BibTex RIS Cite

OPTIMUM DESIGN OF SKELETAL STRUCTURES USING METAHEURISTICS: A SURVEY OF THE STATE-OF-THE-ART

Year 2014, , 1 - 11, 01.09.2014
https://doi.org/10.24107/ijeas.251229

Abstract

During the past decades, inherent complexity of practical structural optimization problems motivated the researchers to develop efficient and robust optimization techniques. Undoubtedly, most of the recently developed optimization algorithms for optimum design of skeletal structures belong to the class of stochastic search algorithms or metaheuristics. This study is an attempt to outline the state-of-the-art in optimum design of skeletal structures as well as today’s main concerns in this field. Some of the most recent applications of metaheuristics are summarized, and a brief conclusion of today’s trend towards the computationally enhanced techniques is provided

References

  • [1] Belegundu, A.D., and Arora, J.S., A study of mathematical programming methods for structural optimization. Part II: Numerical results, Int. J Numer Methods Eng, 21(9), 1601– 1623, 1985.
  • [2] Rashedi, R., and Moses, F., Application of linear programming to structural system reliability, Comput Struct, 24(3), 375–384, 1986.
  • [3] Hall, S.K., Cameron, G.E., and Grierson, D.E., Least-weight design of steel frameworks accounting for P-Δ effects, J Struct Eng, ASCE, 115(6), 1463–1475, 1989.
  • [4] Erbatur, F., and Al-Hussainy, M.M., Optimum design of frames, Comput Struct, 45(5–6): 887–891, 1992.
  • [5] Prager, W., and Shield, R. T., A general theory of optimal plastic design, J Appl Mech, 34(l), 184-186, 1967.
  • [6] Prager, W., Optimality criteria in structural design, Proceedings of National Academy for Science, vol. 61, no. 3, pp. 794–796, 1968.
  • [7] Venkayya, V. B., Khot, N. S., and Berke, L., Application of optimality criteria approaches to automated design of large practical structures, Proceedings of the 2nd Symposium on Structural Optimization, AGARD-CP-123, pp. 3-1–3-19, 1973.
  • [8] Feury, C., and Geradin, M., Optimality criteria and mathematical programming in structural weight optimization, Comput Struct, 8, 7–17, 1978.
  • [9] Fleury, C., An efficient optimality criteria approach to the minimum weight design of elastic structures, Comput Struct, 11, 163–173, 1980.
  • [10] Saka, M. P., Optimum design of space trusses with buckling constraints, Proceedings of 3rd International Conference on Space Structures, University of Surrey, Guildford, U.K., September, 1984.
  • [11] Tabak, E. I., and Wright, P. M., Optimality criteria method for building frames, J Struct Division, 107, 1327–1342, 1981.
  • [12] Khan, M. R., Optimality criterion techniques applied to frames having general crosssectional relationships, AIAA Journal, vol.22, no. 5, pp. 669–676, 1984.
  • [13] Chan, C.-M., Grierson, D. E., and Sherbourne, A. N., Automatic optimal design of tall steel building frameworks, J Struct Eng, 121(5), 838–847, 1995.
  • [14] Gallagher, R.H., Fully stressed design. In: Gallagher, R.H., Zienkiewicz, O.C., (eds) Optimum structural design: theory and applications, Wiley, Chichester, 19–32, 1973.
  • [15] Patnaik, S.N., Gendy, A.S., Berke, L., Hopkins, D.A., Modified fully utilized design (MFUD) method for stress and displacement constraints, Int J Numer Methods Eng, 41, 1171–1194, 1998.
  • [16] Patnaik, S.N., Berke, L., Gallagher, R.H., Integrated force method versus displacement method for finite element analysis, Comput Struct, 38, 377–407, 1991.
  • [17] Goldberg, D.E., Samtani, M.P., Engineering optimization via genetic algorithm, Proceeding of the Ninth Conference on Electronic Computation, ASCE, New York, 471–482, 1986.
  • [18] Kennedy, J., Eberhart, R., Particle swarm optimization. In: IEEE international conference on neural networks, IEEE Press, 1942–1948, 1995.
  • [19] Dorigo, M., Optimization, learning and natural algorithms, PhD thesis, Dipartimento Elettronica e Informazione, Politecnico di Milano, Italy, 1992. [20] Yang, X-S., Nature-inspired metaheuristic algorithms, UK, Luniver Press, 2008.
  • [21] Saka, M.P., Optimum design of steel frames using stochastic search techniques based on natural phenomena: a review, in Topping B.H.V., (Editor), Civil Engineering Computations: Tools and Techniques, Saxe-Coburg Publications, Stirlingshire, UK., 2007.
  • [22] Lamberti, L., and Pappalettere, C., Metaheuristic design optimization of skeletal structures: a review, Computational Technology Reviews, 4, 1–32, 2011.
  • [23] Saka, M.P., and Geem, Z.W., Mathematical and Metaheuristic Applications in Design Optimization of Steel Frame Structures: An Extensive Review, Mathematical Problems in Engineering, Article ID 271031, 2013. doi:10.1155/2013/271031.
  • [24] Hare, W., Nutini, J., Tesfamariam, S, A survey of non-gradient optimization methods in structural engineering, Adv Eng Software 59, 19–28, 2013.
  • [25] Kameshki, E. S., and Saka, M. P., Genetic algorithm based optimum bracing design of non-swaying tall plane frames, J Construct Steel Res, 57, 1081–1097, 2001
  • [26] Kameshki, E. S., and Saka, M. P., Optimum design of nonlinear steel frames with semirigid connections using a genetic algorithm, Comput Struct, 79, 1593–1604, 2001.
  • [27] British Standards Institution, Structural use of steel works in building, Part 1, Code of practice for design in simple and continuous construction, hot rolled sections, BS 5950, London, 1990.
  • [28] Kameshki, E. S., and Saka, M. P., Genetic algorithm based optimum design of nonlinear planar steel frames with various semi-rigid connections, J Construct Steel Res, 59, 109–134, 2003.
  • [29] Kaveh, A., and Kalatjari, V., Genetic algorithm for discrete-sizing optimal design of trusses using the force method, Int J Numer Meth Eng, 55(1), 55–72, 2002.
  • [30] Hayalioglu, M. S., and Degertekin, S. O., Minimum cost design of steel frames with semi-rigid connections and column bases via genetic optimization, Comput Struct, 83(21–22), 1849–1863, 2005.
  • [31] Degertekin, S. O., Saka, M. P., and Hayalioglu, M.S., Optimal load and resistance factor design of geometrically nonlinear steel space frames via tabu search and genetic algorithm, Eng Struct, 30(1), 197–205, 2008.
  • [32] American Institute of Steel Construction, Manual of steel construction: load and resistance factor design, AISC, Chicago, 1995.
  • [33] Kazemzadeh Azad, S., Kazemzadeh Azad, S., and Kulkarni A.J., Structural optimization using a mutation based genetic algorithm, Int J Optim Civil Eng, 2 (1), 81-101, 2012.
  • [34] Fourie, P.C., Groenwold, A.A., The particle swarm optimization algorithm in size and shape optimization, Struct Multidiscip Optim, 23, 259–267, 2002.
  • [35] Perez, R.E., Behdinan, K., Particle swarm approach for structural design optimization, Comput Struct, 85, 1579–1588, 2007.
  • [36] Li, L.J., Huang, Z.B., Liu, F., Wu, Q.H., A heuristic particle swarm optimizer for optimization of pin connected structures, Comput Struct, 85, 340–349, 2007.
  • [37] Li, L.J., Huang, Z.B., Liu, F., A heuristic particle swarm optimization method for truss structures with discrete variables, Comput Struct, 87, 435–443, 2009.
  • [38] Kaveh, A., Talatahari, S., A particle swarm ant colony optimization for truss structures with discrete variables, J Construct Steel Res, 65, 1558–1568, 2009.
  • [39] Luh, G.C., Lin, C.Y., Optimal design of truss-structures using particle swarm optimization, Comput Struct, 89, 2221–2232, 2011.
  • [40] Gomes, H.M., Truss optimization with dynamic constraints using a particle swarm algorithm, Expert Syst Appl, 38, 957–968, 2011.
  • [41] Geem, Z. W., Kim, J. H., and Loganathan, G. V., A new heuristic optimization algorithm: harmony search, Simulation, 76(2), 60–68, 2001.
  • [42] Lee, K. S., and Geem, Z. W., A new structural optimization method based on the harmony search algorithm, Comput Struct, 82, 781–98, 2004.
  • [43] Saka, M. P., Optimum geometry design of geodesic domes using harmony search algorithm, Adv Struct Eng, 10, 595–606, 2007.
  • [44] Carbas, S., and Saka, M. P., Optimum design of single layer network domes using harmony search method, Asian J Civ Eng, 10(1), 97–112, 2009.
  • [45] Saka, M. P., Optimum design of steel sway frames to BS5950 using harmony search algorithm, J Construct Steel Res, 65(1), 36–43, 2009.
  • [46] Hasançebi, O., Erdal, F., and Saka, M. P., Adaptive harmony search method for structural optimization. J Struct Eng, ASCE, 136(4), 419–431, 2010.
  • [47] Karaboga, D., An idea based on honey bee swarm for numerical optimization, Technical Report TR06, Computer Engineering Department, Erciyes University, Turkey, 2005.
  • [48] Hadidi, A., Kazemzadeh Azad, S., Kazemzadeh Azad, S., Structural optimization using artificial bee colony algorithm, The 2nd International Conference on Engineering Optimization (Eng Opt), Lisbon, Portugal, 2010.
  • [49] Sonmez, M., Discrete optimum design of truss structures using artificial bee colony algorithm, Struct Multidisc Optim, 43, 85–97, 2011.
  • [50] Sonmez, M., Artificial bee colony algorithm for optimization of truss structures, Appl Soft Comp, 11, 2406–2418, 2011.
  • [51] Erol, O. K., and Eksin, I., A New optimization method: Big Bang–Big Crunch, Adv Eng Software, 37, 106–11, 2006.
  • [52] Camp, C.V., Design of space trusses using Big Bang–Big Crunch optimization, J Struct Eng, ASCE, 133, 999–1008, 2007.
  • [53] Kaveh, A., and Abbasgholiha, H., Optimum design of steel sway frames using big bang– big crunch algorithm, Asian J Civ Eng, 12, 293–317, 2011.
  • [54] Lamberti, L., and Pappalettere, C., A fast big bang-big crunch optimization algorithm for weight minimization of truss structures. In: Tsompanakis Y, Topping BHV, editors. Proceedings of the Second International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering, Stirlingshire, UK, Civil-Comp Press, 2011.
  • [55] Kaveh, A., and Talatahari, S., Size optimization of space trusses using big bang-big crunch algorithm, Comput Struct, 87, 1129–1140, 2009.
  • [56] Kaveh, A., and Talatahari, S., Optimal design of Schwedler and ribbed domes via hybrid big bang-big crunch algorithm, J Construct Steel Res, 66, 412–419, 2009.
  • [57] Kaveh, A., and Talatahari, S., A discrete big bang-big crunch algorithm for optimal design of skeletal structures, Asian J Civ Eng, 11, 103–123, 2010.
  • [58] Kazemzadeh Azad, S., Hasançebi, O., and Erol, O.K., Evaluating efficiency of big bangbig crunch algorithm in benchmark engineering optimization problems, Int J Optim Civ Eng, 1, 495–505, 2011.
  • [59] Kaveh, A., Talatahari, S., A novel heuristic optimization method: charged system search, Acta Mech, 213, 267–289, 2010
  • [60] Kaveh, A., Talatahari, S., Optimal design of skeletal structures via the charged system search algorithm, Struct Multidisc Optim, 41, 893–911, 2010.
  • [61] Kaveh, A., Talatahari, S., A charged system search with a fly to boundary method for discrete optimum design of truss structures, Asian J Civ Eng, 11(3), 277–293, 2010.
  • [62] Kaveh, A., and Talatahari, S., An enhanced charged system search for configuration optimization using the concept of fields of forces, Struct Multidisc Opt, 43(3), 339–51, 2011.
  • [63] Kaveh, A., and Talatahari, S., Charged system search for optimal design of frame structures, Appl Soft Comp, 12(1), 382–393, 2012.
  • [64] Yang, X-S., A new metaheuristic bat-Inspired algorithm, In: J. R. Gonzalez et al. (Eds.), Nature Inspired Cooperative Strategies for Optimization (NISCO 2010), Studies in Computational Intelligence, Springer Berlin, Springer, pp. 65–74, 2010.
  • [65] Kaveh, A., Khayatazad, M., A new meta-heuristic method: Ray Optimization, Comput Struct, 112–113, 283–294, 2012.
  • [66] Hasançebi, O., Çarbas, S., Dogan, E., Erdal, F., and Saka, M.P., Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures, Comput Struct, 87, 284–302, 2009.
  • [67] Kirkpatrick, S., Gerlatt, C.D., Vecchi, M.P., Optimization by Simulated Annealing, Science, 220, 671–680, 1983.
  • [68] Rechenberg, I., Cybernetic Solution Path of An Experimental Problem, Royal Aircraft Establishment, Library translation No. 1122, Farnborough, Hants., UK, 1965.
  • [69] Glover, F., Tabu Search-Part I, ORSA Journal on Computing, 1,190–206, 1989.
  • [70] AISC-ASD, Manual of steel construction-allowable stress design, ninth ed., Chicago, Illinois, USA, 1989.
  • [71] Hasançebi, O., Çarbas, S., Dogan, E., Erdal, F., Saka, M.P., Comparison of nondeterministic search techniques in the optimum design of real size steel frames, Comput Struct, 88, 1033–1048, 2010.
  • [72] Hasançebi, O., Bahçecioğlu, T., Kurç, Ö., and Saka, M.P. Optimum design of high-rise steel buildings using an evolution strategy integrated parallel algorithm, Comput Struct, 89, 2037–2051, 2011.
  • [73] Kazemzadeh Azad, S., Hasançebi, O., and Kazemzadeh Azad, S., Upper Bound Strategy for Metaheuristic Based Design Optimization of Steel Frames, Adv Eng Software, 57, 19–32, 2013.
Year 2014, , 1 - 11, 01.09.2014
https://doi.org/10.24107/ijeas.251229

Abstract

References

  • [1] Belegundu, A.D., and Arora, J.S., A study of mathematical programming methods for structural optimization. Part II: Numerical results, Int. J Numer Methods Eng, 21(9), 1601– 1623, 1985.
  • [2] Rashedi, R., and Moses, F., Application of linear programming to structural system reliability, Comput Struct, 24(3), 375–384, 1986.
  • [3] Hall, S.K., Cameron, G.E., and Grierson, D.E., Least-weight design of steel frameworks accounting for P-Δ effects, J Struct Eng, ASCE, 115(6), 1463–1475, 1989.
  • [4] Erbatur, F., and Al-Hussainy, M.M., Optimum design of frames, Comput Struct, 45(5–6): 887–891, 1992.
  • [5] Prager, W., and Shield, R. T., A general theory of optimal plastic design, J Appl Mech, 34(l), 184-186, 1967.
  • [6] Prager, W., Optimality criteria in structural design, Proceedings of National Academy for Science, vol. 61, no. 3, pp. 794–796, 1968.
  • [7] Venkayya, V. B., Khot, N. S., and Berke, L., Application of optimality criteria approaches to automated design of large practical structures, Proceedings of the 2nd Symposium on Structural Optimization, AGARD-CP-123, pp. 3-1–3-19, 1973.
  • [8] Feury, C., and Geradin, M., Optimality criteria and mathematical programming in structural weight optimization, Comput Struct, 8, 7–17, 1978.
  • [9] Fleury, C., An efficient optimality criteria approach to the minimum weight design of elastic structures, Comput Struct, 11, 163–173, 1980.
  • [10] Saka, M. P., Optimum design of space trusses with buckling constraints, Proceedings of 3rd International Conference on Space Structures, University of Surrey, Guildford, U.K., September, 1984.
  • [11] Tabak, E. I., and Wright, P. M., Optimality criteria method for building frames, J Struct Division, 107, 1327–1342, 1981.
  • [12] Khan, M. R., Optimality criterion techniques applied to frames having general crosssectional relationships, AIAA Journal, vol.22, no. 5, pp. 669–676, 1984.
  • [13] Chan, C.-M., Grierson, D. E., and Sherbourne, A. N., Automatic optimal design of tall steel building frameworks, J Struct Eng, 121(5), 838–847, 1995.
  • [14] Gallagher, R.H., Fully stressed design. In: Gallagher, R.H., Zienkiewicz, O.C., (eds) Optimum structural design: theory and applications, Wiley, Chichester, 19–32, 1973.
  • [15] Patnaik, S.N., Gendy, A.S., Berke, L., Hopkins, D.A., Modified fully utilized design (MFUD) method for stress and displacement constraints, Int J Numer Methods Eng, 41, 1171–1194, 1998.
  • [16] Patnaik, S.N., Berke, L., Gallagher, R.H., Integrated force method versus displacement method for finite element analysis, Comput Struct, 38, 377–407, 1991.
  • [17] Goldberg, D.E., Samtani, M.P., Engineering optimization via genetic algorithm, Proceeding of the Ninth Conference on Electronic Computation, ASCE, New York, 471–482, 1986.
  • [18] Kennedy, J., Eberhart, R., Particle swarm optimization. In: IEEE international conference on neural networks, IEEE Press, 1942–1948, 1995.
  • [19] Dorigo, M., Optimization, learning and natural algorithms, PhD thesis, Dipartimento Elettronica e Informazione, Politecnico di Milano, Italy, 1992. [20] Yang, X-S., Nature-inspired metaheuristic algorithms, UK, Luniver Press, 2008.
  • [21] Saka, M.P., Optimum design of steel frames using stochastic search techniques based on natural phenomena: a review, in Topping B.H.V., (Editor), Civil Engineering Computations: Tools and Techniques, Saxe-Coburg Publications, Stirlingshire, UK., 2007.
  • [22] Lamberti, L., and Pappalettere, C., Metaheuristic design optimization of skeletal structures: a review, Computational Technology Reviews, 4, 1–32, 2011.
  • [23] Saka, M.P., and Geem, Z.W., Mathematical and Metaheuristic Applications in Design Optimization of Steel Frame Structures: An Extensive Review, Mathematical Problems in Engineering, Article ID 271031, 2013. doi:10.1155/2013/271031.
  • [24] Hare, W., Nutini, J., Tesfamariam, S, A survey of non-gradient optimization methods in structural engineering, Adv Eng Software 59, 19–28, 2013.
  • [25] Kameshki, E. S., and Saka, M. P., Genetic algorithm based optimum bracing design of non-swaying tall plane frames, J Construct Steel Res, 57, 1081–1097, 2001
  • [26] Kameshki, E. S., and Saka, M. P., Optimum design of nonlinear steel frames with semirigid connections using a genetic algorithm, Comput Struct, 79, 1593–1604, 2001.
  • [27] British Standards Institution, Structural use of steel works in building, Part 1, Code of practice for design in simple and continuous construction, hot rolled sections, BS 5950, London, 1990.
  • [28] Kameshki, E. S., and Saka, M. P., Genetic algorithm based optimum design of nonlinear planar steel frames with various semi-rigid connections, J Construct Steel Res, 59, 109–134, 2003.
  • [29] Kaveh, A., and Kalatjari, V., Genetic algorithm for discrete-sizing optimal design of trusses using the force method, Int J Numer Meth Eng, 55(1), 55–72, 2002.
  • [30] Hayalioglu, M. S., and Degertekin, S. O., Minimum cost design of steel frames with semi-rigid connections and column bases via genetic optimization, Comput Struct, 83(21–22), 1849–1863, 2005.
  • [31] Degertekin, S. O., Saka, M. P., and Hayalioglu, M.S., Optimal load and resistance factor design of geometrically nonlinear steel space frames via tabu search and genetic algorithm, Eng Struct, 30(1), 197–205, 2008.
  • [32] American Institute of Steel Construction, Manual of steel construction: load and resistance factor design, AISC, Chicago, 1995.
  • [33] Kazemzadeh Azad, S., Kazemzadeh Azad, S., and Kulkarni A.J., Structural optimization using a mutation based genetic algorithm, Int J Optim Civil Eng, 2 (1), 81-101, 2012.
  • [34] Fourie, P.C., Groenwold, A.A., The particle swarm optimization algorithm in size and shape optimization, Struct Multidiscip Optim, 23, 259–267, 2002.
  • [35] Perez, R.E., Behdinan, K., Particle swarm approach for structural design optimization, Comput Struct, 85, 1579–1588, 2007.
  • [36] Li, L.J., Huang, Z.B., Liu, F., Wu, Q.H., A heuristic particle swarm optimizer for optimization of pin connected structures, Comput Struct, 85, 340–349, 2007.
  • [37] Li, L.J., Huang, Z.B., Liu, F., A heuristic particle swarm optimization method for truss structures with discrete variables, Comput Struct, 87, 435–443, 2009.
  • [38] Kaveh, A., Talatahari, S., A particle swarm ant colony optimization for truss structures with discrete variables, J Construct Steel Res, 65, 1558–1568, 2009.
  • [39] Luh, G.C., Lin, C.Y., Optimal design of truss-structures using particle swarm optimization, Comput Struct, 89, 2221–2232, 2011.
  • [40] Gomes, H.M., Truss optimization with dynamic constraints using a particle swarm algorithm, Expert Syst Appl, 38, 957–968, 2011.
  • [41] Geem, Z. W., Kim, J. H., and Loganathan, G. V., A new heuristic optimization algorithm: harmony search, Simulation, 76(2), 60–68, 2001.
  • [42] Lee, K. S., and Geem, Z. W., A new structural optimization method based on the harmony search algorithm, Comput Struct, 82, 781–98, 2004.
  • [43] Saka, M. P., Optimum geometry design of geodesic domes using harmony search algorithm, Adv Struct Eng, 10, 595–606, 2007.
  • [44] Carbas, S., and Saka, M. P., Optimum design of single layer network domes using harmony search method, Asian J Civ Eng, 10(1), 97–112, 2009.
  • [45] Saka, M. P., Optimum design of steel sway frames to BS5950 using harmony search algorithm, J Construct Steel Res, 65(1), 36–43, 2009.
  • [46] Hasançebi, O., Erdal, F., and Saka, M. P., Adaptive harmony search method for structural optimization. J Struct Eng, ASCE, 136(4), 419–431, 2010.
  • [47] Karaboga, D., An idea based on honey bee swarm for numerical optimization, Technical Report TR06, Computer Engineering Department, Erciyes University, Turkey, 2005.
  • [48] Hadidi, A., Kazemzadeh Azad, S., Kazemzadeh Azad, S., Structural optimization using artificial bee colony algorithm, The 2nd International Conference on Engineering Optimization (Eng Opt), Lisbon, Portugal, 2010.
  • [49] Sonmez, M., Discrete optimum design of truss structures using artificial bee colony algorithm, Struct Multidisc Optim, 43, 85–97, 2011.
  • [50] Sonmez, M., Artificial bee colony algorithm for optimization of truss structures, Appl Soft Comp, 11, 2406–2418, 2011.
  • [51] Erol, O. K., and Eksin, I., A New optimization method: Big Bang–Big Crunch, Adv Eng Software, 37, 106–11, 2006.
  • [52] Camp, C.V., Design of space trusses using Big Bang–Big Crunch optimization, J Struct Eng, ASCE, 133, 999–1008, 2007.
  • [53] Kaveh, A., and Abbasgholiha, H., Optimum design of steel sway frames using big bang– big crunch algorithm, Asian J Civ Eng, 12, 293–317, 2011.
  • [54] Lamberti, L., and Pappalettere, C., A fast big bang-big crunch optimization algorithm for weight minimization of truss structures. In: Tsompanakis Y, Topping BHV, editors. Proceedings of the Second International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering, Stirlingshire, UK, Civil-Comp Press, 2011.
  • [55] Kaveh, A., and Talatahari, S., Size optimization of space trusses using big bang-big crunch algorithm, Comput Struct, 87, 1129–1140, 2009.
  • [56] Kaveh, A., and Talatahari, S., Optimal design of Schwedler and ribbed domes via hybrid big bang-big crunch algorithm, J Construct Steel Res, 66, 412–419, 2009.
  • [57] Kaveh, A., and Talatahari, S., A discrete big bang-big crunch algorithm for optimal design of skeletal structures, Asian J Civ Eng, 11, 103–123, 2010.
  • [58] Kazemzadeh Azad, S., Hasançebi, O., and Erol, O.K., Evaluating efficiency of big bangbig crunch algorithm in benchmark engineering optimization problems, Int J Optim Civ Eng, 1, 495–505, 2011.
  • [59] Kaveh, A., Talatahari, S., A novel heuristic optimization method: charged system search, Acta Mech, 213, 267–289, 2010
  • [60] Kaveh, A., Talatahari, S., Optimal design of skeletal structures via the charged system search algorithm, Struct Multidisc Optim, 41, 893–911, 2010.
  • [61] Kaveh, A., Talatahari, S., A charged system search with a fly to boundary method for discrete optimum design of truss structures, Asian J Civ Eng, 11(3), 277–293, 2010.
  • [62] Kaveh, A., and Talatahari, S., An enhanced charged system search for configuration optimization using the concept of fields of forces, Struct Multidisc Opt, 43(3), 339–51, 2011.
  • [63] Kaveh, A., and Talatahari, S., Charged system search for optimal design of frame structures, Appl Soft Comp, 12(1), 382–393, 2012.
  • [64] Yang, X-S., A new metaheuristic bat-Inspired algorithm, In: J. R. Gonzalez et al. (Eds.), Nature Inspired Cooperative Strategies for Optimization (NISCO 2010), Studies in Computational Intelligence, Springer Berlin, Springer, pp. 65–74, 2010.
  • [65] Kaveh, A., Khayatazad, M., A new meta-heuristic method: Ray Optimization, Comput Struct, 112–113, 283–294, 2012.
  • [66] Hasançebi, O., Çarbas, S., Dogan, E., Erdal, F., and Saka, M.P., Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures, Comput Struct, 87, 284–302, 2009.
  • [67] Kirkpatrick, S., Gerlatt, C.D., Vecchi, M.P., Optimization by Simulated Annealing, Science, 220, 671–680, 1983.
  • [68] Rechenberg, I., Cybernetic Solution Path of An Experimental Problem, Royal Aircraft Establishment, Library translation No. 1122, Farnborough, Hants., UK, 1965.
  • [69] Glover, F., Tabu Search-Part I, ORSA Journal on Computing, 1,190–206, 1989.
  • [70] AISC-ASD, Manual of steel construction-allowable stress design, ninth ed., Chicago, Illinois, USA, 1989.
  • [71] Hasançebi, O., Çarbas, S., Dogan, E., Erdal, F., Saka, M.P., Comparison of nondeterministic search techniques in the optimum design of real size steel frames, Comput Struct, 88, 1033–1048, 2010.
  • [72] Hasançebi, O., Bahçecioğlu, T., Kurç, Ö., and Saka, M.P. Optimum design of high-rise steel buildings using an evolution strategy integrated parallel algorithm, Comput Struct, 89, 2037–2051, 2011.
  • [73] Kazemzadeh Azad, S., Hasançebi, O., and Kazemzadeh Azad, S., Upper Bound Strategy for Metaheuristic Based Design Optimization of Steel Frames, Adv Eng Software, 57, 19–32, 2013.
There are 72 citations in total.

Details

Other ID JA66CR37UN
Journal Section Articles
Authors

S. Kazemzadeh Azad This is me

O. Hasançebi This is me

Publication Date September 1, 2014
Published in Issue Year 2014

Cite

APA Azad, S. K., & Hasançebi, O. (2014). OPTIMUM DESIGN OF SKELETAL STRUCTURES USING METAHEURISTICS: A SURVEY OF THE STATE-OF-THE-ART. International Journal of Engineering and Applied Sciences, 6(3), 1-11. https://doi.org/10.24107/ijeas.251229
AMA Azad SK, Hasançebi O. OPTIMUM DESIGN OF SKELETAL STRUCTURES USING METAHEURISTICS: A SURVEY OF THE STATE-OF-THE-ART. IJEAS. September 2014;6(3):1-11. doi:10.24107/ijeas.251229
Chicago Azad, S. Kazemzadeh, and O. Hasançebi. “OPTIMUM DESIGN OF SKELETAL STRUCTURES USING METAHEURISTICS: A SURVEY OF THE STATE-OF-THE-ART”. International Journal of Engineering and Applied Sciences 6, no. 3 (September 2014): 1-11. https://doi.org/10.24107/ijeas.251229.
EndNote Azad SK, Hasançebi O (September 1, 2014) OPTIMUM DESIGN OF SKELETAL STRUCTURES USING METAHEURISTICS: A SURVEY OF THE STATE-OF-THE-ART. International Journal of Engineering and Applied Sciences 6 3 1–11.
IEEE S. K. Azad and O. Hasançebi, “OPTIMUM DESIGN OF SKELETAL STRUCTURES USING METAHEURISTICS: A SURVEY OF THE STATE-OF-THE-ART”, IJEAS, vol. 6, no. 3, pp. 1–11, 2014, doi: 10.24107/ijeas.251229.
ISNAD Azad, S. Kazemzadeh - Hasançebi, O. “OPTIMUM DESIGN OF SKELETAL STRUCTURES USING METAHEURISTICS: A SURVEY OF THE STATE-OF-THE-ART”. International Journal of Engineering and Applied Sciences 6/3 (September 2014), 1-11. https://doi.org/10.24107/ijeas.251229.
JAMA Azad SK, Hasançebi O. OPTIMUM DESIGN OF SKELETAL STRUCTURES USING METAHEURISTICS: A SURVEY OF THE STATE-OF-THE-ART. IJEAS. 2014;6:1–11.
MLA Azad, S. Kazemzadeh and O. Hasançebi. “OPTIMUM DESIGN OF SKELETAL STRUCTURES USING METAHEURISTICS: A SURVEY OF THE STATE-OF-THE-ART”. International Journal of Engineering and Applied Sciences, vol. 6, no. 3, 2014, pp. 1-11, doi:10.24107/ijeas.251229.
Vancouver Azad SK, Hasançebi O. OPTIMUM DESIGN OF SKELETAL STRUCTURES USING METAHEURISTICS: A SURVEY OF THE STATE-OF-THE-ART. IJEAS. 2014;6(3):1-11.

21357download