Research Article
BibTex RIS Cite
Year 2023, Volume: 10 Issue: 1, 42 - 55, 31.03.2023
https://doi.org/10.33200/ijcer.1131928

Abstract

References

  • Arleback, J. B. & Albaraccin L. (2019). The use and potential of fermi problems in the STEM disciplines to support the development of twenty first century competencies. ZDM The International Journal on Mathematics Education, 51(6), 979-990 https://doi.org/10.1007/s11858-019-01075-3
  • Ärleback, J. B., Doerr, H. M., & O’Neil, A. M. (2013). A modeling perspective on interpreting rates of change in context. Mathematical Thinking and Learning, 15(4), 314–336.
  • Artigue, M., Blomhøj, M. (2013). Conceptualizing inquiry-based education in mathematics. ZDM The International Journal on Mathematics Education, 45, 797–810. https://doi.org/10.1007/s11858-013-0506-6
  • Atit, K., Power, J.R., Veurink, N. et al. (2020). Examining the role of spatial skills and mathematics motivation on middle school mathematics achievement. IJ STEM Ed 7, 38. https://doi.org/10.1186/s40594-020-00234-3
  • Bergsten, C. & Frejd, P. (2019). Preparing pre-service mathematics teachers for STEM education: an analysis of lesson proposals. ZDM: The International Journal on Mathematics Education, 51, 941-953. 10.1007/s11858-019-01071-7
  • Berlin, F. D. & White, A. L. (2012). A longitudinal look at attitudes and perceptions related to the integration of mathematics, science, and technology education. School Science and Mathematics, 112 (1).
  • Berry, J., & Houston, K. (1995). Mathematical Modelling. Bristol: J. W. Arrow Smith Ltd.
  • Blum, W., & Leiß, D. (2007). How do students and teachers deal with modeling problems? In C. R. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modeling (ICTMA–12): Education, Engineering and Economics (pp. 222–231). Chichester: Horwood Publishing.
  • Blum, W., Galbraith, P. L., Henn, H. W., & Niss, M. (2007). Preface. In: Modelling and applications in mathematics education: the 14th ICMI study (pp. xi–xiv). New York: Springer.
  • Boaler, J. (2001). Mathematical modeling and new theories of learning. Teaching Mathematics and its Applications, 20(3), 121-128.
  • Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. Zentralblatt für Didaktik der Mathematik, 38 (2), 86-95.
  • Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3-11.
  • Bryan, L. A., Moore, T. J., Johnson, C. C., & Roehrig, G. H (2015). Integrated STEM education. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM Road Map: A Framework for Integrated STEM Education. New York: Routledge.
  • Buyruk, B., & Korkmaz, Ö. (2016). FeTeMM farkındalık ölçeği (FFÖ): Geçerlik ve güvenirlik çalışması. Türk Fen Eğitimi Dergisi, 13(2),61-76.
  • Bybee, R. W. (2010) What is STEM?, Science Education, 329(5995), 996-996.
  • Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. NSTA press.
  • Cakiroglu, E. & Dedebas E. (2018). Matematiksel bakış açısıyla STEM eğitimi Uygulamaları. (Ed: D. Akgündüz). Okul öncesinden üniversiteye kuram ve uygulamada STEM eğitimi. Ankara: Anı Yayıncılık.
  • Ceylan, Ö., & Karahan, E. (2021). STEM odaklı matematik uygulamalarının 11.sınıf öğrencilerinin matematik tutum ve bilgileri üzerine etkisi. Anadolu Journal of Educational Sciences International, 11(2), 660-683. https://doi.org/10.18039/ajesi.793601
  • Chamberlin, S. A., & Moon, S. M. (2006). Model-eliciting Activities: An Introduction to Gifted Education. Journal of Secondary Gifted Education, 17, 37-47.
  • Cho, B., & Lee, J. (2013). The effects of creativity and flow on learning through the STEAM education on elementary school contexts. Paper presented at the International conference of educational technology, Sejong University, South Korea.
  • Cohen, L. (1988). Statistical Power Analysis for the Behavioral Sciences. New york: Academic Press.
  • Corlu, M. S., Capraro, R. M., & Capraro, M. M. (2014). Introducing STEM Education: Implications for educating our teachers for the age of innovation. Education and Science, 39(171), 74–85.
  • Creswell, J. W. (2018). Research design: Qualitative, quantitative, and mixed methods approaches. London: Sage Publications Ltd.
  • Creswell, J. W., & Plano Clark, V. L. (2017). Designing and conducting mixed methods research. London: Sage Publications Ltd.
  • Crouch, R. & Haines, C. (2007). Exemplar models: Expert-novice student behaviors. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling, education, engineering and economics: The ICTMA 12 study (pp. 101–109). Chichester: Horwood Publishing.
  • Çavaş, B., Bulut, Ç., Holbrook, J. ve Rannikmae, M. (2013). Fen eğitimine mühendislik odaklı bir yaklaşım: ENGINEER projesi ve uygulamaları. Fen Bilimleri Öğretimi Dergisi, 1(1), 12-22.
  • Derin, G., & Aydın, E. (2020). Matematik öğretmeni eğitiminde stem matematiksel modelleme birlikteliğinin problem çözme ve modelleme becerilerine etkisi. Boğaziçi Üniversitesi Eğitim Dergisi, STEM Eğitimi, 93-121.
  • Dogan, M. F., Gürbüz, R., Cavus Erdem, Z. & Sahin, S., (2018). STEM eğitimine geçişte bir araç olarak matematiksel modelleme. R. Gürbüz & M. F. Doğan (Ed.), Matematiksel modellemeye disiplinler arası bakış: Bir STEM yaklaşımı. (ss. 43-56). Ankara: Pegem Akademi.
  • Doorman, L. M. & Gravemeijer, K. (2009). Emerging modeling: Discrete graphs to support the understanding of change and velocity. ZDM The International Journal on Mathematics Education, 41,199–211 doi: 10.1007/s11858-008-0130-z
  • Doruk, B. K. (2010). Matematiği günlük yaşama transfer etmede matematiksel modellemenin etkisi (Doktora Tezi). Yükseköğretim Kurulu Ulusal Tez Merkezi'nden edinilmiştir. (Tez No. 265182)
  • Du Plessis, A. E. (2018). The lived experience of out-of-field STEM teachers: A quandary for strategizing quality teaching in STEM?. Research in Science Education, 50, 1465–1499. https://doi.org/10.1007/s11165-018-9740-9.
  • English Lyn D (2009). Promoting interdisciplinarity through mathematical modelling, ZDM The International Journal on Mathematics Education, 41, 161-181.
  • English, L. D. & Watters, J. J. (2004). Mathematical Modeling in the Early School Years. Mathematics Education Research Journal. 16(3), 59-80.
  • English, L. D. (2016). Developing early foundations through modelling with data. In C. Hirsch (Ed.), Annual perspectives in mathematics education: Mathematical modeling and modeling mathematics. Reston, VA: National Council of Teachers of Mathematics.
  • English, L. D., & Mousoulides, N. (2015). Bridging STEM in a real-world problem. Mathematics Teaching in the Middle School, 20(9), 532-539.
  • English, L. D., Hudson, P., & Dawes, L. (2013). Engineering-based problem solving in the middle school: design and construction with simple machines. Journal of Pre-College Engineering Education Research, 3(2), 43-55.
  • Fitzallen, N. (2015). STEM education: What does mathematics have to offer? In M. Marshman, V. Geiger, & A. Bennison (Eds.), Mathematics education in the margins (Proceedings of the 38th annual conference of the Mathematics Education Research Group of Australasia), pp. 237–244. Sunshine Coast: MERGA.
  • García, F. J., Maass, K., & Wake, G. (2010). Theory meets practice: Working pragmatically within different cultures and traditions. In R. Lesh, P. Galbraith, C. Haines & A. Hurford (Eds.), Modelling students’ modelling competencies (pp. 445– 457). New York: Springer
  • Geiger, V. (2019). Using mathematics as evidence supporting critical reasoning and enquiry in primary science classrooms. ZDM The International Journal on Mathematics Education, 51, 929-940. https://doi.org/10.1007/s11858-019-01068-2.
  • George, D., & Mallery, M. (2019). IBM SPSS statistics 26 step by step. New York: Pearson.
  • Gonzalez, H. B. & Kuenzi, J. J. (2012). Science, technology, engineering and mathematics (STEM) education: A Primer. Congressional Research Service. https://www.fas.org/sgp/crs/misc/R42642.pdf.
  • Güder, Y, & Gürbüz, R. (2018). Interdisciplinary Mathematical Modeling Activities as a Transitional Tool for STEM Education: Teacher and Student Opinions Adiyaman University Journal of Educational Sciences, 8, 170-198. DOI: 10.17984/adyuebd.457626
  • Gümüş, E. B. (2019). Ortaokul Öğrencilerinin Stem Eğitimine Yönelik İlgi Ve Görüşlerinin Belirlenmesi, Yayınlanmamış Yüksek Lisans Tezi, Gazi Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara.
  • Hıdıroğlu, Ç. N., & Bukova Güzel, E. (2013). Matematiksel modelleme sürecini açıklayan farklı yaklaşımlar. Bartın Eğitim Fakültesi Dergisi, 2(1), 127-145.
  • Hom, E. J. (2014). What is STEM education? Retrieved from: http://www.livescience.com/43296-whatis-stem-education.html.
  • İncikabı, S. (2020). Matematiksel modelleme etkinliklerinin ilköğretim matematik öğretmen adaylarının matematiksel modelleme yeterliklerine ve öğretim deneyimlerine yansımalarının araştırılması. Yayınlanmamış Doktora Tezi. Kastamonu Üniversitesi, Fen Bilimleri Enstitüsü, Kastamonu.
  • Kaiser, G. (2007). Modelling and modelling competencies in school. Mathematical modelling (ICTMA 12): Education, engineering and economics, 110-119.
  • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education, ZDM, 38(3), 302-310.
  • Kertil, M., & Gurel, C. (2016). Mathematical modeling: A bridge to STEM education. International Journal of Education in Mathematics, Science and Technology, 4(1), 44-55.
  • Kovarik, D. N., Patterson, D. G., Cohen, C. Sanders, E. A., Peterson, K. A., Porter, S. G. & Chowning, J. T. (2013) Bioinformatics education in high school: Implications for promoting science, technology, engineering, and mathematics careers. CBE—Life Sciences Education, 12, 441–459. doi.org/10.1187/cbe.12-11-0193
  • Lesh R., & Caylor B. (2007). Introduction to special issue: Modeling as application versus modeling as a way to create mathematics. International Journal of Computers for Mathematical Learning. 12(3), 173-194.
  • Lesh, R., Hoover M., Hole B., Kelly A. & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In A. Kelly, & R.Lesh, Handbook of Research Design in Mathematics and Science Education (pp. 3-33). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Lesh, R., & Doerr, H.M. (2003). Foundations of models and modeling perspective on mathematics teaching, learning, and problem solving. In R. Lesh & H. M. Doerr (Eds.,), Beyond constructivism: Models and modelling perspectives on mathematics problem solving, learning and teaching (pp. 3-33). NJ. Mahwah, Lawrence Erlbaum Associates.
  • Lesh, R., & Zawojewski, J. (2007). Problem solving and modeling. Second handbook of research on mathematics teaching and learning, 2, 763-804.
  • Maaß, K. (2006). What are modelling competencies? The International Journal on Mathematics Education, 38(2), 113-142.
  • Maass, K., & Engeln, K. (2019). Professional development on connections to the world of work in mathematics and science education. ZDM The International Journal on Mathematics Education, 51(6), 967-978. doi.org/10.1007/s1185 8-019-01047 -7.
  • Maass, K., Geiger, V., Ariza, M. R., & Goos, M. (2019). The role of mathematics in interdisciplinary STEM education. ZDM The International Journal on Mathematics Education, 51(7), 869-884. doi.org/10.1007/s 11858- 019-01100-5.
  • Mason, J. (1988). Modelling: What do we really want pupils to learn? In D. Pimm (Ed.), Mathematics, Teachers and Children. (pp. 201-215). London: Hodder & Stoughton.
  • Mevarech, Z. R., & Kramarski, B. (2003). The effects of metacognitive training versus worked-out examples on students’ mathematical reasoning. British Journal of Educational Psychology, 73, 449–471.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Newbury Park, CA: Sage Publications.
  • Miller, J. (2019). STEM education in the primary years to support mathematical thinking: using coding to identify mathematical structures and patterns. ZDM The International Journal on Mathematics Education, 51(6), 915-927. https://doi.org/10.1007/s11858-019-01096-y
  • MoNE (Ministry of National Education) (2018). Matematik Dersi öğretim programı. Ankara: Milli Egitim Bakanlıgı. Ankara: State Books Directorate Printing House.
  • Morgan, D. L., & Morgan, R. K. (2009). Single-Case Research Methods for The Behavioral and Health Sciences. London: SAGE Publications.
  • National Council of Teachers of Mathematics (NCTM), (2020). Standards for the Preparation of Middle Level Mathematics Teachers. Reston, VA: NCTM.
  • National Council of Teachers of Mathematics (NCTM), (2000). Principles and standards for school mathematics: an overview. National Council of Teachers of Mathematics. Reston: Author.
  • National Science Teaching Association (NSTA), (2011). Quality science education and 21st-century skills: Position statement. Retrieved from https://www.nsta.org/about/positions/21stcentury.aspx.
  • Neuman, W. L., & Robson, K. (2014). Basics of Social Research. Toronto: Pearson Canada.
  • Niss, M., Blum, W., & Galbraith, P. L. (2007). Introduction. In W. Blum, P. Galbraith, H. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 3–32). New York, NY: Springer.
  • Organization fort pense he Economic Co-operation and Development (OECD). (2003). The PISA 2003 assessment framework: mathematics, readings, science and problem solving knowledge and skills. Paris: OECD.
  • Özcan, H., & Koştur, H. (2018). Science teachers' opinions about STEM education. Sakarya University Journal of Education, 8(4), 364-373. DOI: 10.19126/suje.466841
  • Partnership for 21st Century Skills, (2015). Partnership for 21th century learning 2015. https://files.eric.ed.gov/fulltext/ED519462.pdf.
  • Patton, M. Q. (2014). Qualitative Research & Evaluation Methods Integrating Theory and Practice. London: Sage Publications.
  • Quarteroni, A. (2009) Mathematical models in science and engineering. Notices of the American Mathematical Society. 56(1), 10-19.
  • Roehrig, G. H., Moore, T. J., Wang, H. H., & Park, M. S. (2012). Is adding the E enough? Investigating the impact of K-12 engineering standards on the implementation of STEM integration. School Science and Mathematics, 112(1), 31–44.
  • Rozgonjuk, D., Kraav, T., Mikkor, K. et al. (2020). Mathematics anxiety among STEM and social sciences students: the roles of mathematics self-efficacy, and deep and surface approach to learning. IJ STEM Ed 7, 46. https://doi.org/10.1186/s40594-020-00246-z
  • Sagirli, M. Ö. (2010). Türev konusunda matematiksel modelleme yönteminin ortaöğretim öğrencilerinin akademik başarıları ve öz-düzenleme becerilerine etkisi. Atatürk Üniversitesi, Eğitim Bilimleri Enstitüsü, Erzurum.
  • Sandalcı, Y. (2013) Matematiksel Modelleme ile Cebir Öğretiminin Öğrencilerin Akademik Başarılarına ve Matematiği Günlük Yaşamla İlişkilendirmeye Etkisi. Yüksek Lisans Tezi, Recep Tayyip Erdoğan Üniversitesi Sosyal Bilimler Enstitüsü, Rize, 166s.
  • Shahbari, J. A., & Peled, I. (2017). Modelling in primary school: constructing conceptual models and making sense of fractions. International Journal of Science and Mathematics Education, 15(2), 371-391.
  • Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Boston: Pearson.
  • Verschaffel, L., Greer, B., & De Corte, E. (2002). Everyday knowledge and mathematical modeling of school Word problems. In K. P. Gravemeijer, R. Lehrer,H. J. van Oers,& L. Verschaffel (Eds.), Symbolizing, modeling and tool use in mathematics education (pp. 171-195). Dordrecht, The Netherlands: Kluwer Academic Publishers
  • Wagner, T. (2008). The global achievement gap: Why even our best schools don't teach the new survival skills our children need-and what we can do about it. New York: Basic Books.
  • Weber, M. L. (2015). The role of globalization, science, technology, engineering, and mathematics project-based learning, and the national science and technology faır mandate in creatıng 21st-century-ready students ın schools ın Costa Rica, Unıversity Of Southern California, Faculty Of The Usc Rossıer School Of Educatıon, California.
  • Wiedemann, K. T. (2020). Mathematical Modeling of Real-World Problems. https://concord.org/newsletter/2020-fall/mathematical-modeling-real-world-problems/
  • Windschitl, M. (2009). Cultivating 21st century skills in science learners: How systems of teacher preparation and professional development will have to evolve. In National Academies of Science Workshop on 21st Century Skills.
  • Yildirim, B. & Altun, Y. (2015). Investigating the Effect of STEM Education and Engineering Applications on Science Laboratory Lectures. El-Jezeri Journal of Science and Engineering, 2(2), 28-40. https://dergipark.org.tr/tr/download/article-file/56981
  • Yildirim, B., & Türk, C. (2018). Pre-Service Primary School Teachers’ Views about STEM Education: An Applied Study. Trakya University Journal of Education Faculty, 8(2), 195-213. Doi: 10.24315/trkefd.310112
  • Yüksel, N. S., Dost, Ş., Kaya, Y. S., Urhan, S. & Şefik, Ö. (2019). Matemati̇k Eği̇ti̇mi̇nde Modelleme Etki̇nli̇kleri̇. Ankara: Pegem Akademi Yayınları.
  • Zawojewski, J. S., Lesh, R., & English, L. (2003). A models and modeling perspective on the role of small group learning activities. In R. Lesh & H. M. Doerr (Eds.). Beyond constructivism: Models and modeling perspectives on mathematical teaching, learning, and problem solving. Mahweh, NJ: Erlbaum.
  • Zieffler, A. S., & Garfield, J. B. (2009). Modeling the growth of students' covariation reasoning during an introductory statistics course. Statistics Education Research Journal, 8(1), 7-31. https://www.stat.auckland.ac.nz/~iase/serj/SERJ8(1)_Zieffler_Garfield.pdf

The Effect of Mathematical Modeling Activities on Students' Mathematical Modeling Skills in the Context of STEM Education

Year 2023, Volume: 10 Issue: 1, 42 - 55, 31.03.2023
https://doi.org/10.33200/ijcer.1131928

Abstract

This study was conducted to examine the effect of mathematical modeling activities on mathematical modeling skills of secondary school students in the context of STEM education. The study was designed according to the embedded design, one of the mixed research methods. The study group of the research consists of a total of 66 eighth grade students studying in a public school in the central district of a large province in the south of Turkey in the 2020-2021 academic year. While the criterion sampling method, one of the purposeful sampling methods, was used to determine the quantitative study group of the research, the maximum variation sampling method was used to determine the qualitative study group. On the other hand, in the context of STEM education, mathematical modeling problems, evaluation rubric and semi-structured interview form were used as data collection tools in the research. As a result of the research; It was concluded that mathematical modeling activities in the context of STEM education positively improved the mathematical modeling skills of secondary school students. In addition, it has been concluded that the students who receive education with mathematical modeling activities applied in the context of STEM education gain different interdisciplinary perspectives, experience positive developments in their thinking skills, adapt to group work more easily, and increase their interest in engineering and technology.

References

  • Arleback, J. B. & Albaraccin L. (2019). The use and potential of fermi problems in the STEM disciplines to support the development of twenty first century competencies. ZDM The International Journal on Mathematics Education, 51(6), 979-990 https://doi.org/10.1007/s11858-019-01075-3
  • Ärleback, J. B., Doerr, H. M., & O’Neil, A. M. (2013). A modeling perspective on interpreting rates of change in context. Mathematical Thinking and Learning, 15(4), 314–336.
  • Artigue, M., Blomhøj, M. (2013). Conceptualizing inquiry-based education in mathematics. ZDM The International Journal on Mathematics Education, 45, 797–810. https://doi.org/10.1007/s11858-013-0506-6
  • Atit, K., Power, J.R., Veurink, N. et al. (2020). Examining the role of spatial skills and mathematics motivation on middle school mathematics achievement. IJ STEM Ed 7, 38. https://doi.org/10.1186/s40594-020-00234-3
  • Bergsten, C. & Frejd, P. (2019). Preparing pre-service mathematics teachers for STEM education: an analysis of lesson proposals. ZDM: The International Journal on Mathematics Education, 51, 941-953. 10.1007/s11858-019-01071-7
  • Berlin, F. D. & White, A. L. (2012). A longitudinal look at attitudes and perceptions related to the integration of mathematics, science, and technology education. School Science and Mathematics, 112 (1).
  • Berry, J., & Houston, K. (1995). Mathematical Modelling. Bristol: J. W. Arrow Smith Ltd.
  • Blum, W., & Leiß, D. (2007). How do students and teachers deal with modeling problems? In C. R. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modeling (ICTMA–12): Education, Engineering and Economics (pp. 222–231). Chichester: Horwood Publishing.
  • Blum, W., Galbraith, P. L., Henn, H. W., & Niss, M. (2007). Preface. In: Modelling and applications in mathematics education: the 14th ICMI study (pp. xi–xiv). New York: Springer.
  • Boaler, J. (2001). Mathematical modeling and new theories of learning. Teaching Mathematics and its Applications, 20(3), 121-128.
  • Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. Zentralblatt für Didaktik der Mathematik, 38 (2), 86-95.
  • Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3-11.
  • Bryan, L. A., Moore, T. J., Johnson, C. C., & Roehrig, G. H (2015). Integrated STEM education. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM Road Map: A Framework for Integrated STEM Education. New York: Routledge.
  • Buyruk, B., & Korkmaz, Ö. (2016). FeTeMM farkındalık ölçeği (FFÖ): Geçerlik ve güvenirlik çalışması. Türk Fen Eğitimi Dergisi, 13(2),61-76.
  • Bybee, R. W. (2010) What is STEM?, Science Education, 329(5995), 996-996.
  • Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. NSTA press.
  • Cakiroglu, E. & Dedebas E. (2018). Matematiksel bakış açısıyla STEM eğitimi Uygulamaları. (Ed: D. Akgündüz). Okul öncesinden üniversiteye kuram ve uygulamada STEM eğitimi. Ankara: Anı Yayıncılık.
  • Ceylan, Ö., & Karahan, E. (2021). STEM odaklı matematik uygulamalarının 11.sınıf öğrencilerinin matematik tutum ve bilgileri üzerine etkisi. Anadolu Journal of Educational Sciences International, 11(2), 660-683. https://doi.org/10.18039/ajesi.793601
  • Chamberlin, S. A., & Moon, S. M. (2006). Model-eliciting Activities: An Introduction to Gifted Education. Journal of Secondary Gifted Education, 17, 37-47.
  • Cho, B., & Lee, J. (2013). The effects of creativity and flow on learning through the STEAM education on elementary school contexts. Paper presented at the International conference of educational technology, Sejong University, South Korea.
  • Cohen, L. (1988). Statistical Power Analysis for the Behavioral Sciences. New york: Academic Press.
  • Corlu, M. S., Capraro, R. M., & Capraro, M. M. (2014). Introducing STEM Education: Implications for educating our teachers for the age of innovation. Education and Science, 39(171), 74–85.
  • Creswell, J. W. (2018). Research design: Qualitative, quantitative, and mixed methods approaches. London: Sage Publications Ltd.
  • Creswell, J. W., & Plano Clark, V. L. (2017). Designing and conducting mixed methods research. London: Sage Publications Ltd.
  • Crouch, R. & Haines, C. (2007). Exemplar models: Expert-novice student behaviors. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling, education, engineering and economics: The ICTMA 12 study (pp. 101–109). Chichester: Horwood Publishing.
  • Çavaş, B., Bulut, Ç., Holbrook, J. ve Rannikmae, M. (2013). Fen eğitimine mühendislik odaklı bir yaklaşım: ENGINEER projesi ve uygulamaları. Fen Bilimleri Öğretimi Dergisi, 1(1), 12-22.
  • Derin, G., & Aydın, E. (2020). Matematik öğretmeni eğitiminde stem matematiksel modelleme birlikteliğinin problem çözme ve modelleme becerilerine etkisi. Boğaziçi Üniversitesi Eğitim Dergisi, STEM Eğitimi, 93-121.
  • Dogan, M. F., Gürbüz, R., Cavus Erdem, Z. & Sahin, S., (2018). STEM eğitimine geçişte bir araç olarak matematiksel modelleme. R. Gürbüz & M. F. Doğan (Ed.), Matematiksel modellemeye disiplinler arası bakış: Bir STEM yaklaşımı. (ss. 43-56). Ankara: Pegem Akademi.
  • Doorman, L. M. & Gravemeijer, K. (2009). Emerging modeling: Discrete graphs to support the understanding of change and velocity. ZDM The International Journal on Mathematics Education, 41,199–211 doi: 10.1007/s11858-008-0130-z
  • Doruk, B. K. (2010). Matematiği günlük yaşama transfer etmede matematiksel modellemenin etkisi (Doktora Tezi). Yükseköğretim Kurulu Ulusal Tez Merkezi'nden edinilmiştir. (Tez No. 265182)
  • Du Plessis, A. E. (2018). The lived experience of out-of-field STEM teachers: A quandary for strategizing quality teaching in STEM?. Research in Science Education, 50, 1465–1499. https://doi.org/10.1007/s11165-018-9740-9.
  • English Lyn D (2009). Promoting interdisciplinarity through mathematical modelling, ZDM The International Journal on Mathematics Education, 41, 161-181.
  • English, L. D. & Watters, J. J. (2004). Mathematical Modeling in the Early School Years. Mathematics Education Research Journal. 16(3), 59-80.
  • English, L. D. (2016). Developing early foundations through modelling with data. In C. Hirsch (Ed.), Annual perspectives in mathematics education: Mathematical modeling and modeling mathematics. Reston, VA: National Council of Teachers of Mathematics.
  • English, L. D., & Mousoulides, N. (2015). Bridging STEM in a real-world problem. Mathematics Teaching in the Middle School, 20(9), 532-539.
  • English, L. D., Hudson, P., & Dawes, L. (2013). Engineering-based problem solving in the middle school: design and construction with simple machines. Journal of Pre-College Engineering Education Research, 3(2), 43-55.
  • Fitzallen, N. (2015). STEM education: What does mathematics have to offer? In M. Marshman, V. Geiger, & A. Bennison (Eds.), Mathematics education in the margins (Proceedings of the 38th annual conference of the Mathematics Education Research Group of Australasia), pp. 237–244. Sunshine Coast: MERGA.
  • García, F. J., Maass, K., & Wake, G. (2010). Theory meets practice: Working pragmatically within different cultures and traditions. In R. Lesh, P. Galbraith, C. Haines & A. Hurford (Eds.), Modelling students’ modelling competencies (pp. 445– 457). New York: Springer
  • Geiger, V. (2019). Using mathematics as evidence supporting critical reasoning and enquiry in primary science classrooms. ZDM The International Journal on Mathematics Education, 51, 929-940. https://doi.org/10.1007/s11858-019-01068-2.
  • George, D., & Mallery, M. (2019). IBM SPSS statistics 26 step by step. New York: Pearson.
  • Gonzalez, H. B. & Kuenzi, J. J. (2012). Science, technology, engineering and mathematics (STEM) education: A Primer. Congressional Research Service. https://www.fas.org/sgp/crs/misc/R42642.pdf.
  • Güder, Y, & Gürbüz, R. (2018). Interdisciplinary Mathematical Modeling Activities as a Transitional Tool for STEM Education: Teacher and Student Opinions Adiyaman University Journal of Educational Sciences, 8, 170-198. DOI: 10.17984/adyuebd.457626
  • Gümüş, E. B. (2019). Ortaokul Öğrencilerinin Stem Eğitimine Yönelik İlgi Ve Görüşlerinin Belirlenmesi, Yayınlanmamış Yüksek Lisans Tezi, Gazi Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara.
  • Hıdıroğlu, Ç. N., & Bukova Güzel, E. (2013). Matematiksel modelleme sürecini açıklayan farklı yaklaşımlar. Bartın Eğitim Fakültesi Dergisi, 2(1), 127-145.
  • Hom, E. J. (2014). What is STEM education? Retrieved from: http://www.livescience.com/43296-whatis-stem-education.html.
  • İncikabı, S. (2020). Matematiksel modelleme etkinliklerinin ilköğretim matematik öğretmen adaylarının matematiksel modelleme yeterliklerine ve öğretim deneyimlerine yansımalarının araştırılması. Yayınlanmamış Doktora Tezi. Kastamonu Üniversitesi, Fen Bilimleri Enstitüsü, Kastamonu.
  • Kaiser, G. (2007). Modelling and modelling competencies in school. Mathematical modelling (ICTMA 12): Education, engineering and economics, 110-119.
  • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education, ZDM, 38(3), 302-310.
  • Kertil, M., & Gurel, C. (2016). Mathematical modeling: A bridge to STEM education. International Journal of Education in Mathematics, Science and Technology, 4(1), 44-55.
  • Kovarik, D. N., Patterson, D. G., Cohen, C. Sanders, E. A., Peterson, K. A., Porter, S. G. & Chowning, J. T. (2013) Bioinformatics education in high school: Implications for promoting science, technology, engineering, and mathematics careers. CBE—Life Sciences Education, 12, 441–459. doi.org/10.1187/cbe.12-11-0193
  • Lesh R., & Caylor B. (2007). Introduction to special issue: Modeling as application versus modeling as a way to create mathematics. International Journal of Computers for Mathematical Learning. 12(3), 173-194.
  • Lesh, R., Hoover M., Hole B., Kelly A. & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In A. Kelly, & R.Lesh, Handbook of Research Design in Mathematics and Science Education (pp. 3-33). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Lesh, R., & Doerr, H.M. (2003). Foundations of models and modeling perspective on mathematics teaching, learning, and problem solving. In R. Lesh & H. M. Doerr (Eds.,), Beyond constructivism: Models and modelling perspectives on mathematics problem solving, learning and teaching (pp. 3-33). NJ. Mahwah, Lawrence Erlbaum Associates.
  • Lesh, R., & Zawojewski, J. (2007). Problem solving and modeling. Second handbook of research on mathematics teaching and learning, 2, 763-804.
  • Maaß, K. (2006). What are modelling competencies? The International Journal on Mathematics Education, 38(2), 113-142.
  • Maass, K., & Engeln, K. (2019). Professional development on connections to the world of work in mathematics and science education. ZDM The International Journal on Mathematics Education, 51(6), 967-978. doi.org/10.1007/s1185 8-019-01047 -7.
  • Maass, K., Geiger, V., Ariza, M. R., & Goos, M. (2019). The role of mathematics in interdisciplinary STEM education. ZDM The International Journal on Mathematics Education, 51(7), 869-884. doi.org/10.1007/s 11858- 019-01100-5.
  • Mason, J. (1988). Modelling: What do we really want pupils to learn? In D. Pimm (Ed.), Mathematics, Teachers and Children. (pp. 201-215). London: Hodder & Stoughton.
  • Mevarech, Z. R., & Kramarski, B. (2003). The effects of metacognitive training versus worked-out examples on students’ mathematical reasoning. British Journal of Educational Psychology, 73, 449–471.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Newbury Park, CA: Sage Publications.
  • Miller, J. (2019). STEM education in the primary years to support mathematical thinking: using coding to identify mathematical structures and patterns. ZDM The International Journal on Mathematics Education, 51(6), 915-927. https://doi.org/10.1007/s11858-019-01096-y
  • MoNE (Ministry of National Education) (2018). Matematik Dersi öğretim programı. Ankara: Milli Egitim Bakanlıgı. Ankara: State Books Directorate Printing House.
  • Morgan, D. L., & Morgan, R. K. (2009). Single-Case Research Methods for The Behavioral and Health Sciences. London: SAGE Publications.
  • National Council of Teachers of Mathematics (NCTM), (2020). Standards for the Preparation of Middle Level Mathematics Teachers. Reston, VA: NCTM.
  • National Council of Teachers of Mathematics (NCTM), (2000). Principles and standards for school mathematics: an overview. National Council of Teachers of Mathematics. Reston: Author.
  • National Science Teaching Association (NSTA), (2011). Quality science education and 21st-century skills: Position statement. Retrieved from https://www.nsta.org/about/positions/21stcentury.aspx.
  • Neuman, W. L., & Robson, K. (2014). Basics of Social Research. Toronto: Pearson Canada.
  • Niss, M., Blum, W., & Galbraith, P. L. (2007). Introduction. In W. Blum, P. Galbraith, H. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 3–32). New York, NY: Springer.
  • Organization fort pense he Economic Co-operation and Development (OECD). (2003). The PISA 2003 assessment framework: mathematics, readings, science and problem solving knowledge and skills. Paris: OECD.
  • Özcan, H., & Koştur, H. (2018). Science teachers' opinions about STEM education. Sakarya University Journal of Education, 8(4), 364-373. DOI: 10.19126/suje.466841
  • Partnership for 21st Century Skills, (2015). Partnership for 21th century learning 2015. https://files.eric.ed.gov/fulltext/ED519462.pdf.
  • Patton, M. Q. (2014). Qualitative Research & Evaluation Methods Integrating Theory and Practice. London: Sage Publications.
  • Quarteroni, A. (2009) Mathematical models in science and engineering. Notices of the American Mathematical Society. 56(1), 10-19.
  • Roehrig, G. H., Moore, T. J., Wang, H. H., & Park, M. S. (2012). Is adding the E enough? Investigating the impact of K-12 engineering standards on the implementation of STEM integration. School Science and Mathematics, 112(1), 31–44.
  • Rozgonjuk, D., Kraav, T., Mikkor, K. et al. (2020). Mathematics anxiety among STEM and social sciences students: the roles of mathematics self-efficacy, and deep and surface approach to learning. IJ STEM Ed 7, 46. https://doi.org/10.1186/s40594-020-00246-z
  • Sagirli, M. Ö. (2010). Türev konusunda matematiksel modelleme yönteminin ortaöğretim öğrencilerinin akademik başarıları ve öz-düzenleme becerilerine etkisi. Atatürk Üniversitesi, Eğitim Bilimleri Enstitüsü, Erzurum.
  • Sandalcı, Y. (2013) Matematiksel Modelleme ile Cebir Öğretiminin Öğrencilerin Akademik Başarılarına ve Matematiği Günlük Yaşamla İlişkilendirmeye Etkisi. Yüksek Lisans Tezi, Recep Tayyip Erdoğan Üniversitesi Sosyal Bilimler Enstitüsü, Rize, 166s.
  • Shahbari, J. A., & Peled, I. (2017). Modelling in primary school: constructing conceptual models and making sense of fractions. International Journal of Science and Mathematics Education, 15(2), 371-391.
  • Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Boston: Pearson.
  • Verschaffel, L., Greer, B., & De Corte, E. (2002). Everyday knowledge and mathematical modeling of school Word problems. In K. P. Gravemeijer, R. Lehrer,H. J. van Oers,& L. Verschaffel (Eds.), Symbolizing, modeling and tool use in mathematics education (pp. 171-195). Dordrecht, The Netherlands: Kluwer Academic Publishers
  • Wagner, T. (2008). The global achievement gap: Why even our best schools don't teach the new survival skills our children need-and what we can do about it. New York: Basic Books.
  • Weber, M. L. (2015). The role of globalization, science, technology, engineering, and mathematics project-based learning, and the national science and technology faır mandate in creatıng 21st-century-ready students ın schools ın Costa Rica, Unıversity Of Southern California, Faculty Of The Usc Rossıer School Of Educatıon, California.
  • Wiedemann, K. T. (2020). Mathematical Modeling of Real-World Problems. https://concord.org/newsletter/2020-fall/mathematical-modeling-real-world-problems/
  • Windschitl, M. (2009). Cultivating 21st century skills in science learners: How systems of teacher preparation and professional development will have to evolve. In National Academies of Science Workshop on 21st Century Skills.
  • Yildirim, B. & Altun, Y. (2015). Investigating the Effect of STEM Education and Engineering Applications on Science Laboratory Lectures. El-Jezeri Journal of Science and Engineering, 2(2), 28-40. https://dergipark.org.tr/tr/download/article-file/56981
  • Yildirim, B., & Türk, C. (2018). Pre-Service Primary School Teachers’ Views about STEM Education: An Applied Study. Trakya University Journal of Education Faculty, 8(2), 195-213. Doi: 10.24315/trkefd.310112
  • Yüksel, N. S., Dost, Ş., Kaya, Y. S., Urhan, S. & Şefik, Ö. (2019). Matemati̇k Eği̇ti̇mi̇nde Modelleme Etki̇nli̇kleri̇. Ankara: Pegem Akademi Yayınları.
  • Zawojewski, J. S., Lesh, R., & English, L. (2003). A models and modeling perspective on the role of small group learning activities. In R. Lesh & H. M. Doerr (Eds.). Beyond constructivism: Models and modeling perspectives on mathematical teaching, learning, and problem solving. Mahweh, NJ: Erlbaum.
  • Zieffler, A. S., & Garfield, J. B. (2009). Modeling the growth of students' covariation reasoning during an introductory statistics course. Statistics Education Research Journal, 8(1), 7-31. https://www.stat.auckland.ac.nz/~iase/serj/SERJ8(1)_Zieffler_Garfield.pdf
There are 89 citations in total.

Details

Primary Language English
Subjects Studies on Education
Journal Section Articles
Authors

Yaprak Armutcu 0000-0002-5582-0941

Ayten Pınar Bal 0000-0003-1695-9876

Early Pub Date March 31, 2023
Publication Date March 31, 2023
Published in Issue Year 2023 Volume: 10 Issue: 1

Cite

APA Armutcu, Y., & Bal, A. P. (2023). The Effect of Mathematical Modeling Activities on Students’ Mathematical Modeling Skills in the Context of STEM Education. International Journal of Contemporary Educational Research, 10(1), 42-55. https://doi.org/10.33200/ijcer.1131928

133171332113318  2351823524 13319 13327 13323  13322


13325

Bu eser Creative Commons Atıf-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

IJCER (International Journal of Contemporary Educational Research) ISSN: 2148-3868