciechowski, T., Hafez, Y., Alamery, S., Alateeq, T. K., & Arafa, S. A. (2021). Mitigation of drought damages by exogenous chitosan and yeast extract with modulating the photosynthetic pigments, antioxidant defense system and improving the productivity of garlic plants. Horticulturae, 7(11), 510. https://doi.org/10.3390/horticulturae7110510
  • Abid, M., Zhang, Y. J., Li, Z., Bai, D. F., Zhong, Y. P., & Fang, J. B. (2020). Effect of Salt stress on growth, physiological and biochemical characters of Four kiwifruit genotypes. Scientia Horticulturae, 271, 109473. https://doi.org/10.1016/j.scienta.2020.109473
  • Acosta-Motos, J. R., Diaz-Vivancos, P., Álvarez, S., Fernández-García, N., Sánchez-Blanco, M. J., & Hernández, J. A. (2015). NaCl-induced physiological and biochemical adaptative mechanisms in the ornamental Myrtus communis L. plants. Journal of Plant Physiology, 183, 41-51. https://doi.org/10.1016/j.jplph.2015.05.005
  • Ahmad, P., Ahanger, M. A., Alyemeni, M. N., Wijaya, L., Egamberdieva, D., Bhardwaj, R., & Ashraf, M. (2017). Zinc application mitigates the adverse effects of nacl stress on mustard [Brassica juncea (L.) czern & coss] through modulating compatible organic solutes, antioxidant enzymes, and flavonoid content. Journal of Plant Interactions, 12(1), 429–437. https://doi.org/10.1080/17429145.2017.1385867
  • Ahmad, P., Alyemeni, M. N., Ahanger, M. A., Wijaya, L., Alam, P., Kumar, A., & Ashraf, M. (2018). Upregulation of antioxidant and glyoxalase systems mitigates nacl stress in Brassica juncea by supplementation of zinc and calcium. Journal of Plant Interactions, 13(1), 151–162. https://doi.org/10.1080/17429145.2018.1441452
  • Alkharabsheh, H. M., Seleiman, M. F., Hewedy, O. A., Battaglia, M. L., Jalal, R. S., Alhammad, B. A., Schillaci, C., Ali, N., & Al-Doss, A. (2021). Field crop responses and management strategies to mitigate soil salinity in modern agriculture: A review. Agronomy, 11(11), 2299. https://doi.org/10.3390/agronomy11112299
  • Al Mahmud, J., Hasanuzzaman, M., Nahar, K., Bhuyan, M. B., & Fujita, M. (2018). Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: Coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Ecotoxicology and Environmental Safety, 147, 990-1001. https://doi.org/10.1016/j.ecoenv.2017.09.045
  • Anzano, A., de Falco, B., Grauso, L., Motti, R., & Lanzotti, V. (2022). Laurel, Laurus nobilis L.: a review of its botany, traditional uses, phytochemistry and pharmacology. Phytochemistry Reviews, 1-51. https://doi.org/10.1007/s11101-021-09791-z
  • Aydemir, B. & Sarı, E. K. (2009). Antioksidanlar ve büyüme faktörleri ile ilişkisi. Kocatepe Veteriner Dergisi, 2, 56-60.
  • Ben Ayed, A., Zanin, G., Aissa, E., & Haouala, F. (2018). Effect of NaCl on growth and mineral nutrient of laurel (Laurus nobilis L.). International Journal of Advances In Agricultural Science and Technology, 5(9), 20-37.
  • Bhusal, N., Han, S. G., & Yoon, T. M. (2019). Impact of drought stress on photosynthetic response, leaf water potential, and stem sap flow in two cultivars of bi-leader apple trees (Malus× domestica Borkh.). Scientia Horticulturae, 246, 535-543. https://doi.org/10.1016/j.scienta.2018.11.021
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254.
  • Cabello, J. V., Lodeyro, A. F., & Zurbriggen, M. D. (2014). Novel perspectives for the engineering of abiotic stress tolerance in plants. Current Opinion in Biotechnology, 26, 62-70. https://doi.org/10.1016/j.copbio.2013.09.011
  • Cakmak, I., Strbac, D., & Marschner, H. (1993). Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds. Journal of Experimental Botany, 44(1), 127-132. https://doi.org/10.1093/jxb/44.1.127
  • Carlberg, I. N. C. E. R., & Mannervik, B. E. N. G. T. (1975). Purification and characterization of the flavoenzyme glutathione reductase from rat liver. Journal of Biological Chemistry, 250(14), 5475-5480. https://doi.org/10.1016/S0021-9258(19)41206-4
  • Che, Y., Yao, T., Wang, H., Wang, Z., Zhang, H., Sun, G., & Zhang, H. (2022). Potassium ion regulates hormone, Ca2+ and H2O2 signal transduction and antioxidant activities to improve salt stress resistance in tobacco. Plant Physiology and Biochemistry, 186, 40–51. https://doi.org/10.1016/J.PLAPHY.2022.06.027
  • Dawood, M. F., Sofy, M. R., Mohamed, H. I., Sofy, A. R., & Abdel-Kader, H. A. (2022). Hydrogen sulfide modulates salinity stress in common bean plants by maintaining osmolytes and regulating nitric oxide levels and antioxidant enzyme expression. Journal of Soil Science and Plant Nutrition, 22(3), 3708-3726. https://doi.org/10.1007/s42729-022-00921-w
  • de Azevedo Neto, A. D., Prisco, J. T., Enéas-Filho, J., de Abreu, C. E. B., & Gomes-Filho, E. (2006). Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany, 56(1), 87-94.
  • De Vega, L., Fernández, R. P., Mateo, M. M., Bustamante, J., Bustamante, A., Herrero, A. M., & Munguira, E. B. (2003). Study of the activity of glutathione-peroxidase, glutathione-transferase, and glutathione-reductase in renal transplants. In Transplantation Proceedings (Vol. 35, No. 4, pp. 1346-1350). Elsevier. https://doi.org/10.1016/S0041-1345(03)00475-5
  • Ding, Y., Tao, Y., & Zhu, C. (2013). Emerging roles of microRNAs in the mediation of drought stress response in plants. Journal of Experimental Botany, 64(11), 3077-3086. https://doi.org/10.1093/jxb/ert164
  • Dixon, D. P., Sellars, J. D., & Edwards, R. (2011). The Arabidopsis phi class glutathione transferase At GSTF2: Binding and regulation by biologically active heterocyclic ligands. Biochemical Journal, 438(1), 63–70. https://doi.org/10.1042/BJ20101884
  • Dobroslavić, E., Repajić, M., Dragović-Uzelac, V., & Elez Garofulić, I. (2022). Isolation of Laurus nobilis leaf polyphenols: A review on current techniques and future perspectives. Foods, 11(2), 235. https://doi.org/10.3390/foods11020235
  • Dündar, Y., & Aslan, R. (1999). Hücre moleküler statüsünün anlaşılması ve fizyolojik önem açısından radikaller, antioksidanlar. İnsizyon Cerrahi Tıp Bilimler Dergisi, 2(2), 134-142.
  • Foyer, C. H., & Noctor, G. (2003). Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiologia Plantarum, 119(3), 355-364. https://doi.org/10.1034/j.1399-3054.2003.00223.x
  • Gong, X., Chao, L., Zhou, M., Hong, M., Luo, L., Wang, L., Ying, W., Cai, J., Songjie, G., & Hong, F. (2011). Oxidative damages of maize seedlings caused by exposure to a combination of potassium deficiency and salt stress. Plant and Soil, 340(1), 443–452. https://doi.org/10.1007/s11104-010-0616-7
  • Gupta, R. K., Patel, A. K., Shah, N., Choudhary, A. K., Jha, U. K., Yadav, U. C., Gupta, P. K. & Pakuwal, U. (2014). Oxidative stress and antioxidants in disease and cancer: a review. Asian Pacific Journal of Cancer Prevention, 15(11), 4405-4409. https://doi.org/10.7314/APJCP.2014.15.11.4405
  • Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249(22), 7130-7139. https://doi.org/10.1016/S0021-9258(19)42083-8
  • Hasanuzzaman, M., Bhuyan, M. B., Anee, T. I., Parvin, K., Nahar, K., Mahmud, J. A., & Fujita, M. (2019). Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 8(9), 384. https://doi.org/10.3390/antiox8090384
  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Bhuyan, M. B., Oku, H., & Fujita, M. (2018). Exogenous nitric oxide pretreatment protects Brassica napus L. seedlings from paraquat toxicity through the modulation of antioxidant defense and glyoxalase systems. Plant Physiology and Biochemistry, 126, 173-186. https://doi.org/10.1016/j.plaphy.2018.02.021
  • Hu, Y., & Schmidhalter, U. (2005). Drought and salinity: a comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science, 168(4), 541-549. https://doi.org/10.1002/jpln.200420516
  • Kiremit, M. S., & Arslan, H. (2018). Response of leek (Allium porrum L.) to different irrigation water levels under rain shelter. Communications in Soil Science and Plant Analysis, 49(1), 99-108. https://doi.org/10.1080/00103624.2017.1421652
  • Kumar, M., Kumar, R., Jain, V., & Jain, S. (2018). Differential behavior of the antioxidant system in response to salinity induced oxidative stress in salt-tolerant and salt-sensitive cultivars of Brassica juncea L. Biocatalysis and agricultural Biotechnology, 13, 12-19. https://doi.org/10.1016/j.bcab.2017.11.003
  • Levitt, J. (1980). Responses of plants to environmental stresses, Vol. 2, 365–488. New York: Acadec Press.
  • Li, L., Gu, W., Li, J., Li, C., Xie, T., Qu, D., Meng, Y., Li, C., & Wei, S. (2018). Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (Zea mays L.) seedlings associated with changes in endogenous polyamines and phytohormones. Plant Physiology and Biochemistry, 129, 35-55. https://doi.org/10.1016/j.plaphy.2018.05.017
  • Machado, R. M. A., & Serralheiro, R. P. (2017). Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 3(2), 30. https://doi.org/10.3390/horticulturae3020030
  • Mekawy, A. M. M., Abdelaziz, M. N., & Ueda, A. (2018). Apigenin pretreatment enhances growth and salinity tolerance of rice seedlings. Plant Physiology and Biochemistry, 130, 94–104. https://doi.org/10.1016/j.plaphy.2018.06.036
  • Mushtaq, Z., Faizan, S., & Gulzar, B. (2020). Salt stress, its impacts on plants and the strategies plants are employing against it: A review. Journal of Applied Biology & Biotechnology, 8, 81-91. https://doi.org/10.7324/JABB.2020.80315
  • Nalina, M., Saroja, S., Chakravarthi, M., Rajkumar, R., Radhakrishnan, B., & Chandrashekara, K. N. (2021). Water deficit-induced oxidative stress and differential response in antioxidant enzymes of tolerant and susceptible tea cultivars under field condition. Acta Physiologiae Plantarum, 43, 1-17. https://doi.org/10.1007/s11738-020-03174-1
  • Nardini, A. (2022). Hard and tough: the coordination between leaf mechanical resistance and drought tolerance. Flora, 288, 152023. https://doi.org/10.1016/j.flora.2022.152023
  • Ordoudi, S. A., Papapostolou, M., Nenadis, N., Mantzouridou, F. T., & Tsimidou, M. Z. (2022). Bay Laurel (Laurus nobilis L.) essential oil as a food preservative source: Chemistry, quality control, activity assessment, and applications to olive industry products. Foods, 11(5), 752. https://doi.org/10.3390/foods11050752
  • Osakabe, Y., Osakabe, K., Shinozaki, K. & Tran, L. S. P. (2014). Response of plants to water stress. Frontiers in Plant Science, 5, 86. https://doi.org/10.3389/fpls.2014.00086
  • Ouyang, W., Struik, P. C., Yin, X., & Yang, J. (2017). Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought. Journal of Experimental Botany, 68(18), 5191-5205. https://doi.org/10.1093/jxb/erx314
  • Önenç, S. S. & Açıkgöz, Z. (2005). Aromatik bitkilerin hayvansal ürünlerde antioksidan etkileri. Hayvansal Üretim, 46(1).
  • Parvin, K., Hasanuzzaman, M., Bhuyan, M. B., Nahar, K., Mohsin, S. M., & Fujita, M. (2019). Comparative physiological and biochemical changes in tomato (Solanum lycopersicum L.) under salt stress and recovery: Role of antioxidant defense and glyoxalase systems. Antioxidants, 8(9), 350. https://doi.org/10.3390/antiox8090350
  • Pham-Huy, L. A., He, H., & Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. International Journal of Biomedical Science: IJBS, 4(2), 89.
  • Ramos, C., Teixeira, B., Batista, I., Matos, O., Serrano, C., Neng, N. R., Nogueira, J. M. F., Nunes, M. L., & Marques, A. (2012). Antioxidant and antibacterial activity of essential oil and extracts of bay laurel Laurus nobilis Linnaeus (Lauraceae) from Portugal. Natural Product Research, 26(6), 518-529. https://doi.org/10.1080/14786419.2010.531478 Razi, K., & Muneer, S. (2021). Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Critical Reviews in Biotechnology, 41(5), 669-691. https://doi.org/10.1080/07388551.2021.1874280
  • Ren, Y., Wang, W., He, J., Zhang, L., Wei, Y., & Yang, M. (2020). Nitric oxide alleviates salt stress in seed germination and early seedling growth of pakchoi (Brassica chinensis L.) by enhancing physiological and biochemical parameters. Ecotoxicology and Environmental Safety, 187, 109785. https://doi.org/10.1016/j.ecoenv.2019.109785
  • Santoyo, S., Lloria, R., Jaime, L., Ibanez, E., Senorans, F. J., & Reglero, G. (2006). Supercritical fluid extraction of antioxidant and antimicrobial compounds from Laurus nobilis L. Chemical and functional characterization. European Food Research and Technology, 222, 565-571. https://doi.org/10.1007/s00217-005-0027-9
  • Schuller, D. J., Ban, N., Van Huystee, R. B., McPherson, A., & Poulos, T. L. (1996). The crystal structure of peanut peroxidase. Structure, 4(3), 311–321. https://doi.org/10.1016/S0969-2126(96)00035-4
  • Shabala, S., & Cuin, T. A. (2008). Potassium transport and plant salt tolerance. Physiologia Plantarum, 133(4), 651-669. https://doi.org/10.1111/j.1399-3054.2007.01008.x
  • Shahbaz, M., & Ashraf, M. (2013). Improving salinity tolerance in cereals. Critical Reviews in Plant Sciences, 32(4), 237-249. https://doi.org/10.1080/07352689.2013.758544
  • Sırıken, B., Yavuz, C., & Güler, A. (2018). Antibacterial Activity of Laurus nobilis: A review of literature. Medical Science and Discovery, 5(11), 374-379. https://doi.org/10.17546/msd.482929
  • Soares, C., Carvalho, M. E., Azevedo, R. A., & Fidalgo, F. (2019). Plants facing oxidative challenges—A little help from the antioxidant networks. Environmental and Experimental Botany, 161, 4-25. https://doi.org/10.1016/j.envexpbot.2018.12.009
  • Şişecioğlu, M., Gülçin, İ., Cankaya, M., Atasever, A., Şehitoğlu, M. H., Kaya, H. B., & Özdemir, H. (2010). Purification and characterization of peroxidase from Turkish black radish (Raphanus sativus L.). Journal of Medicinal Plants Research, 4(12), 1187-1196. https://doi.org/10.5897/JMPR10.071
  • Teiz, L., & Zeiger, K. (1998). Plant Physiology, University of California, Los Angeles Sinauer Associates, Inc., Publisher, 726-735.
  • Ünlükara, A., Kurunç, A., Kesmez, G. D., Yurtseven, E., & Suarez, D. L. (2010). Effects of salinity on eggplant (Solanum melongena L.) growth and evapotranspiration. Irrigation and Drainage: The Journal of the International Commission on Irrigation and Drainage, 59(2), 203-214. https://doi.org/10.1002/ird.453
  • Wang, W. B., Kim, Y. H., Lee, H. S., Kim, K. Y., Deng, X. P., & Kwak, S. S. (2009). Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiology and Biochemistry, 47(7), 570-577. https://doi.org/10.1016/j.plaphy.2009.02.009
  • Wang, X. M., Wang, X. K., Su, Y. B., & Zhang, H. X. (2019). Land pavement depresses photosynthesis in urban trees especially under drought stress. Science of the Total Environment, 653, 120-130. https://doi.org/10.1016/j.scitotenv.2018.10.281
  • Wu, W., Zhang, Q., Ervin, E. H., Yang, Z., & Zhang, X. (2017). Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-epibrassinolide. Frontiers in Plant Science, 8, 1017. https://doi.org/10.3389/fpls.2017.01017
  • Wutipraditkul, N., Wongwean, P., & Buaboocha, T. (2015). Alleviation of salt-induced oxidative stress in rice seedlings by proline and/or glycinebetaine. Biologia Plantarum, 59(3), 547–553. https://doi.org/10.1007/s10535-015-0523-0
  • Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V., & Gómez‐Cadenas, A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 162(1), 2-12. https://doi.org/10.1111/ppl.12540

Effects of Drought and Salinity Stress on Antioxidant Ezymes and Yield Parameters of Laurel Plant (Laurus nobilis L.)

Year 2024, Volume: 10 Issue: 3, 406 - 419, 24.12.2024
https://doi.org/10.24180/ijaws.1486972

Abstract

Plants are exposed to various environmental stressors throughout their life cycle, including cold, drought, high temperature, salt, and heavy metals. These environmental variables, known as abiotic stressors, lead to oxidative stress and promote the formation of reactive and dangerous reactive oxygen species in plants. In this study, laurel plants were exposed to two different abiotic stress conditions (salinity (10 dS m-1), drought). Under both stress conditions, chlorophyll content, stomatal conductance and antioxidant enzyme activities Glutathione S-transferase (GST), glutathione reductase (GR), guaiacol peroxidase (GPx), ascorbate peroxidase (APx) were determined. Chlorophyll content was observed to decrease by 58.53% and 40.31% for drought and salinity treatments, respectively, compared to the control treatment. In addition, stomatal conductance was reduced by 52.75% and 35.15% for drought and salinity treatments, respectively. These results indicate that chlorophyll content and stomatal conductance of laurel plants were more affected by drought stress than salinity. The activity of all antioxidant enzymes decreased in both drought and salinity stress. GR and GPx were significantly reduced by 49.29% and 74.51%, respectively, in drought treatment compared to the control group. In addition, GST and APx activity decreased by 22.01% and 6.26%, respectively, in salinity stress compared to the control group. According to the data obtained, GR and GPx enzyme activities in laurel plants were more affected by drought stress, while GST and APx enzyme activities decreased more significantly under salinity stress.

References

  • Abdelaal, K., Attia, K. A., Niedbała, G., Wojciechowski, T., Hafez, Y., Alamery, S., Alateeq, T. K., & Arafa, S. A. (2021). Mitigation of drought damages by exogenous chitosan and yeast extract with modulating the photosynthetic pigments, antioxidant defense system and improving the productivity of garlic plants. Horticulturae, 7(11), 510. https://doi.org/10.3390/horticulturae7110510
  • Abid, M., Zhang, Y. J., Li, Z., Bai, D. F., Zhong, Y. P., & Fang, J. B. (2020). Effect of Salt stress on growth, physiological and biochemical characters of Four kiwifruit genotypes. Scientia Horticulturae, 271, 109473. https://doi.org/10.1016/j.scienta.2020.109473
  • Acosta-Motos, J. R., Diaz-Vivancos, P., Álvarez, S., Fernández-García, N., Sánchez-Blanco, M. J., & Hernández, J. A. (2015). NaCl-induced physiological and biochemical adaptative mechanisms in the ornamental Myrtus communis L. plants. Journal of Plant Physiology, 183, 41-51. https://doi.org/10.1016/j.jplph.2015.05.005
  • Ahmad, P., Ahanger, M. A., Alyemeni, M. N., Wijaya, L., Egamberdieva, D., Bhardwaj, R., & Ashraf, M. (2017). Zinc application mitigates the adverse effects of nacl stress on mustard [Brassica juncea (L.) czern & coss] through modulating compatible organic solutes, antioxidant enzymes, and flavonoid content. Journal of Plant Interactions, 12(1), 429–437. https://doi.org/10.1080/17429145.2017.1385867
  • Ahmad, P., Alyemeni, M. N., Ahanger, M. A., Wijaya, L., Alam, P., Kumar, A., & Ashraf, M. (2018). Upregulation of antioxidant and glyoxalase systems mitigates nacl stress in Brassica juncea by supplementation of zinc and calcium. Journal of Plant Interactions, 13(1), 151–162. https://doi.org/10.1080/17429145.2018.1441452
  • Alkharabsheh, H. M., Seleiman, M. F., Hewedy, O. A., Battaglia, M. L., Jalal, R. S., Alhammad, B. A., Schillaci, C., Ali, N., & Al-Doss, A. (2021). Field crop responses and management strategies to mitigate soil salinity in modern agriculture: A review. Agronomy, 11(11), 2299. https://doi.org/10.3390/agronomy11112299
  • Al Mahmud, J., Hasanuzzaman, M., Nahar, K., Bhuyan, M. B., & Fujita, M. (2018). Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: Coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Ecotoxicology and Environmental Safety, 147, 990-1001. https://doi.org/10.1016/j.ecoenv.2017.09.045
  • Anzano, A., de Falco, B., Grauso, L., Motti, R., & Lanzotti, V. (2022). Laurel, Laurus nobilis L.: a review of its botany, traditional uses, phytochemistry and pharmacology. Phytochemistry Reviews, 1-51. https://doi.org/10.1007/s11101-021-09791-z
  • Aydemir, B. & Sarı, E. K. (2009). Antioksidanlar ve büyüme faktörleri ile ilişkisi. Kocatepe Veteriner Dergisi, 2, 56-60.
  • Ben Ayed, A., Zanin, G., Aissa, E., & Haouala, F. (2018). Effect of NaCl on growth and mineral nutrient of laurel (Laurus nobilis L.). International Journal of Advances In Agricultural Science and Technology, 5(9), 20-37.
  • Bhusal, N., Han, S. G., & Yoon, T. M. (2019). Impact of drought stress on photosynthetic response, leaf water potential, and stem sap flow in two cultivars of bi-leader apple trees (Malus× domestica Borkh.). Scientia Horticulturae, 246, 535-543. https://doi.org/10.1016/j.scienta.2018.11.021
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254.
  • Cabello, J. V., Lodeyro, A. F., & Zurbriggen, M. D. (2014). Novel perspectives for the engineering of abiotic stress tolerance in plants. Current Opinion in Biotechnology, 26, 62-70. https://doi.org/10.1016/j.copbio.2013.09.011
  • Cakmak, I., Strbac, D., & Marschner, H. (1993). Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds. Journal of Experimental Botany, 44(1), 127-132. https://doi.org/10.1093/jxb/44.1.127
  • Carlberg, I. N. C. E. R., & Mannervik, B. E. N. G. T. (1975). Purification and characterization of the flavoenzyme glutathione reductase from rat liver. Journal of Biological Chemistry, 250(14), 5475-5480. https://doi.org/10.1016/S0021-9258(19)41206-4
  • Che, Y., Yao, T., Wang, H., Wang, Z., Zhang, H., Sun, G., & Zhang, H. (2022). Potassium ion regulates hormone, Ca2+ and H2O2 signal transduction and antioxidant activities to improve salt stress resistance in tobacco. Plant Physiology and Biochemistry, 186, 40–51. https://doi.org/10.1016/J.PLAPHY.2022.06.027
  • Dawood, M. F., Sofy, M. R., Mohamed, H. I., Sofy, A. R., & Abdel-Kader, H. A. (2022). Hydrogen sulfide modulates salinity stress in common bean plants by maintaining osmolytes and regulating nitric oxide levels and antioxidant enzyme expression. Journal of Soil Science and Plant Nutrition, 22(3), 3708-3726. https://doi.org/10.1007/s42729-022-00921-w
  • de Azevedo Neto, A. D., Prisco, J. T., Enéas-Filho, J., de Abreu, C. E. B., & Gomes-Filho, E. (2006). Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany, 56(1), 87-94.
  • De Vega, L., Fernández, R. P., Mateo, M. M., Bustamante, J., Bustamante, A., Herrero, A. M., & Munguira, E. B. (2003). Study of the activity of glutathione-peroxidase, glutathione-transferase, and glutathione-reductase in renal transplants. In Transplantation Proceedings (Vol. 35, No. 4, pp. 1346-1350). Elsevier. https://doi.org/10.1016/S0041-1345(03)00475-5
  • Ding, Y., Tao, Y., & Zhu, C. (2013). Emerging roles of microRNAs in the mediation of drought stress response in plants. Journal of Experimental Botany, 64(11), 3077-3086. https://doi.org/10.1093/jxb/ert164
  • Dixon, D. P., Sellars, J. D., & Edwards, R. (2011). The Arabidopsis phi class glutathione transferase At GSTF2: Binding and regulation by biologically active heterocyclic ligands. Biochemical Journal, 438(1), 63–70. https://doi.org/10.1042/BJ20101884
  • Dobroslavić, E., Repajić, M., Dragović-Uzelac, V., & Elez Garofulić, I. (2022). Isolation of Laurus nobilis leaf polyphenols: A review on current techniques and future perspectives. Foods, 11(2), 235. https://doi.org/10.3390/foods11020235
  • Dündar, Y., & Aslan, R. (1999). Hücre moleküler statüsünün anlaşılması ve fizyolojik önem açısından radikaller, antioksidanlar. İnsizyon Cerrahi Tıp Bilimler Dergisi, 2(2), 134-142.
  • Foyer, C. H., & Noctor, G. (2003). Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiologia Plantarum, 119(3), 355-364. https://doi.org/10.1034/j.1399-3054.2003.00223.x
  • Gong, X., Chao, L., Zhou, M., Hong, M., Luo, L., Wang, L., Ying, W., Cai, J., Songjie, G., & Hong, F. (2011). Oxidative damages of maize seedlings caused by exposure to a combination of potassium deficiency and salt stress. Plant and Soil, 340(1), 443–452. https://doi.org/10.1007/s11104-010-0616-7
  • Gupta, R. K., Patel, A. K., Shah, N., Choudhary, A. K., Jha, U. K., Yadav, U. C., Gupta, P. K. & Pakuwal, U. (2014). Oxidative stress and antioxidants in disease and cancer: a review. Asian Pacific Journal of Cancer Prevention, 15(11), 4405-4409. https://doi.org/10.7314/APJCP.2014.15.11.4405
  • Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249(22), 7130-7139. https://doi.org/10.1016/S0021-9258(19)42083-8
  • Hasanuzzaman, M., Bhuyan, M. B., Anee, T. I., Parvin, K., Nahar, K., Mahmud, J. A., & Fujita, M. (2019). Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 8(9), 384. https://doi.org/10.3390/antiox8090384
  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Bhuyan, M. B., Oku, H., & Fujita, M. (2018). Exogenous nitric oxide pretreatment protects Brassica napus L. seedlings from paraquat toxicity through the modulation of antioxidant defense and glyoxalase systems. Plant Physiology and Biochemistry, 126, 173-186. https://doi.org/10.1016/j.plaphy.2018.02.021
  • Hu, Y., & Schmidhalter, U. (2005). Drought and salinity: a comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science, 168(4), 541-549. https://doi.org/10.1002/jpln.200420516
  • Kiremit, M. S., & Arslan, H. (2018). Response of leek (Allium porrum L.) to different irrigation water levels under rain shelter. Communications in Soil Science and Plant Analysis, 49(1), 99-108. https://doi.org/10.1080/00103624.2017.1421652
  • Kumar, M., Kumar, R., Jain, V., & Jain, S. (2018). Differential behavior of the antioxidant system in response to salinity induced oxidative stress in salt-tolerant and salt-sensitive cultivars of Brassica juncea L. Biocatalysis and agricultural Biotechnology, 13, 12-19. https://doi.org/10.1016/j.bcab.2017.11.003
  • Levitt, J. (1980). Responses of plants to environmental stresses, Vol. 2, 365–488. New York: Acadec Press.
  • Li, L., Gu, W., Li, J., Li, C., Xie, T., Qu, D., Meng, Y., Li, C., & Wei, S. (2018). Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (Zea mays L.) seedlings associated with changes in endogenous polyamines and phytohormones. Plant Physiology and Biochemistry, 129, 35-55. https://doi.org/10.1016/j.plaphy.2018.05.017
  • Machado, R. M. A., & Serralheiro, R. P. (2017). Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 3(2), 30. https://doi.org/10.3390/horticulturae3020030
  • Mekawy, A. M. M., Abdelaziz, M. N., & Ueda, A. (2018). Apigenin pretreatment enhances growth and salinity tolerance of rice seedlings. Plant Physiology and Biochemistry, 130, 94–104. https://doi.org/10.1016/j.plaphy.2018.06.036
  • Mushtaq, Z., Faizan, S., & Gulzar, B. (2020). Salt stress, its impacts on plants and the strategies plants are employing against it: A review. Journal of Applied Biology & Biotechnology, 8, 81-91. https://doi.org/10.7324/JABB.2020.80315
  • Nalina, M., Saroja, S., Chakravarthi, M., Rajkumar, R., Radhakrishnan, B., & Chandrashekara, K. N. (2021). Water deficit-induced oxidative stress and differential response in antioxidant enzymes of tolerant and susceptible tea cultivars under field condition. Acta Physiologiae Plantarum, 43, 1-17. https://doi.org/10.1007/s11738-020-03174-1
  • Nardini, A. (2022). Hard and tough: the coordination between leaf mechanical resistance and drought tolerance. Flora, 288, 152023. https://doi.org/10.1016/j.flora.2022.152023
  • Ordoudi, S. A., Papapostolou, M., Nenadis, N., Mantzouridou, F. T., & Tsimidou, M. Z. (2022). Bay Laurel (Laurus nobilis L.) essential oil as a food preservative source: Chemistry, quality control, activity assessment, and applications to olive industry products. Foods, 11(5), 752. https://doi.org/10.3390/foods11050752
  • Osakabe, Y., Osakabe, K., Shinozaki, K. & Tran, L. S. P. (2014). Response of plants to water stress. Frontiers in Plant Science, 5, 86. https://doi.org/10.3389/fpls.2014.00086
  • Ouyang, W., Struik, P. C., Yin, X., & Yang, J. (2017). Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought. Journal of Experimental Botany, 68(18), 5191-5205. https://doi.org/10.1093/jxb/erx314
  • Önenç, S. S. & Açıkgöz, Z. (2005). Aromatik bitkilerin hayvansal ürünlerde antioksidan etkileri. Hayvansal Üretim, 46(1).
  • Parvin, K., Hasanuzzaman, M., Bhuyan, M. B., Nahar, K., Mohsin, S. M., & Fujita, M. (2019). Comparative physiological and biochemical changes in tomato (Solanum lycopersicum L.) under salt stress and recovery: Role of antioxidant defense and glyoxalase systems. Antioxidants, 8(9), 350. https://doi.org/10.3390/antiox8090350
  • Pham-Huy, L. A., He, H., & Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. International Journal of Biomedical Science: IJBS, 4(2), 89.
  • Ramos, C., Teixeira, B., Batista, I., Matos, O., Serrano, C., Neng, N. R., Nogueira, J. M. F., Nunes, M. L., & Marques, A. (2012). Antioxidant and antibacterial activity of essential oil and extracts of bay laurel Laurus nobilis Linnaeus (Lauraceae) from Portugal. Natural Product Research, 26(6), 518-529. https://doi.org/10.1080/14786419.2010.531478 Razi, K., & Muneer, S. (2021). Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Critical Reviews in Biotechnology, 41(5), 669-691. https://doi.org/10.1080/07388551.2021.1874280
  • Ren, Y., Wang, W., He, J., Zhang, L., Wei, Y., & Yang, M. (2020). Nitric oxide alleviates salt stress in seed germination and early seedling growth of pakchoi (Brassica chinensis L.) by enhancing physiological and biochemical parameters. Ecotoxicology and Environmental Safety, 187, 109785. https://doi.org/10.1016/j.ecoenv.2019.109785
  • Santoyo, S., Lloria, R., Jaime, L., Ibanez, E., Senorans, F. J., & Reglero, G. (2006). Supercritical fluid extraction of antioxidant and antimicrobial compounds from Laurus nobilis L. Chemical and functional characterization. European Food Research and Technology, 222, 565-571. https://doi.org/10.1007/s00217-005-0027-9
  • Schuller, D. J., Ban, N., Van Huystee, R. B., McPherson, A., & Poulos, T. L. (1996). The crystal structure of peanut peroxidase. Structure, 4(3), 311–321. https://doi.org/10.1016/S0969-2126(96)00035-4
  • Shabala, S., & Cuin, T. A. (2008). Potassium transport and plant salt tolerance. Physiologia Plantarum, 133(4), 651-669. https://doi.org/10.1111/j.1399-3054.2007.01008.x
  • Shahbaz, M., & Ashraf, M. (2013). Improving salinity tolerance in cereals. Critical Reviews in Plant Sciences, 32(4), 237-249. https://doi.org/10.1080/07352689.2013.758544
  • Sırıken, B., Yavuz, C., & Güler, A. (2018). Antibacterial Activity of Laurus nobilis: A review of literature. Medical Science and Discovery, 5(11), 374-379. https://doi.org/10.17546/msd.482929
  • Soares, C., Carvalho, M. E., Azevedo, R. A., & Fidalgo, F. (2019). Plants facing oxidative challenges—A little help from the antioxidant networks. Environmental and Experimental Botany, 161, 4-25. https://doi.org/10.1016/j.envexpbot.2018.12.009
  • Şişecioğlu, M., Gülçin, İ., Cankaya, M., Atasever, A., Şehitoğlu, M. H., Kaya, H. B., & Özdemir, H. (2010). Purification and characterization of peroxidase from Turkish black radish (Raphanus sativus L.). Journal of Medicinal Plants Research, 4(12), 1187-1196. https://doi.org/10.5897/JMPR10.071
  • Teiz, L., & Zeiger, K. (1998). Plant Physiology, University of California, Los Angeles Sinauer Associates, Inc., Publisher, 726-735.
  • Ünlükara, A., Kurunç, A., Kesmez, G. D., Yurtseven, E., & Suarez, D. L. (2010). Effects of salinity on eggplant (Solanum melongena L.) growth and evapotranspiration. Irrigation and Drainage: The Journal of the International Commission on Irrigation and Drainage, 59(2), 203-214. https://doi.org/10.1002/ird.453
  • Wang, W. B., Kim, Y. H., Lee, H. S., Kim, K. Y., Deng, X. P., & Kwak, S. S. (2009). Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiology and Biochemistry, 47(7), 570-577. https://doi.org/10.1016/j.plaphy.2009.02.009
  • Wang, X. M., Wang, X. K., Su, Y. B., & Zhang, H. X. (2019). Land pavement depresses photosynthesis in urban trees especially under drought stress. Science of the Total Environment, 653, 120-130. https://doi.org/10.1016/j.scitotenv.2018.10.281
  • Wu, W., Zhang, Q., Ervin, E. H., Yang, Z., & Zhang, X. (2017). Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-epibrassinolide. Frontiers in Plant Science, 8, 1017. https://doi.org/10.3389/fpls.2017.01017
  • Wutipraditkul, N., Wongwean, P., & Buaboocha, T. (2015). Alleviation of salt-induced oxidative stress in rice seedlings by proline and/or glycinebetaine. Biologia Plantarum, 59(3), 547–553. https://doi.org/10.1007/s10535-015-0523-0
  • Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V., & Gómez‐Cadenas, A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 162(1), 2-12. https://doi.org/10.1111/ppl.12540
There are 61 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Agricultural Structural and Irrigation
Authors

Mutlu Yalçın 0000-0002-6662-5236

Deniz Ekinci 0000-0001-7849-4117

Hakan Arslan 0000-0002-9677-6035

Early Pub Date December 21, 2024
Publication Date December 24, 2024
Submission Date May 20, 2024
Acceptance Date October 3, 2024
Published in Issue Year 2024 Volume: 10 Issue: 3

Cite

APA Yalçın, M., Ekinci, D., & Arslan, H. (2024). Effects of Drought and Salinity Stress on Antioxidant Ezymes and Yield Parameters of Laurel Plant (Laurus nobilis L.). Uluslararası Tarım Ve Yaban Hayatı Bilimleri Dergisi, 10(3), 406-419. https://doi.org/10.24180/ijaws.1486972

17365       17368       17367        17366      17369     17370