BibTex RIS Cite

A Simple Buckling Analysis Of Aorta Artery

Year 2015, , 34 - 45, 01.12.2015
https://doi.org/10.24107/ijeas.251256

Abstract

Aortas are the largest artery in the body and they carry the blood away which is pumped from the heart. Aorta artery is also the artery which is affected by the highest blood pressure. Its stability has a vital importance to humans and animals. The loss of stability in arteries may lead to arterial tortuosity and kinking. This situation causes to blackouts and serious permanent health problems. In this article, the buckling analysis of aorta artery is investigated by using Euler-Bernoulli beam theory for different boundary conditions. The aorta artery is modeled as a cylindrical tube with different average diameters. Results are presented in figures and table

References

  • Han, H.C., A biomechanical model of artery buckling, Journal of Biomechanics, 40, 3672-3678, 2007.
  • Hayman, M. H., Zhang, J., Liu, Q., Xiao Y., Han H. C., Smooth muscle cell contraction increases the critical buckling pressure of arteries, Journal of Biomechanics, 46, 841-844, 2013.
  • Han, H.C., Nonlinear buckling of blood vessels: A theoretical study, Journal of Biomechanics, 41, 2708-2713, 2008.
  • Liu, Q., Han, H.C., Mechanical buckling of artery under pulsatile pressure, Journal of Biomechanics, 45, 1192-1198, 2012.
  • Han, H.C., Blood vessel buckling within soft surrounding tissue generates tortuosity, Journal of Biomechanics, 42, 2797-2801, 2009.
  • Lee, A. Y., Han, H.C., A nonlinear Thin-Wall Model for Vein Buckling, Cardiovascular Engineering and Technology, 1, 282-289, 2010.
  • Liu, Q., Han, H.C., Mechanical buckling of arterioles in collateral development, Journal of Theoretical Biology, 316, 42-48, 2013.
  • Lee, A. Y., Sanyal, A., Xiao, Y., Shadfan, R., Han, H.C., Mechanical instability of normal and aneurysmal arteries, Journal of Biomechanics, 47, 3868-3875, 2014.
  • Han, H.C., Chesnutt, J. K., Garcia, J. R., Liu, Q., Wen, Q., Artery Buckling: New Phenotypes, Models, and Applications, Annals of Biomedical Engineering, 41, 1399-1410, 2012.
  • 0] Datir, P., Lee, A. Y., Lamm, S. D., Han, H.C., Effects of Geometric Variations on the Buckling of Arteries, Int. J. Appl. Mech., 3(2), 385-406, 2011.
  • 1] Ganguly, A., Simons, J., Schneider, A., Keck, B., Bennett, N. R., Fahrig, R., In-vitro Imaging of Femoral Artery Nitinol Stents for Deformation Analysis, Journal of Vascular and Interventional Radiolog, 22(2), 236-243, 2011.
  • 2] Christensen, E. E., Landay, M. J., Dietz, G. W., Brinley, G., Buckling of the innominate artery simulating a right apical lung mass. American Journal of Roentgenology, 131, 119-123, 1978.
  • 3] Arani, A. T., Arani, A. G., Kolahchi, R., Non-Newtonian pulsating blood flow-induced dynamic instability of visco-carotid artery within soft surrounding visco-tissue using differential cubature method, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0954406214566038, 2015.
  • 4] Chen, W.F., Lui, E.M., Structural Stability, Elsevier, New York/Amsterdam/London, 1987.
  • 5] Ajori, S. and Ansari, R., Torsional buckling behavior of boron-nitride nanotubes using molecular dynamics simulations, Curr. Appl. Phys., 14, 1072-1077, 2014.
  • 6] Arani, A. G., Jamali, S. A., Amir, S., Maboudi, M. J., Electro-thermo-mechanical nonlinear buckling of Pasternak coupled DWBNNTs based on nonlocal piezoelasticity theory, Turkish J. Eng. Env. Sci., 37, 231-246, 2013.
  • 7] Shokuhfar, A., Ebrahimi-Nejad, S., Effects of structural defects on the compressive buckling of boron nitride nanotubes, Physica E, 48, 53-60, 2013.
  • 8] Ansari, R. and Ajori, S., Molecular dynamics study of the torsional vibration characteristics of boron-nitride nanotubes, Physics Letters A, 378, 2876-2880, 2014.
  • 9] Chowdhury, R., Wang, C. Y., Adhikari, S., Scarpa, F., Vibration and symmetrybreaking of boron nitride nanotubes, Nanotechnology, 21, 365702-365711, 2010.
  • 0] Arani, A. G. and Roudbari, M. A., Nonlocal piezoelastic surface effect on the vibration of visco-Pasternak coupled boron nitride nanotube system under a moving nanoparticle, Thin Solid Films, 542, 232-241, 2013.
  • 1] Panchal, M. B. and Upadhyay, S. H., Cantilevered single walled boron nitride nanotube based nanomechanical resonators of zigzag and armchair forms, Physica E, 50, 73-82, 2013.
  • 2] Yan, Z. and Jiang, L. Y., The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects, Nanotechnology, 22, 245703-245710, 2011.
  • 3] H. L. Lee, R. P. Chang, W.-J. Chang, Buckling analysis of nonuniform nanowires under axial compression, Proceedings of the world congrees on engineering, 3 (2011).
  • 4] Samaei, A. T., Bakhtiari, M., Wang ,G. F., Timoshenko beam model for buckling of piezoelectric nanowires with surface effects, Nanoscale research letters, 7, 1-6, 2012.
  • 5] Lee , H. L. and Chang, W. J, Surface effects on axial buckling of nonuniform nanowires using non-local elasticity theory, Micro & nano letters, 6(1), 19-21, 2011.
  • 6] Chiu, M. S. and Chen, T., Higher-order surface stress effects on buckling of nanowires under uniaxial compression, Procedia engineering, 10, 397-402,2011.
  • 7] Yao, H. and Yun, G., The effect of nonuniform surface surface elasticity on buckling of ZnO nanowires, Physica E, 44, 1916-1919, 2012.
  • 8] Reddy, J. N., Nonlocal continuum theories of beams for the analysis of carbon nanotubes, Journal of applied physics, 103, 023511, 2008.
  • 9] Arda, M. and Aydogdu, M., Analysis of free torsional vibration in carbon nanotubes embedded in a viscoelastic medium, Advances in science and technology research journal, 9(26), 28-33, 2015.
  • 0] Mohammadimehr, M., Mohandes, M., Moradi, M., Size dependent effect on the buckling and vibration analysis of double-bonded nanocomposite piezoelectric plate reinforced by boron nitride nanotube based on modified couple stress theory, Journal of vibration and control, 1077546314544513, 2014.
  • 1] Sahmani,, S. and Ansari, R., Nonlocal beam models for buckling of nanobeams using state-space method regarding different boundary conditions, Journal of mechanical science and technology, 25(9), 2365-2375, 2011.
  • 2] Kumar, D., Heinrich, C., Waas, A. M., Buckling analysis of carbon nanotubes modeled using nonlocal continuum theories, Journal of applied physics, 103(7), 073521, 2008.
  • 3] Sudak, L. J., Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics, Journal of applied physics, 94(11), 7281-7287, 2003.
  • 4] Juntarasaid, C., Pulngern, T., Chucheepsakul, S., Bending and buckling of nanowires including the effects of surface stress and nonlocal elasticity, Physica E, 46, 68-76, 2012.
  • 5] Wang, Q., Varadan, V. K., Quek, S. T., Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models, Physics letters A, 357, 130-135, 2006.
  • 6] Khademolhosseini, F., Rajapakse, R. K. N. D., Nojeh, A., Torsional buckling of carbon nanotubes based on nonlocal elasticity shell models, Computational materials science, 48, 736-742, 2010.
  • 7] Civalek, Ö., Demir, Ç., Buckling and bending analyses of cantilever carbon nanotubes using the euler-bernoulli beam theory based on non-local continuum model, Asian Journal of Civil Engineering, 12(5), 651-661, 2011.
  • 8] Akgöz, B., Civalek, Ö., Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams, International Journal of Engineering Science, 49(11), 1268-1280, 2011.
  • 9] Akgöz, B., Civalek, Ö., Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity, Structural Engineering and Mechanics, 48(2), 195-205, 2013.
  • 0] Akgöz, B., Civalek, Ö., Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories, Journal of Computational and Theoretical Nanoscience, 8(9), 1821-1827, 2011.
  • 1] Akgöz, B., Civalek, Ö., A new trigonometric beam model for buckling of strain gradient microbeams, International Journal of Mechanical Sciences, 81, 88-94, 2014.
  • 2] Civalek, Ö., Akgöz, B., Vibration analysis of micro-scaled sector shaped graphene surrounded by an elastic matrix, Computational Materials Science, 77, 295-303, 2013.
  • 3] Akgöz, B., Civalek, Ö., A novel microstructure-dependent shear deformable beam model, International Journal of Mechanical Sciences, 99, 10-20, 2015.
  • 4] Emsen, E., Mercan, K., Akgöz, B., Civalek, Ö., Modal Analysis Of Tapered Beam-Column Embedded In Winkler Elastic Foundation, International Journal of Engineering & Applied Sciences, 7(1), 25-35, 2015.
  • 5] Mercan, K., Demir, Ç., Akgöz, B., Civalek, Ö., Coordinate Transformation for Sector and Annular Sector Shaped Graphene Sheets on Silicone Matrix, International Journal of Engineering & Applied Sciences, 7(2), 56-73, 2015.
  • 6] Akgöz, B., Civalek, Ö., Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium, International Journal of Engineering Science 85, 90-104 , 2014 .
  • 7] Civalek, Ö., The determination of frequencies of laminated conical shells via the discrete singular convolution method, Journal of Mechanics of Materials and Structures, 1(1), 163-182 , 2006.
  • 8] Civalek, Ö., Gürses, M., Free vibration analysis of rotating cylindrical shells using discrete singular convolution technique, International Journal of Pressure Vessels and Piping, 86(10), 677-683 , 2009.
  • 9] Civalek, Ö., Fundamental frequency of isotropic and orthotropic rectangular plates with linearly varying thickness by discrete singular convolution method, Applied Mathematical Modelling, 33(10), 3825-3835, 2009.
  • 0] Akgöz, B., Civalek, Ö., Longitudinal vibration analysis for microbars based on strain gradient elasticity theory, Journal of Vibration and Control, 20(4), 606-616, 2014.
  • 1] Challamel, N., Wang, C.M., Elishakoff, I., Discrete systems behave as nonlocal structural elements; bending buckling and vibration analysis, Euro. J. Mech. A/Solids, 44, 125-135, 2014.
  • 2] Peddieson, J., Buchanan, G.R., McNitt, R.P., Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312, 2003.
Year 2015, , 34 - 45, 01.12.2015
https://doi.org/10.24107/ijeas.251256

Abstract

References

  • Han, H.C., A biomechanical model of artery buckling, Journal of Biomechanics, 40, 3672-3678, 2007.
  • Hayman, M. H., Zhang, J., Liu, Q., Xiao Y., Han H. C., Smooth muscle cell contraction increases the critical buckling pressure of arteries, Journal of Biomechanics, 46, 841-844, 2013.
  • Han, H.C., Nonlinear buckling of blood vessels: A theoretical study, Journal of Biomechanics, 41, 2708-2713, 2008.
  • Liu, Q., Han, H.C., Mechanical buckling of artery under pulsatile pressure, Journal of Biomechanics, 45, 1192-1198, 2012.
  • Han, H.C., Blood vessel buckling within soft surrounding tissue generates tortuosity, Journal of Biomechanics, 42, 2797-2801, 2009.
  • Lee, A. Y., Han, H.C., A nonlinear Thin-Wall Model for Vein Buckling, Cardiovascular Engineering and Technology, 1, 282-289, 2010.
  • Liu, Q., Han, H.C., Mechanical buckling of arterioles in collateral development, Journal of Theoretical Biology, 316, 42-48, 2013.
  • Lee, A. Y., Sanyal, A., Xiao, Y., Shadfan, R., Han, H.C., Mechanical instability of normal and aneurysmal arteries, Journal of Biomechanics, 47, 3868-3875, 2014.
  • Han, H.C., Chesnutt, J. K., Garcia, J. R., Liu, Q., Wen, Q., Artery Buckling: New Phenotypes, Models, and Applications, Annals of Biomedical Engineering, 41, 1399-1410, 2012.
  • 0] Datir, P., Lee, A. Y., Lamm, S. D., Han, H.C., Effects of Geometric Variations on the Buckling of Arteries, Int. J. Appl. Mech., 3(2), 385-406, 2011.
  • 1] Ganguly, A., Simons, J., Schneider, A., Keck, B., Bennett, N. R., Fahrig, R., In-vitro Imaging of Femoral Artery Nitinol Stents for Deformation Analysis, Journal of Vascular and Interventional Radiolog, 22(2), 236-243, 2011.
  • 2] Christensen, E. E., Landay, M. J., Dietz, G. W., Brinley, G., Buckling of the innominate artery simulating a right apical lung mass. American Journal of Roentgenology, 131, 119-123, 1978.
  • 3] Arani, A. T., Arani, A. G., Kolahchi, R., Non-Newtonian pulsating blood flow-induced dynamic instability of visco-carotid artery within soft surrounding visco-tissue using differential cubature method, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0954406214566038, 2015.
  • 4] Chen, W.F., Lui, E.M., Structural Stability, Elsevier, New York/Amsterdam/London, 1987.
  • 5] Ajori, S. and Ansari, R., Torsional buckling behavior of boron-nitride nanotubes using molecular dynamics simulations, Curr. Appl. Phys., 14, 1072-1077, 2014.
  • 6] Arani, A. G., Jamali, S. A., Amir, S., Maboudi, M. J., Electro-thermo-mechanical nonlinear buckling of Pasternak coupled DWBNNTs based on nonlocal piezoelasticity theory, Turkish J. Eng. Env. Sci., 37, 231-246, 2013.
  • 7] Shokuhfar, A., Ebrahimi-Nejad, S., Effects of structural defects on the compressive buckling of boron nitride nanotubes, Physica E, 48, 53-60, 2013.
  • 8] Ansari, R. and Ajori, S., Molecular dynamics study of the torsional vibration characteristics of boron-nitride nanotubes, Physics Letters A, 378, 2876-2880, 2014.
  • 9] Chowdhury, R., Wang, C. Y., Adhikari, S., Scarpa, F., Vibration and symmetrybreaking of boron nitride nanotubes, Nanotechnology, 21, 365702-365711, 2010.
  • 0] Arani, A. G. and Roudbari, M. A., Nonlocal piezoelastic surface effect on the vibration of visco-Pasternak coupled boron nitride nanotube system under a moving nanoparticle, Thin Solid Films, 542, 232-241, 2013.
  • 1] Panchal, M. B. and Upadhyay, S. H., Cantilevered single walled boron nitride nanotube based nanomechanical resonators of zigzag and armchair forms, Physica E, 50, 73-82, 2013.
  • 2] Yan, Z. and Jiang, L. Y., The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects, Nanotechnology, 22, 245703-245710, 2011.
  • 3] H. L. Lee, R. P. Chang, W.-J. Chang, Buckling analysis of nonuniform nanowires under axial compression, Proceedings of the world congrees on engineering, 3 (2011).
  • 4] Samaei, A. T., Bakhtiari, M., Wang ,G. F., Timoshenko beam model for buckling of piezoelectric nanowires with surface effects, Nanoscale research letters, 7, 1-6, 2012.
  • 5] Lee , H. L. and Chang, W. J, Surface effects on axial buckling of nonuniform nanowires using non-local elasticity theory, Micro & nano letters, 6(1), 19-21, 2011.
  • 6] Chiu, M. S. and Chen, T., Higher-order surface stress effects on buckling of nanowires under uniaxial compression, Procedia engineering, 10, 397-402,2011.
  • 7] Yao, H. and Yun, G., The effect of nonuniform surface surface elasticity on buckling of ZnO nanowires, Physica E, 44, 1916-1919, 2012.
  • 8] Reddy, J. N., Nonlocal continuum theories of beams for the analysis of carbon nanotubes, Journal of applied physics, 103, 023511, 2008.
  • 9] Arda, M. and Aydogdu, M., Analysis of free torsional vibration in carbon nanotubes embedded in a viscoelastic medium, Advances in science and technology research journal, 9(26), 28-33, 2015.
  • 0] Mohammadimehr, M., Mohandes, M., Moradi, M., Size dependent effect on the buckling and vibration analysis of double-bonded nanocomposite piezoelectric plate reinforced by boron nitride nanotube based on modified couple stress theory, Journal of vibration and control, 1077546314544513, 2014.
  • 1] Sahmani,, S. and Ansari, R., Nonlocal beam models for buckling of nanobeams using state-space method regarding different boundary conditions, Journal of mechanical science and technology, 25(9), 2365-2375, 2011.
  • 2] Kumar, D., Heinrich, C., Waas, A. M., Buckling analysis of carbon nanotubes modeled using nonlocal continuum theories, Journal of applied physics, 103(7), 073521, 2008.
  • 3] Sudak, L. J., Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics, Journal of applied physics, 94(11), 7281-7287, 2003.
  • 4] Juntarasaid, C., Pulngern, T., Chucheepsakul, S., Bending and buckling of nanowires including the effects of surface stress and nonlocal elasticity, Physica E, 46, 68-76, 2012.
  • 5] Wang, Q., Varadan, V. K., Quek, S. T., Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models, Physics letters A, 357, 130-135, 2006.
  • 6] Khademolhosseini, F., Rajapakse, R. K. N. D., Nojeh, A., Torsional buckling of carbon nanotubes based on nonlocal elasticity shell models, Computational materials science, 48, 736-742, 2010.
  • 7] Civalek, Ö., Demir, Ç., Buckling and bending analyses of cantilever carbon nanotubes using the euler-bernoulli beam theory based on non-local continuum model, Asian Journal of Civil Engineering, 12(5), 651-661, 2011.
  • 8] Akgöz, B., Civalek, Ö., Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams, International Journal of Engineering Science, 49(11), 1268-1280, 2011.
  • 9] Akgöz, B., Civalek, Ö., Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity, Structural Engineering and Mechanics, 48(2), 195-205, 2013.
  • 0] Akgöz, B., Civalek, Ö., Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories, Journal of Computational and Theoretical Nanoscience, 8(9), 1821-1827, 2011.
  • 1] Akgöz, B., Civalek, Ö., A new trigonometric beam model for buckling of strain gradient microbeams, International Journal of Mechanical Sciences, 81, 88-94, 2014.
  • 2] Civalek, Ö., Akgöz, B., Vibration analysis of micro-scaled sector shaped graphene surrounded by an elastic matrix, Computational Materials Science, 77, 295-303, 2013.
  • 3] Akgöz, B., Civalek, Ö., A novel microstructure-dependent shear deformable beam model, International Journal of Mechanical Sciences, 99, 10-20, 2015.
  • 4] Emsen, E., Mercan, K., Akgöz, B., Civalek, Ö., Modal Analysis Of Tapered Beam-Column Embedded In Winkler Elastic Foundation, International Journal of Engineering & Applied Sciences, 7(1), 25-35, 2015.
  • 5] Mercan, K., Demir, Ç., Akgöz, B., Civalek, Ö., Coordinate Transformation for Sector and Annular Sector Shaped Graphene Sheets on Silicone Matrix, International Journal of Engineering & Applied Sciences, 7(2), 56-73, 2015.
  • 6] Akgöz, B., Civalek, Ö., Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium, International Journal of Engineering Science 85, 90-104 , 2014 .
  • 7] Civalek, Ö., The determination of frequencies of laminated conical shells via the discrete singular convolution method, Journal of Mechanics of Materials and Structures, 1(1), 163-182 , 2006.
  • 8] Civalek, Ö., Gürses, M., Free vibration analysis of rotating cylindrical shells using discrete singular convolution technique, International Journal of Pressure Vessels and Piping, 86(10), 677-683 , 2009.
  • 9] Civalek, Ö., Fundamental frequency of isotropic and orthotropic rectangular plates with linearly varying thickness by discrete singular convolution method, Applied Mathematical Modelling, 33(10), 3825-3835, 2009.
  • 0] Akgöz, B., Civalek, Ö., Longitudinal vibration analysis for microbars based on strain gradient elasticity theory, Journal of Vibration and Control, 20(4), 606-616, 2014.
  • 1] Challamel, N., Wang, C.M., Elishakoff, I., Discrete systems behave as nonlocal structural elements; bending buckling and vibration analysis, Euro. J. Mech. A/Solids, 44, 125-135, 2014.
  • 2] Peddieson, J., Buchanan, G.R., McNitt, R.P., Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312, 2003.
There are 52 citations in total.

Details

Subjects Engineering
Other ID JA66EU63GF
Journal Section Articles
Authors

Kadir Mercan This is me

Ömer Civalek This is me

Publication Date December 1, 2015
Published in Issue Year 2015

Cite

APA Mercan, K., & Civalek, Ö. (2015). A Simple Buckling Analysis Of Aorta Artery. International Journal of Engineering and Applied Sciences, 7(4), 34-45. https://doi.org/10.24107/ijeas.251256
AMA Mercan K, Civalek Ö. A Simple Buckling Analysis Of Aorta Artery. IJEAS. December 2015;7(4):34-45. doi:10.24107/ijeas.251256
Chicago Mercan, Kadir, and Ömer Civalek. “A Simple Buckling Analysis Of Aorta Artery”. International Journal of Engineering and Applied Sciences 7, no. 4 (December 2015): 34-45. https://doi.org/10.24107/ijeas.251256.
EndNote Mercan K, Civalek Ö (December 1, 2015) A Simple Buckling Analysis Of Aorta Artery. International Journal of Engineering and Applied Sciences 7 4 34–45.
IEEE K. Mercan and Ö. Civalek, “A Simple Buckling Analysis Of Aorta Artery”, IJEAS, vol. 7, no. 4, pp. 34–45, 2015, doi: 10.24107/ijeas.251256.
ISNAD Mercan, Kadir - Civalek, Ömer. “A Simple Buckling Analysis Of Aorta Artery”. International Journal of Engineering and Applied Sciences 7/4 (December 2015), 34-45. https://doi.org/10.24107/ijeas.251256.
JAMA Mercan K, Civalek Ö. A Simple Buckling Analysis Of Aorta Artery. IJEAS. 2015;7:34–45.
MLA Mercan, Kadir and Ömer Civalek. “A Simple Buckling Analysis Of Aorta Artery”. International Journal of Engineering and Applied Sciences, vol. 7, no. 4, 2015, pp. 34-45, doi:10.24107/ijeas.251256.
Vancouver Mercan K, Civalek Ö. A Simple Buckling Analysis Of Aorta Artery. IJEAS. 2015;7(4):34-45.

21357download