Research Article
BibTex RIS Cite

A numerical study of mixed convection heat transfer in a lid-driven cavity using Al2O3-water nanofluid

Year 2020, Volume: 4 Issue: 1, 22 - 37, 30.06.2020
https://doi.org/10.32571/ijct.697728

Abstract

This study aims a numerical investigation of steady, laminar mixed convection heat transfer in a two-dimensional cavity by employing a finite volume method with a fourth-order approximation of convective terms, when nanoparticles are present. With the aim of solving two-dimensional momentum and energy conservation equations, a finite volume method on a non-uniform staggered grid is utilized. Second-order central differences are utilized to approximate diffusion terms in momentum and energy equations, while the development of a non-uniform four-point fourth-order interpolation (FPFOI) scheme is performed for the convective terms. Continuity and momentum equations are solved using the SIMPLE (Semi-Implicit Method for Pressure-Linked Equation) algorithm. In order to evaluate heat transfer enhancement, various viscosity and thermal conductivity models were employed. Numerical solution results were obtained in different models in cases where Gr number is between 103 and 105, Re number is 10-100-1000 and nanoparticle volumetric fraction is 0-5%.

Supporting Institution

The Scientific Research Project Fund of Sivas Cumhuriyet University

Project Number

M-489

Thanks

The Scientific Research Project Fund of Sivas Cumhuriyet University provided its support for the present research under the project number M-489.

References

  • 1. Esfe, M. H.; Saedodin, S.; Malekshah, E. H.; Babaie, A.; Rostamian, H. J. Therm. Anal. and Calorim. 2019, 135 (1), 813-859.
  • 2. Tiwari, R. K.; Das, M. K. Int. J. Heat Mass Transf. 2007, 50, 2002-2018.
  • 3. Talebi, F.; Mahmoudi, A. H.; Shahi, M. Int. Commun. Heat Mass Tran. 2010, 37 (1), 79-90.
  • 4. Arefmanesh, A.; Mahmoodi, M. Int. J. Therm. Sci. 2011, 50 (9), 1706-1719.
  • 5. Brinkman, H. C. J. Chem. Phys. 1952, 20 (4), 571-582.
  • 6. Maiga, S. E. B.; Nguyen, C. T.; Galanis, N.; Roy, G. Heat transfer enhancement in forced convection laminar tube flow by using nanofluids, Proceedings of the International Symposium on Advances in Computational Heat Transfer III, Paper CHT-040101, p. 24, Begell House Publishers, 2004.
  • 7. Chamkha, A. J.; Rashad, A. M.; Armaghani, T.; Mansour, M. A. J. Therm. Anal. Calorim. 2018, 132 (2), 1291-1306.
  • 8. Kapil, M.; Roy, D., Sharma, B., Rana, S. C., Pramanik, S., Barman, R. N. Mater. Today-Proc. 2019, 11, 700-707.
  • 9. Abu-Nada, E.; Masoud, Z.; Hijazi, A. Int. Commun. Heat Mass Tran. 2008, 35 (5), 657-665.
  • 10. Kim, C. S.; Okuyama, K.; Fernández de la Mora, J. Aerosol Sci. Tech. 2003, 37 (10), 791-803.
  • 11. Yapici, K.; Obut, S. Int. J. Numer. Method H. 2015, 25 (5), 998-1029.
  • 12. Einstein, A. Investigations on the theory of the Brownian movement, Dover Books, 1956.
  • 13. Maxwell, J.C. A Treatise on Electricity and Magnetism. Third ed Clarendon Press, Oxford, 1904.
  • 14. Chandrasekar, M.; Suresh, S.; Chandra Bose, A. Exp. Therm. Fluid Sci. 2010, 34 (2), 210-216.
  • 15. Öğüt, E. B.; Kahveci, K. J. Mol. Liq. 2016, 224, 338-345.
  • 16. Yapici, K.; Obut, S. Heat Transfer Eng. 2015, 36 (3), 303-314.
  • 17. Heydari, M. R.; Esfe, M. H.; Hajmohammad, M. H.; Akbari, M.; Esforjani, S. S. M. Heat Transf. Res. 2014, 45 (1), 75-95.
  • 18. Taamneh, Y.; Bataineh, K., Stroj. Vestn-J. Mech. E. 2017, 63 (6), 383-393.
  • 19. Lauriat, G. Appl. Therm. Eng. 2018, 129, 1039-1057.
Year 2020, Volume: 4 Issue: 1, 22 - 37, 30.06.2020
https://doi.org/10.32571/ijct.697728

Abstract

Project Number

M-489

References

  • 1. Esfe, M. H.; Saedodin, S.; Malekshah, E. H.; Babaie, A.; Rostamian, H. J. Therm. Anal. and Calorim. 2019, 135 (1), 813-859.
  • 2. Tiwari, R. K.; Das, M. K. Int. J. Heat Mass Transf. 2007, 50, 2002-2018.
  • 3. Talebi, F.; Mahmoudi, A. H.; Shahi, M. Int. Commun. Heat Mass Tran. 2010, 37 (1), 79-90.
  • 4. Arefmanesh, A.; Mahmoodi, M. Int. J. Therm. Sci. 2011, 50 (9), 1706-1719.
  • 5. Brinkman, H. C. J. Chem. Phys. 1952, 20 (4), 571-582.
  • 6. Maiga, S. E. B.; Nguyen, C. T.; Galanis, N.; Roy, G. Heat transfer enhancement in forced convection laminar tube flow by using nanofluids, Proceedings of the International Symposium on Advances in Computational Heat Transfer III, Paper CHT-040101, p. 24, Begell House Publishers, 2004.
  • 7. Chamkha, A. J.; Rashad, A. M.; Armaghani, T.; Mansour, M. A. J. Therm. Anal. Calorim. 2018, 132 (2), 1291-1306.
  • 8. Kapil, M.; Roy, D., Sharma, B., Rana, S. C., Pramanik, S., Barman, R. N. Mater. Today-Proc. 2019, 11, 700-707.
  • 9. Abu-Nada, E.; Masoud, Z.; Hijazi, A. Int. Commun. Heat Mass Tran. 2008, 35 (5), 657-665.
  • 10. Kim, C. S.; Okuyama, K.; Fernández de la Mora, J. Aerosol Sci. Tech. 2003, 37 (10), 791-803.
  • 11. Yapici, K.; Obut, S. Int. J. Numer. Method H. 2015, 25 (5), 998-1029.
  • 12. Einstein, A. Investigations on the theory of the Brownian movement, Dover Books, 1956.
  • 13. Maxwell, J.C. A Treatise on Electricity and Magnetism. Third ed Clarendon Press, Oxford, 1904.
  • 14. Chandrasekar, M.; Suresh, S.; Chandra Bose, A. Exp. Therm. Fluid Sci. 2010, 34 (2), 210-216.
  • 15. Öğüt, E. B.; Kahveci, K. J. Mol. Liq. 2016, 224, 338-345.
  • 16. Yapici, K.; Obut, S. Heat Transfer Eng. 2015, 36 (3), 303-314.
  • 17. Heydari, M. R.; Esfe, M. H.; Hajmohammad, M. H.; Akbari, M.; Esforjani, S. S. M. Heat Transf. Res. 2014, 45 (1), 75-95.
  • 18. Taamneh, Y.; Bataineh, K., Stroj. Vestn-J. Mech. E. 2017, 63 (6), 383-393.
  • 19. Lauriat, G. Appl. Therm. Eng. 2018, 129, 1039-1057.
There are 19 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Articles
Authors

Neşe Keklikcioğlu Çakmak 0000-0002-8634-9232

Hasan Hüseyin Durmazuçar This is me 0000-0003-2454-7003

Kerim Yapıcı This is me 0000-0002-3902-9375

Project Number M-489
Publication Date June 30, 2020
Published in Issue Year 2020 Volume: 4 Issue: 1

Cite

APA Keklikcioğlu Çakmak, N., Durmazuçar, H. H., & Yapıcı, K. (2020). A numerical study of mixed convection heat transfer in a lid-driven cavity using Al2O3-water nanofluid. International Journal of Chemistry and Technology, 4(1), 22-37. https://doi.org/10.32571/ijct.697728
AMA Keklikcioğlu Çakmak N, Durmazuçar HH, Yapıcı K. A numerical study of mixed convection heat transfer in a lid-driven cavity using Al2O3-water nanofluid. Int. J. Chem. Technol. June 2020;4(1):22-37. doi:10.32571/ijct.697728
Chicago Keklikcioğlu Çakmak, Neşe, Hasan Hüseyin Durmazuçar, and Kerim Yapıcı. “A Numerical Study of Mixed Convection Heat Transfer in a Lid-Driven Cavity Using Al2O3-Water Nanofluid”. International Journal of Chemistry and Technology 4, no. 1 (June 2020): 22-37. https://doi.org/10.32571/ijct.697728.
EndNote Keklikcioğlu Çakmak N, Durmazuçar HH, Yapıcı K (June 1, 2020) A numerical study of mixed convection heat transfer in a lid-driven cavity using Al2O3-water nanofluid. International Journal of Chemistry and Technology 4 1 22–37.
IEEE N. Keklikcioğlu Çakmak, H. H. Durmazuçar, and K. Yapıcı, “A numerical study of mixed convection heat transfer in a lid-driven cavity using Al2O3-water nanofluid”, Int. J. Chem. Technol., vol. 4, no. 1, pp. 22–37, 2020, doi: 10.32571/ijct.697728.
ISNAD Keklikcioğlu Çakmak, Neşe et al. “A Numerical Study of Mixed Convection Heat Transfer in a Lid-Driven Cavity Using Al2O3-Water Nanofluid”. International Journal of Chemistry and Technology 4/1 (June 2020), 22-37. https://doi.org/10.32571/ijct.697728.
JAMA Keklikcioğlu Çakmak N, Durmazuçar HH, Yapıcı K. A numerical study of mixed convection heat transfer in a lid-driven cavity using Al2O3-water nanofluid. Int. J. Chem. Technol. 2020;4:22–37.
MLA Keklikcioğlu Çakmak, Neşe et al. “A Numerical Study of Mixed Convection Heat Transfer in a Lid-Driven Cavity Using Al2O3-Water Nanofluid”. International Journal of Chemistry and Technology, vol. 4, no. 1, 2020, pp. 22-37, doi:10.32571/ijct.697728.
Vancouver Keklikcioğlu Çakmak N, Durmazuçar HH, Yapıcı K. A numerical study of mixed convection heat transfer in a lid-driven cavity using Al2O3-water nanofluid. Int. J. Chem. Technol. 2020;4(1):22-37.