Attachment of Idarubicin to Glutaraldehyde-coated Magnetic Nanoparticle and Investigation of its Effect in HL-60 Cell Line
Year 2022,
Volume: 6 Issue: 2, 154 - 163, 31.12.2022
Hasan Ulusal
,
Fatma Ulusal
,
Mehmet Akif Bozdayı
,
Bilgehan Güzel
,
Seyithan Taysı
,
Mehmet Tarakçıoğlu
Abstract
Idarubicin is a chemotherapeutic drug frequently used to treat breast cancer and acute leukemia. This study aimed to immobilize idarubicin on glutaraldehyde (GA)-coated magnetic nanoparticles (MNP-GA) to prepare a drug with high stability and low toxicity. We prefreed MNPS because of their easy synthesis, low cost, and non-toxicity. In the study, magnetite (Fe3O4) nanoparticles were prepared, coated with glutaraldehyde, characterization processes were performed with Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction pattern (XRD), and Conventional transmission electron microscopy (C-TEM) methods, and idarubicin (IDA) was bound. The cytotoxic effects of idarubicin-bound MNP-GA and free idarubicin on HL-60 cell lines were determined by MTT and ATP tests, and IC50 values were calculated. Flow cytometry was used to evaluate apoptosis status, and the expression of MDR1, Puma, NOXA, BAX, Survivin, and BCL-2 genes were measured by the polymerase chain reaction (PCR). It was found that the IC50 decreased between 5 and 7 times with the use of MNP. In PCR tests, the expressions of apoptotic genes increased, while the expressions of MDR1 and anti-apoptotic genes were decreased in the use of MNP. Apoptosis was found to be increased in flow cytometry measurements. The use of MNP systems has reduced drug resistance since it provides controlled release of the drug and prevents its exit from the cell due to its structure.
Supporting Institution
Gaziantep Üniversitesi BAP
Project Number
TF.DT.19.54 ve TF.19.52
Thanks
Dr. Hasan Ulusal has received research grants from the Scientific and Technological Research Council of Turkey (TÜBİTAK) (BIDEB 2211-E domestic graduate scholarship program). Dr. Fatma Ulusal has received research grants from TÜBİTAK (BIDEB 2218 postdoctoral research fellowship program)
References
- 1. Chawla S., Pundir CS. An electrochemical biosensor for fructosyl valine for glycosylated hemoglobin detection based on core-shell magnetic bionanoparticles modified gold electrode. Biosensors and Bioelectronics 2011; 26(8): 3438-3443.
- 2. Luo S., Zheng X., Xu H., Mi X., Zhang L., Cheng JP. Magnetic nanoparticle-supported morita–baylis–hillman catalysts. Communications 2007; 349(16): 2431-2434.
- 3. Zheng M., Zhang S., Ma G., Wang P. Effect of molecular mobility on coupled enzymatic reactions involving cofactor regeneration using nanoparticle-attached enzymes. Journal of Biotechnology 2011; 154(4): 274-280.
- 4. Ghanbari D., Salavati-Niasari M., Ghasemi-Kooch M. A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA-based magnetic nanocomposite. Journal of Industrial and Engineering Chemistry 2014; 20(6): 3970-3974.
- 5. Lu Y., Yin Y., Mayers BT., Xia Y. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol−gel approach. Nano Letters 2002; 2(3): 183-186.
- 6. Waseem M., Munsif S., Rashid U., Imad ud D. Physical properties of α-Fe2O3 nanoparticles fabricated by modified hydrolysis technique. Applied Nanoscience 2014; 4(5): 643-648.
- 7. Jadhav NV., Prasad AI., Kumar A., Mishra R., Dhara S., Babu KR., Prajapat CL., Misra NL., Ningthoujam RS., Pandey BN., Vatsa RK. Synthesis of oleic acid functionalized Fe3O4 magnetic nanoparticles and studying their interaction with tumor cells for potential hyperthermia applications. Colloids and Surfaces B: Biointerfaces 2013; 108: 158-168.
- 8. Mahmood I., Ahmad I., Chen G., Huizhou L. A surfactant-coated lipase immobilized in magnetic nanoparticles for multicycle ethyl isovalerate enzymatic production. Biochemical Engineering Journal 2013; 73: 72-79.
- 9. Tang T., Fan H., Ai S., Han R., Qiu Y. Hemoglobin (Hb) immobilized on amino-modified magnetic nanoparticles for the catalytic removal of bisphenol A. Chemosphere 2011; 83(3): 255-264.
- 10. Zhou H., Li W., Shou Q., Gao H., Xu P., Deng F., Liu H. Immobilization of penicillin g acylase on magnetic nanoparticles modified by ionic liquids. Chinese Journal of Chemical Engineering 2012; 20(1): 146-151.
- 11. Lubbe AS., Alexiou C., Bergemann C. Clinical applications of magnetic drug targeting. Journal of Surgical Research 2001; 95(2): 200-206.
- 12. Ferlay J., Soerjomataram I., Dikshit R., Eser S., Mathers C., Rebelo M., Parkin DM., Forman D., Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer 2015; 136(5): E359-386.
- 13. Ma P., Dong X., Swadley CL., Gupte A., Leggas M., Ledebur HC., Mumper RJ. Development of idarubicin and doxorubicin solid lipid nanoparticles to overcome Pgp-mediated multiple drug resistance in leukemia. Journal of Biomedical Nanotechnology 2009; 5(2): 151-161.
- 14. Ma P., Mumper RJ. Anthracycline nano-delivery systems to overcome multiple drug resistance: a comprehensive review. Nano Today 2013; 8(3): 313-331.
- 15. Gunduz U., Keskin T., Tansik G., Mutlu P., Yalcin S., Unsoy G., Yakar A., Khodadust R., Gunduz G. Idarubicin-loaded folic acid conjugated magnetic nanoparticles as a targetable drug delivery system for breast cancer. Biomedicine & Pharmacotherapy 2014; 68(6): 729-736.
- 16. McBain SC., Yiu HH., Dobson J. Magnetic nanoparticles for gene and drug delivery. International Journal of Nanomedicine 2008; 3(2): 169-180.
- 17. Pinto RV., Gomes PS., Fernandes MH., Costa MEV., Almeida MM. Glutaraldehyde-crosslinking chitosan scaffolds reinforced with calcium phosphate spray-dried granules for bone tissue applications. Materials Science and Engineering: C 2020; 109: 110557.
- 18. Sahin S., Ozmen I. Covalent immobilization of trypsin on polyvinyl alcohol-coated magnetic nanoparticles activated with glutaraldehyde. Journal of Pharmaceutical and Biomedical Analysis 2020; 184: 113195.
- 19. Zhao L., Yang B., Dai X., Wang X., Gao F., Zhang X., Tang J. Glutaraldehyde mediated conjugation of amino-coated magnetic nanoparticles with albumin protein for nanothermotherapy. Journal of Nanoscience and Nanotechnology 2010; 10(11): 7117-7120.
- 20. Danafar H., Sharafi A., Askarlou S., Manjili HK. Preparation and characterization of pegylated iron oxide-gold nanoparticles for delivery of sulforaphane and curcumin. Drug research (Stuttgart) 2017; 67(12): 698-704.
- 21. Barbey C., Bouchemal N., Retailleau P., Dupont N., Spadavecchia J. Idarubicin-Gold Complex: From Crystal Growth to Gold Nanoparticles. ACS Omega. 2021; 4;6(2):1235-1245.
- 22. Matei A., Puscas C., Patrascu I., Lehene M., Ziebro J., Scurtu F., Baia M., Porumb D., Totos R., Silaghi-Dumitrescu R. On the stability of glutaraldehyde in biocide compositions. International Journal of Molecular Sciences. 2020; 21(9): 3372.
- 23. Poon IK., Hulett MD., Parish CR. Molecular mechanisms of late apoptotic/necrotic cell clearance. Cell Death and Differentiation 2010; 17(3): 381-397.
- 24. Cheng J., Cheng L., Chen B., Xia G., Gao C., Song H., Bao W., Guo Q., Zhang H., Wang X. Effect of magnetic nanoparticles of Fe3O4 and wogonin on the reversal of multidrug resistance in K562/A02 cell line. International Journal of Nanomedicine 2012; 7: 2843-2852.
- 25. Zhao P., Wang H., Gao H., Li C., Zhang Y. Reversal of multidrug resistance by magnetic chitosan-Fe₃O₄ nanoparticle-encapsulated MDR1 siRNA in glioblastoma cell line. Neurological Research 2013; 35(8): 821-828.
- 26. Fang C., Kievit FM., Veiseh O., Stephen ZR., Wang T., Lee D., Ellenbogen RG., Zhang M. Fabrication of magnetic nanoparticles with controllable drug loading and release through a simple assembly approach. Journal of Controlled Release 2012; 162(1): 233-241.
- 27. Gupta AK., Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005; 26(18): 3995-4021.
- 28. Kim R., Emi M., Tanabe K., Toge T. Therapeutic potential of antisense Bcl-2 as a chemosensitizer for cancer therapy. Cancer 2004; 101(11): 2491-2502.
- 29. Attari E., Nosrati H., Danafar H., Kheiri MH. Methotrexate anticancer drug delivery to breast cancer cell lines by iron oxide magnetic based nanocarrier. Journal of Biomedical Materials Research Part A 2019; 107(11): 2492-2500.
- 30. Tarantash M., Nosrati H., Kheiri MH., Baradar KA. Preparation, characterization and in vitro anticancer activity of paclitaxel conjugated magnetic nanoparticles. Drug Development and Industrial Pharmacy 2018; 44(11): 1895-1903.
Glutaraldehit Kaplı Manyetik Nanopartiküle İdarubisin Tutturulması ve HL-60 Hücre Hattında Etkisinin İncelenmesi
Year 2022,
Volume: 6 Issue: 2, 154 - 163, 31.12.2022
Hasan Ulusal
,
Fatma Ulusal
,
Mehmet Akif Bozdayı
,
Bilgehan Güzel
,
Seyithan Taysı
,
Mehmet Tarakçıoğlu
Abstract
İdarubisin, meme kanseri ve akut lösemi tedavisinde sıklıkla kullanılan kemoterapötik bir ilaçtır. Bu çalışmada, yüksek stabilite ve düşük toksisiteye sahip bir ilaç hazırlamak için idarubisini glutaraldehit (GA) kaplı manyetik nanopartiküllere (MNP-GA) immobilize edilmesi amaçlanmıştır. Manyetik nanopartiküller kolay sentez edilmesi, düşük maliyetli olması ve toksik olmamasından dolayı tercih edilmiştir. Çalışmada magnetit (Fe3O4) nanoparçacıkları hazırlanmış, glutaraldehit ile kaplanmış, Fourier transform kızılötesi spektroskopisi, X-ışını kırınım deseni ve Konvansiyonel transmisyon elektron mikroskobu yöntemleri ile karakterizasyon işlemleri yapılmış ve idarubisin bağlanmıştır. İdarubisine bağlı MNP-GA ve serbest idarubisinin HL-60 hücre hatları üzerindeki sitotoksik etkileri MTT ve ATP testleri ile belirlendi ve IC50 değerleri hesaplandı. Apoptoz durumu flow sitometrisi ile değerlendirildi ve MDR1, Puma, NOXA, BAX, Survivin ve BCL-2 genlerinin ekspresyonu polimeraz zincir reaksiyonu (PCR) yöntemi ile ölçüldü. MNP kullanımı ile IC50'nin 5 ile 7 kat arasında azaldığı tespit edilmiştir. PCR testlerinde apoptotik genlerin ekspresyonları artarken, MNP kullanımında MDR1 ve anti-apoptotik genlerin ekspresyonları azaldı. Akım sitometri ölçümlerinde apoptoz artışı saptandı. MNP sistemlerinin kullanımı, ilacın kontrollü salınımını sağladığı ve yapısı gereği hücreden çıkışını engellediği için ilaç direncini azaltmıştır.
Project Number
TF.DT.19.54 ve TF.19.52
References
- 1. Chawla S., Pundir CS. An electrochemical biosensor for fructosyl valine for glycosylated hemoglobin detection based on core-shell magnetic bionanoparticles modified gold electrode. Biosensors and Bioelectronics 2011; 26(8): 3438-3443.
- 2. Luo S., Zheng X., Xu H., Mi X., Zhang L., Cheng JP. Magnetic nanoparticle-supported morita–baylis–hillman catalysts. Communications 2007; 349(16): 2431-2434.
- 3. Zheng M., Zhang S., Ma G., Wang P. Effect of molecular mobility on coupled enzymatic reactions involving cofactor regeneration using nanoparticle-attached enzymes. Journal of Biotechnology 2011; 154(4): 274-280.
- 4. Ghanbari D., Salavati-Niasari M., Ghasemi-Kooch M. A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA-based magnetic nanocomposite. Journal of Industrial and Engineering Chemistry 2014; 20(6): 3970-3974.
- 5. Lu Y., Yin Y., Mayers BT., Xia Y. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol−gel approach. Nano Letters 2002; 2(3): 183-186.
- 6. Waseem M., Munsif S., Rashid U., Imad ud D. Physical properties of α-Fe2O3 nanoparticles fabricated by modified hydrolysis technique. Applied Nanoscience 2014; 4(5): 643-648.
- 7. Jadhav NV., Prasad AI., Kumar A., Mishra R., Dhara S., Babu KR., Prajapat CL., Misra NL., Ningthoujam RS., Pandey BN., Vatsa RK. Synthesis of oleic acid functionalized Fe3O4 magnetic nanoparticles and studying their interaction with tumor cells for potential hyperthermia applications. Colloids and Surfaces B: Biointerfaces 2013; 108: 158-168.
- 8. Mahmood I., Ahmad I., Chen G., Huizhou L. A surfactant-coated lipase immobilized in magnetic nanoparticles for multicycle ethyl isovalerate enzymatic production. Biochemical Engineering Journal 2013; 73: 72-79.
- 9. Tang T., Fan H., Ai S., Han R., Qiu Y. Hemoglobin (Hb) immobilized on amino-modified magnetic nanoparticles for the catalytic removal of bisphenol A. Chemosphere 2011; 83(3): 255-264.
- 10. Zhou H., Li W., Shou Q., Gao H., Xu P., Deng F., Liu H. Immobilization of penicillin g acylase on magnetic nanoparticles modified by ionic liquids. Chinese Journal of Chemical Engineering 2012; 20(1): 146-151.
- 11. Lubbe AS., Alexiou C., Bergemann C. Clinical applications of magnetic drug targeting. Journal of Surgical Research 2001; 95(2): 200-206.
- 12. Ferlay J., Soerjomataram I., Dikshit R., Eser S., Mathers C., Rebelo M., Parkin DM., Forman D., Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer 2015; 136(5): E359-386.
- 13. Ma P., Dong X., Swadley CL., Gupte A., Leggas M., Ledebur HC., Mumper RJ. Development of idarubicin and doxorubicin solid lipid nanoparticles to overcome Pgp-mediated multiple drug resistance in leukemia. Journal of Biomedical Nanotechnology 2009; 5(2): 151-161.
- 14. Ma P., Mumper RJ. Anthracycline nano-delivery systems to overcome multiple drug resistance: a comprehensive review. Nano Today 2013; 8(3): 313-331.
- 15. Gunduz U., Keskin T., Tansik G., Mutlu P., Yalcin S., Unsoy G., Yakar A., Khodadust R., Gunduz G. Idarubicin-loaded folic acid conjugated magnetic nanoparticles as a targetable drug delivery system for breast cancer. Biomedicine & Pharmacotherapy 2014; 68(6): 729-736.
- 16. McBain SC., Yiu HH., Dobson J. Magnetic nanoparticles for gene and drug delivery. International Journal of Nanomedicine 2008; 3(2): 169-180.
- 17. Pinto RV., Gomes PS., Fernandes MH., Costa MEV., Almeida MM. Glutaraldehyde-crosslinking chitosan scaffolds reinforced with calcium phosphate spray-dried granules for bone tissue applications. Materials Science and Engineering: C 2020; 109: 110557.
- 18. Sahin S., Ozmen I. Covalent immobilization of trypsin on polyvinyl alcohol-coated magnetic nanoparticles activated with glutaraldehyde. Journal of Pharmaceutical and Biomedical Analysis 2020; 184: 113195.
- 19. Zhao L., Yang B., Dai X., Wang X., Gao F., Zhang X., Tang J. Glutaraldehyde mediated conjugation of amino-coated magnetic nanoparticles with albumin protein for nanothermotherapy. Journal of Nanoscience and Nanotechnology 2010; 10(11): 7117-7120.
- 20. Danafar H., Sharafi A., Askarlou S., Manjili HK. Preparation and characterization of pegylated iron oxide-gold nanoparticles for delivery of sulforaphane and curcumin. Drug research (Stuttgart) 2017; 67(12): 698-704.
- 21. Barbey C., Bouchemal N., Retailleau P., Dupont N., Spadavecchia J. Idarubicin-Gold Complex: From Crystal Growth to Gold Nanoparticles. ACS Omega. 2021; 4;6(2):1235-1245.
- 22. Matei A., Puscas C., Patrascu I., Lehene M., Ziebro J., Scurtu F., Baia M., Porumb D., Totos R., Silaghi-Dumitrescu R. On the stability of glutaraldehyde in biocide compositions. International Journal of Molecular Sciences. 2020; 21(9): 3372.
- 23. Poon IK., Hulett MD., Parish CR. Molecular mechanisms of late apoptotic/necrotic cell clearance. Cell Death and Differentiation 2010; 17(3): 381-397.
- 24. Cheng J., Cheng L., Chen B., Xia G., Gao C., Song H., Bao W., Guo Q., Zhang H., Wang X. Effect of magnetic nanoparticles of Fe3O4 and wogonin on the reversal of multidrug resistance in K562/A02 cell line. International Journal of Nanomedicine 2012; 7: 2843-2852.
- 25. Zhao P., Wang H., Gao H., Li C., Zhang Y. Reversal of multidrug resistance by magnetic chitosan-Fe₃O₄ nanoparticle-encapsulated MDR1 siRNA in glioblastoma cell line. Neurological Research 2013; 35(8): 821-828.
- 26. Fang C., Kievit FM., Veiseh O., Stephen ZR., Wang T., Lee D., Ellenbogen RG., Zhang M. Fabrication of magnetic nanoparticles with controllable drug loading and release through a simple assembly approach. Journal of Controlled Release 2012; 162(1): 233-241.
- 27. Gupta AK., Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005; 26(18): 3995-4021.
- 28. Kim R., Emi M., Tanabe K., Toge T. Therapeutic potential of antisense Bcl-2 as a chemosensitizer for cancer therapy. Cancer 2004; 101(11): 2491-2502.
- 29. Attari E., Nosrati H., Danafar H., Kheiri MH. Methotrexate anticancer drug delivery to breast cancer cell lines by iron oxide magnetic based nanocarrier. Journal of Biomedical Materials Research Part A 2019; 107(11): 2492-2500.
- 30. Tarantash M., Nosrati H., Kheiri MH., Baradar KA. Preparation, characterization and in vitro anticancer activity of paclitaxel conjugated magnetic nanoparticles. Drug Development and Industrial Pharmacy 2018; 44(11): 1895-1903.