A Conceptual Framework for Biothermal variations in Municipal Solid Waste landfill under Mesophilic Temperature Regime
Year 2020,
Volume: 6 Issue: 3, 152 - 164, 30.11.2020
Aniekan Ikpe
,
Akanu-ıbiam Ndon
Promise Etim
Abstract
Conversion of organic fraction of Municipal Solid Waste (MSW) into energy involves a complex biological and thermal reactions. This study presents a conceptual framework for biothermal variations in MSW landfill based on computational modelling. Mesophilic temperature range (291-321 K) was modelled using SOLIDWORKS simulation module based on steady state thermal analysis, and the biothermal variations obtained were graphically presented in the study. The rate of heat generation in the landfill model varied in the range of 0.111-0.784 W/m3 at initial temperature distribution of 291 K to the range of 2.216-2.837 W/m3 at a terminal temperature distribution of 321 K. The landfill gas temperature varied in the range of 297-306 K at initial landfill temperature of 291 K to the range of 313-324 K at a terminal landfill temperature of 321 K. The aforementioned biothermal landfill variations revealed that, heat is a function of temperature upon which biogas evolve during anaerobic digestion. Furthermore, the total heat generated at the lower section of a landfill is higher than the heat total heat at the upper section of the system. With proper understanding of the biothermal variations in a landfill, heat energy and biogas can be harnessed for domestic and industrial purposes.
References
- [1] Faitli, J., Magyar, T., Erdélyi, A., Murányi, A. (2015) Characterization of thermal properties of municipal solid waste landfills. Waste Management 36, 213–221.
- [2] Wang, Y., Pelkonen, M., Kaila, J. (2012) Effects of Temperature on the Long-Term Behaviour of Waste Degradation, Emissions and Post-Closure Management Based on Landfill Simulators. The Open Waste Management Journal, 5, 19-27.
- [3] Ebunilo, P. O., Okovido, J. Ikpe, A. E. (2018) Investigation of the energy (biogas) production from co-digestion of organic waste materials. International Journal of Energy Applications and Technologies 5(2), 68-75.
- [4] Ikpe, A. E., Imonitie, D. I., Ndon, A. E. (2019) Investigation of Biogas Energy Derivation from Anaerobic Digestion of Different Local Food Wastes in Nigeria. Academic Platform Journal of Engineering and Science 7-2, 332-340.
- [5] Hanson, J. L., Yesiller, N., Oettle, N., (2010) Spatial and temporal temperature distributions in municipal solid waste landfills. J. Environ. Eng. 136 (8), 804–814.
- [6] Yesiller, N., Hanson, J. L., Yee, E. H. (2015) Waste heat generation: a comprehensive review. Waste Management, 42, 166–179.
- [7] Jafari, N. H., Stark, T. D., Rowe, R. K. (2014) Service life of HDPE geomembranes subjected to elevated temperatures. J. Hazard. Toxic Radioactive Waste 18(1), 16–26.
- [8] Yesiller, N., Hanson, J.L., Liu, W. L. (2005) Heat generation in municipal solid waste landfills. J. Geotech. Geoenviron. Eng. 131(11), 1330-1344.
- [9] Yesiller, N., Hanson, J. L., Kopp, K. B. and Yee, E. H. (2016) Heat management strategies for MSW landfills. Waste Management, 56, 246-254.
- [10] Rees, J. F. (1980) Optimisation of methane production and refuse decomposition in landfills by temperature control. J. Chem. Technol. Biotechnol., Society of Chemical Industry, 30(8), 458–465.
- [11] Koerner, G. (2001) In situ temperature monitoring of geosynthetics used in a landfill. Geotechnical Fabrics Rep. 19(4), 12–13.
- [12] Dach, J., and Jager, J. (1995) Prediction of gas and temperature with the disposal of pretreated residential waste. Proc., 5th Int. Waste Management and Landfill Symp., T. H. Christensen et al., eds., Vol. I, CISA, Italy, 665–677.
- [13] Yoshida, H., Tanaka, N., and Hozumi, H. (1997) Theoretical study on heat transport phenomena in a sanitary landfill,” Proc., 6th Int. Waste Management and Landfill Symp., T. H. Christensen et al., eds., Vol. I, CISA, Italy 109–120.
- [14] Rees, J. F. (1980) The fate of carbon compounds in the landfill disposal of organic matter,” J. Chem. Tech. Biotechnol., Society of Chemical Industry, 30(4), 161–175.
- [15] Lamothe, D., and Edgers, L., (1994) The effects of environmental parameters on the laboratory compression of refuse. 17th International Madison Waste Conference, University of Wisconsin, Madison, Wisconsin, 592–604.
- [16] Tchobanoglous, G., Theisen, H., and Vigil, S. A. (1993) Integrated solid waste management: Engineering principles and management issues, McGraw-Hill, New York.
- [17] Cecchi, F., Pavan, P., Musacco, A., Mata-Alvarez, J., and Vallini, G. (1993) Digesting the organic fraction of municipal solid waste: Moving from mesophilic (37°C) to thermophilic (55°C) conditions. Waste Manage. Res., 11, 403–414.
- [18] Onnen, M. T. (2014) Thermal Numerical Analysis of Vertical Heat Extraction Systems in Landfills, California Polytechnic State University, San Luis Obispo.
- [19] Klein, R., Nestle, N., Niessner, R., Baumann, T. (2003) Numerical modelling of the generation and transport of heat in a bottom ash monofill. Journal of hazardous materials, 100(1-3), 147-162.
- [20] Nastev, M., Therrien, R., Lefebvre, R., Gelinas, P. (2001) Gas production and migration in landfills and geological materials. Journal of contaminant hydrology, 52(1-4), 187-211.
- [21] Orhorhoro, E. K., Ikpe, A. E., Ukwaba, S. I. (2018) Effects of Landfill Gas Flow Trajectories at Three Distinct Temperature Phases on the Stress-Strain-Displacement Properties of a Gas Extraction Pipe. Journal of Applied Science and Environmental Management, 22(11), 1737–1743.
- [22] Emmia, G., Zarrellaa, A., Zuanettia, A., De Carlia, M. (2016) Use of municipal solid waste landfill as heat source of heat pump, Energy Procedia 101, 352 – 359.
- [23] Ikpe, A. E., Ndon, A. E., Adoh, A. U. (2019) Modelling and Simulation of High Density Polyethylene Liner Installation in Engineered Landfill for Optimum Performance. Journal of Applied Science and Environmental Management 23(3), 449-456.
- [24] Ikpe, A. E., Ndon, A. E., Etuk E. M. (2020) Parametric Study of Polypropylene Based Geotextile Mat for Optimum Performance in Engineered Landfill Systems. Applications of Modelling and Simulation, 4, 149-158.
- [25] Omar, H. M., Rohani, S. (2015) Transport Phenomena in the Conversion of an Anaerobic Landfill into an Aerobic Landfill. University of Western Ontario, Canada.
- [26] Hanson, J. L., Liu, W., and Yesiller, N. (2008) Analytical and Numerical Modelling of Temperatures in Landfills.” Proceedings of Selected Sessions of Geo-Congress 08: Geotechnics of Waste Management and Remediation, ASCE GSP No. 177, Reston, Virginia, 24-31.
- [27] Holman, J. P. (1997) Heat Transfer, 8th Ed., McGraw-Hill, Inc., United States.
[28] Mills, A. F. (1999) Basic Heat and Mass Transfer, 2nd Ed., Prentice-Hall Inc., New Jersey.
- [29] Magyar, T. (2017) Laying the Foundation for Engineering Heat Management of Waste Landfills. Mikoviny Sámuel Doctoral School of Earth Sciences, University of Miskolc.
- [30] Jumikis, A. R. (1966). Thermal Soil Mechanics, 2nd Ed., Rutgers University Press, New Brunswick, New Jersey.
- [31] Labs, K. (1981) Regional Analysis of Ground and Above-Ground Climate, ORNL/SUB-81/4045/1, U.S. Department of Energy, Office of Buildings Energy R&D.
- [32] Yoshida, H., Hozumi, H., and Tanaka, N. (1996) Theoretical Study on Temperature Distribution in a Sanitary Landfill.” Proceedings 2nd International Congress on Environmental Geotechnics, A.A. Balkema, Osaka, Japan, 323-328.
- [33] Hao, Z. (2020) Understanding and Predicting Temperatures in Municipal Solid Waste Landfills. North Carolina State University, Raleigh, North Carolina.
- [34] Zeng, H. Y., Diao, N. R. & Fang, Z. H. (2002) A finite line-source model for boreholes in geothermal heat exchangers, Heat Transf. Asian Res. 7, 558-567.
- [35] Yang, Y. (2016) Analyses of Heat Transfer and Temperature-induced Behaviour in Geotechnics. Ruhr-University, Bochum, Germany.
- [36] Nield, D., Bejan, A. (2006) Convection in porous media (3rd Edition), Berlin, Springer.
- [37] Hanson, J. L., Yesiller, N., Onnen, M. T., Liu, W., Oettle, N. K., Marinos, J. A. (2013) Development of numerical model for predicting heat generation and temperatures in MSW landfills. Waste Management 33, 1993–2000.
- [38] Nocko, L. M., McCartney, J. S., Gupta, R., Botelho, K., Morris, J. (2018) Heat Extraction from Municipal Solid Waste Landfills. Proceedings, 43rd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 12-14, 2018, SGP-TR-213.
Year 2020,
Volume: 6 Issue: 3, 152 - 164, 30.11.2020
Aniekan Ikpe
,
Akanu-ıbiam Ndon
Promise Etim
References
- [1] Faitli, J., Magyar, T., Erdélyi, A., Murányi, A. (2015) Characterization of thermal properties of municipal solid waste landfills. Waste Management 36, 213–221.
- [2] Wang, Y., Pelkonen, M., Kaila, J. (2012) Effects of Temperature on the Long-Term Behaviour of Waste Degradation, Emissions and Post-Closure Management Based on Landfill Simulators. The Open Waste Management Journal, 5, 19-27.
- [3] Ebunilo, P. O., Okovido, J. Ikpe, A. E. (2018) Investigation of the energy (biogas) production from co-digestion of organic waste materials. International Journal of Energy Applications and Technologies 5(2), 68-75.
- [4] Ikpe, A. E., Imonitie, D. I., Ndon, A. E. (2019) Investigation of Biogas Energy Derivation from Anaerobic Digestion of Different Local Food Wastes in Nigeria. Academic Platform Journal of Engineering and Science 7-2, 332-340.
- [5] Hanson, J. L., Yesiller, N., Oettle, N., (2010) Spatial and temporal temperature distributions in municipal solid waste landfills. J. Environ. Eng. 136 (8), 804–814.
- [6] Yesiller, N., Hanson, J. L., Yee, E. H. (2015) Waste heat generation: a comprehensive review. Waste Management, 42, 166–179.
- [7] Jafari, N. H., Stark, T. D., Rowe, R. K. (2014) Service life of HDPE geomembranes subjected to elevated temperatures. J. Hazard. Toxic Radioactive Waste 18(1), 16–26.
- [8] Yesiller, N., Hanson, J.L., Liu, W. L. (2005) Heat generation in municipal solid waste landfills. J. Geotech. Geoenviron. Eng. 131(11), 1330-1344.
- [9] Yesiller, N., Hanson, J. L., Kopp, K. B. and Yee, E. H. (2016) Heat management strategies for MSW landfills. Waste Management, 56, 246-254.
- [10] Rees, J. F. (1980) Optimisation of methane production and refuse decomposition in landfills by temperature control. J. Chem. Technol. Biotechnol., Society of Chemical Industry, 30(8), 458–465.
- [11] Koerner, G. (2001) In situ temperature monitoring of geosynthetics used in a landfill. Geotechnical Fabrics Rep. 19(4), 12–13.
- [12] Dach, J., and Jager, J. (1995) Prediction of gas and temperature with the disposal of pretreated residential waste. Proc., 5th Int. Waste Management and Landfill Symp., T. H. Christensen et al., eds., Vol. I, CISA, Italy, 665–677.
- [13] Yoshida, H., Tanaka, N., and Hozumi, H. (1997) Theoretical study on heat transport phenomena in a sanitary landfill,” Proc., 6th Int. Waste Management and Landfill Symp., T. H. Christensen et al., eds., Vol. I, CISA, Italy 109–120.
- [14] Rees, J. F. (1980) The fate of carbon compounds in the landfill disposal of organic matter,” J. Chem. Tech. Biotechnol., Society of Chemical Industry, 30(4), 161–175.
- [15] Lamothe, D., and Edgers, L., (1994) The effects of environmental parameters on the laboratory compression of refuse. 17th International Madison Waste Conference, University of Wisconsin, Madison, Wisconsin, 592–604.
- [16] Tchobanoglous, G., Theisen, H., and Vigil, S. A. (1993) Integrated solid waste management: Engineering principles and management issues, McGraw-Hill, New York.
- [17] Cecchi, F., Pavan, P., Musacco, A., Mata-Alvarez, J., and Vallini, G. (1993) Digesting the organic fraction of municipal solid waste: Moving from mesophilic (37°C) to thermophilic (55°C) conditions. Waste Manage. Res., 11, 403–414.
- [18] Onnen, M. T. (2014) Thermal Numerical Analysis of Vertical Heat Extraction Systems in Landfills, California Polytechnic State University, San Luis Obispo.
- [19] Klein, R., Nestle, N., Niessner, R., Baumann, T. (2003) Numerical modelling of the generation and transport of heat in a bottom ash monofill. Journal of hazardous materials, 100(1-3), 147-162.
- [20] Nastev, M., Therrien, R., Lefebvre, R., Gelinas, P. (2001) Gas production and migration in landfills and geological materials. Journal of contaminant hydrology, 52(1-4), 187-211.
- [21] Orhorhoro, E. K., Ikpe, A. E., Ukwaba, S. I. (2018) Effects of Landfill Gas Flow Trajectories at Three Distinct Temperature Phases on the Stress-Strain-Displacement Properties of a Gas Extraction Pipe. Journal of Applied Science and Environmental Management, 22(11), 1737–1743.
- [22] Emmia, G., Zarrellaa, A., Zuanettia, A., De Carlia, M. (2016) Use of municipal solid waste landfill as heat source of heat pump, Energy Procedia 101, 352 – 359.
- [23] Ikpe, A. E., Ndon, A. E., Adoh, A. U. (2019) Modelling and Simulation of High Density Polyethylene Liner Installation in Engineered Landfill for Optimum Performance. Journal of Applied Science and Environmental Management 23(3), 449-456.
- [24] Ikpe, A. E., Ndon, A. E., Etuk E. M. (2020) Parametric Study of Polypropylene Based Geotextile Mat for Optimum Performance in Engineered Landfill Systems. Applications of Modelling and Simulation, 4, 149-158.
- [25] Omar, H. M., Rohani, S. (2015) Transport Phenomena in the Conversion of an Anaerobic Landfill into an Aerobic Landfill. University of Western Ontario, Canada.
- [26] Hanson, J. L., Liu, W., and Yesiller, N. (2008) Analytical and Numerical Modelling of Temperatures in Landfills.” Proceedings of Selected Sessions of Geo-Congress 08: Geotechnics of Waste Management and Remediation, ASCE GSP No. 177, Reston, Virginia, 24-31.
- [27] Holman, J. P. (1997) Heat Transfer, 8th Ed., McGraw-Hill, Inc., United States.
[28] Mills, A. F. (1999) Basic Heat and Mass Transfer, 2nd Ed., Prentice-Hall Inc., New Jersey.
- [29] Magyar, T. (2017) Laying the Foundation for Engineering Heat Management of Waste Landfills. Mikoviny Sámuel Doctoral School of Earth Sciences, University of Miskolc.
- [30] Jumikis, A. R. (1966). Thermal Soil Mechanics, 2nd Ed., Rutgers University Press, New Brunswick, New Jersey.
- [31] Labs, K. (1981) Regional Analysis of Ground and Above-Ground Climate, ORNL/SUB-81/4045/1, U.S. Department of Energy, Office of Buildings Energy R&D.
- [32] Yoshida, H., Hozumi, H., and Tanaka, N. (1996) Theoretical Study on Temperature Distribution in a Sanitary Landfill.” Proceedings 2nd International Congress on Environmental Geotechnics, A.A. Balkema, Osaka, Japan, 323-328.
- [33] Hao, Z. (2020) Understanding and Predicting Temperatures in Municipal Solid Waste Landfills. North Carolina State University, Raleigh, North Carolina.
- [34] Zeng, H. Y., Diao, N. R. & Fang, Z. H. (2002) A finite line-source model for boreholes in geothermal heat exchangers, Heat Transf. Asian Res. 7, 558-567.
- [35] Yang, Y. (2016) Analyses of Heat Transfer and Temperature-induced Behaviour in Geotechnics. Ruhr-University, Bochum, Germany.
- [36] Nield, D., Bejan, A. (2006) Convection in porous media (3rd Edition), Berlin, Springer.
- [37] Hanson, J. L., Yesiller, N., Onnen, M. T., Liu, W., Oettle, N. K., Marinos, J. A. (2013) Development of numerical model for predicting heat generation and temperatures in MSW landfills. Waste Management 33, 1993–2000.
- [38] Nocko, L. M., McCartney, J. S., Gupta, R., Botelho, K., Morris, J. (2018) Heat Extraction from Municipal Solid Waste Landfills. Proceedings, 43rd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 12-14, 2018, SGP-TR-213.