Research Article
BibTex RIS Cite

Determination of Liquefaction Potential of Tabriz City, Northwest of Iran

Year 2021, Volume: 3 Issue: 1, 240 - 256, 15.07.2021
https://doi.org/10.47898/ijeased.861766

Abstract

The city of Tabriz, located in Northwestern Iran, is one of the seismo-tectonically active regions of Iran. Historical earthquake sequences of this area show that the recurrence interval of earthquakes with M>6 can be estimated equal to 250 years (while some larger earthquakes with M>7 have been reported in the literature). Based on this knowledge, the occurrence of a large earthquake in the city of Tabriz is expected for upcoming decades. Therefore, evaluating the potential of liquefaction (as one of the significant hazards induced by earthquakes) and providing an appropriate hazard zonation map for this city is necessary for pre-crisis management. To this aim, different methods are applied to assess the potential of liquefaction in the study area and a comparison between their results is presented in this paper. Methods based on the standard penetration test and fully coupled finite element site response modeling are employed to investigate the potential of liquefaction. In this study, it has been shown that some populated areas of the studied city have been built in liquefiable regions and therefore necessary measures should be taken by city authorities for these regions.

References

  • Architectural Institute of Japan. (2001). Recommendations for design of building foundations.
  • Bahari, B., Hwang, W., Kim, T. H., and Song, Y. S. (2020). Estimation of liquefaction potential in Eco-Delta City (Busan) using different approaches with effect of fines content. International Journal of Geo-Engineering, 11(1), 1-30.
  • Barzegari, G., and Zhao J. (2014). EPB tunneling challenges in bouldery ground: a new experience on the Tabriz metro line 1, Iran. Bulletin of Engineering Geology and the Environment, 73(2):429-440. doi:10.1007/s10064-013-0490-7
  • Barzegari, G., Shayan, F., and Chakeri H. (2018). Investigations on Geotechnical Aspects for TBM Specification on the Tabriz Metro Line 3, Iran. Geotechnical and Geological Engineering, 36(6), 3639-3663. https://doi.org/10.1007/s10706-018-0563-2
  • Byrne, P. M., (1999). Model for Predicting Liquefaction Induced Displacements. Internatıonal Conferences On Recent Advances In Geotechnical Earthquake Engineering and Soil Dynamics, Department of Civil Engineering, The University of British Columbia.
  • Cabalar, A. F., Canbolat, A., Akbulut, N., Tercan, S. H., and Isik, H. (2019). Soil liquefaction potential in Kahramanmaras, Turkey. Geomatics, Natural Hazards and Risk, 10(1), 1822-1838.
  • Campbell, K.W. (1997). Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra. Seismological research letters, 68(1), 154-179.
  • Ganapathy, G. P., and Rajawat, A. S. (2012). Evaluation of liquefaction potential hazard of Chennai city, India: using geological and geomorphological characteristics. Natural hazards, 64(2), 1717-1729.
  • Goh, A. T. (1994). Seismic liquefaction potential assessed by neural networks. Journal of Geotechnical engineering, 120(9), 1467-1480.
  • International society for soil mechanics and foundation engineering. Technical committee for earthquake geotechnical engineering. (1993). Manual for Zonation on Seismic Geotechnical Hazards. Japanese Society of soil mechanics and Foundation engineering.
  • Jafarian, Y., Abdollahi, A. S., Vakili, R., Baziar, M. H., and Noorzad, A. (2011). On the efficiency and predictability of strain energy for the evaluation of liquefaction potential: A numerical study. Computers and Geotechnics, 38(6), 800-808.
  • Kajihara, K., Okuda, H., Kiyota, T., and Konagai, K. (2020). Mapping of liquefaction risk on road network based on relationship between liquefaction potential and liquefaction-induced road subsidence. Soils and Foundations, 60(5), 1202-1214.
  • Kijko A., (2004). Estimation of the maximum earthquake magnitude, mmax. Pure and Applied Geophysics, 161(8), 1655-81.
  • Kijko, A., and Öncel, A. O. (2000). Probabilistic seismic hazard maps for the Japanese islands. Soil Dynamics and Earthquake Engineering. 20, 485-491. https://doi.org/10.1016/S0267-7261(00)00098-1
  • Monkul, M. M., Gültekin, C., Gülver, M., Akın, Ö., and Eseller-Bayat, E. (2015). Estimation of liquefaction potential from dry and saturated sandy soils under drained constant volume cyclic simple shear loading. Soil Dynamics and Earthquake Engineering, 75, 27-36.
  • Moss, R. E., Seed, R. B., Kayen, R. E., Stewart, J. P., Der Kiureghian, A., and Cetin, K. O. (2006). CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering, 132(8), 1032-1051.
  • Mousavi, H., Mirzaei, N., Shabani, E., and Eskandari, Ghadi M. (2014). Seismic hazard zoning in Iran and estimating peak ground acceleration in provincial capitals. Journal of the Earth and Space Physics, 40(4),15-38. doi:10.22059/JESPHYS.2014.52404
  • Razeghi, H. R., Amiri, G. G., Amrei, S. R., and Rahimi, M. A. (2016). Probabilistic seismic hazard analyses and obtaining uniform hazard spectra of Tabriz, Iran, KSCE Journal of Civil Engineering, 20(5), 1813-1823. doi:10.1007/s12205-015-0175-9
  • Sassa, S., and Yamazaki, H. (2017). Simplified liquefaction prediction and assessment method considering waveforms and durations of earthquakes. Journal of Geotechnical and Geoenvironmental Engineering, 143(2), 04016091.
  • Seed Bolton, H., and Idriss, I. M. (1971). Simplified procedure for evaluating soil liquefaction potential. Journal of Soil Mechanics and Foundations, ASCE, 97(9), 1249-1273.
  • Tosun, H., Seyrek, E., Orhan, A., Savaş, H., and Türköz, M. U. R. A. T. (2011). Soil liquefaction potential in Eskişehir, NW Turkey. Natural Hazards and Earth System Sciences, 11(4), 1071-1082.
  • Yalcin, A., Gokceoglu, C., and Sönmez, H. (2008). Liquefaction severity map for Aksaray city center (Central Anatolia, Turkey). Natural Hazards and Earth System Sciences, 8(4), 641-649.
  • Yegian, M. K., Nogole-Sadat, M. A. A., Ghahraman, V. G., and Darai H. (1993). Liquefaction Case Histories from 1990 Manjil, Iran, Earthquake. Third Int. Conf. on Case Histories in Geotechnical Engineering (pp 613-615). St. Louis, Missouri.
  • Yilmaz, I., and Yavuzer, D. (2005). Liquefaction potential and susceptibility mapping in the city of Yalova, Turkey. Environmental Geology, 47(2), 175-184.
  • Zare, M., and Sabzali S. (2006). Spectral attenuation of strong motions in Iran. Proc. of The Third Int. Symp. Of The Effects Of Surface Geology On Seismic Motion (PP.345-354), Grenoble, France.

Tebriz Şehrinin Sıvılaşma Potansiyelinin Belirlenmesi, İran'ın Kuzeybatısı

Year 2021, Volume: 3 Issue: 1, 240 - 256, 15.07.2021
https://doi.org/10.47898/ijeased.861766

Abstract

İranın Kuzeybatısında bulunan Tebriz şehri, sismotektonik olarak İranın aktif bölgelerinden biridir. Bu bölgedeki tarihsel depremlere bakıldığında büyüklüğü 6 ‘ın üzerinde olan depremlerin tekrarlanma sıklığının 250 yıla eşit olarak tahmin edilebileceğini görülmektedir (literatürde büyüklüğü 7’ den fazla olan bazı büyük depremler bildirilmiştir). Bu bilgilere ışığında, önümüzdeki yıllarda Tebriz şehrinde büyük bir depremin meydana gelmesi beklenmektedir. Bu nedenle, sıvılaşma potansiyelini (depremlerin neden olduğu önemli tehlikelerden biri olarak) değerlendirmek ve şehir için uygun bir tehlike haritası oluşturmak önem arz etmektedir. Bu amaçla bu makalede, çalışma alanındaki sıvılaşma potansiyelini değerlendirmek için literatürde yer alan farklı yöntemler uygulanmış ve elde edilen sonuçlar karşılaştırılmıştır. Sıvılaşma potansiyelini araştırmak için standart penetrasyon deneyi ve saha tepki analizlerine dayanan sonlu elemanlar yöntemi kullanılmıştır. Bu çalışmada, Tebriz’de nüfusun kalabalık olduğu bazı bölgelerin sıvılaşabilir olduğu gösterilmiştir. Bu veriler ışığında vakit kaybetmeden gerekli tedbirlerin alınması gerektiği sonucuna ulaşılmıştır.

References

  • Architectural Institute of Japan. (2001). Recommendations for design of building foundations.
  • Bahari, B., Hwang, W., Kim, T. H., and Song, Y. S. (2020). Estimation of liquefaction potential in Eco-Delta City (Busan) using different approaches with effect of fines content. International Journal of Geo-Engineering, 11(1), 1-30.
  • Barzegari, G., and Zhao J. (2014). EPB tunneling challenges in bouldery ground: a new experience on the Tabriz metro line 1, Iran. Bulletin of Engineering Geology and the Environment, 73(2):429-440. doi:10.1007/s10064-013-0490-7
  • Barzegari, G., Shayan, F., and Chakeri H. (2018). Investigations on Geotechnical Aspects for TBM Specification on the Tabriz Metro Line 3, Iran. Geotechnical and Geological Engineering, 36(6), 3639-3663. https://doi.org/10.1007/s10706-018-0563-2
  • Byrne, P. M., (1999). Model for Predicting Liquefaction Induced Displacements. Internatıonal Conferences On Recent Advances In Geotechnical Earthquake Engineering and Soil Dynamics, Department of Civil Engineering, The University of British Columbia.
  • Cabalar, A. F., Canbolat, A., Akbulut, N., Tercan, S. H., and Isik, H. (2019). Soil liquefaction potential in Kahramanmaras, Turkey. Geomatics, Natural Hazards and Risk, 10(1), 1822-1838.
  • Campbell, K.W. (1997). Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra. Seismological research letters, 68(1), 154-179.
  • Ganapathy, G. P., and Rajawat, A. S. (2012). Evaluation of liquefaction potential hazard of Chennai city, India: using geological and geomorphological characteristics. Natural hazards, 64(2), 1717-1729.
  • Goh, A. T. (1994). Seismic liquefaction potential assessed by neural networks. Journal of Geotechnical engineering, 120(9), 1467-1480.
  • International society for soil mechanics and foundation engineering. Technical committee for earthquake geotechnical engineering. (1993). Manual for Zonation on Seismic Geotechnical Hazards. Japanese Society of soil mechanics and Foundation engineering.
  • Jafarian, Y., Abdollahi, A. S., Vakili, R., Baziar, M. H., and Noorzad, A. (2011). On the efficiency and predictability of strain energy for the evaluation of liquefaction potential: A numerical study. Computers and Geotechnics, 38(6), 800-808.
  • Kajihara, K., Okuda, H., Kiyota, T., and Konagai, K. (2020). Mapping of liquefaction risk on road network based on relationship between liquefaction potential and liquefaction-induced road subsidence. Soils and Foundations, 60(5), 1202-1214.
  • Kijko A., (2004). Estimation of the maximum earthquake magnitude, mmax. Pure and Applied Geophysics, 161(8), 1655-81.
  • Kijko, A., and Öncel, A. O. (2000). Probabilistic seismic hazard maps for the Japanese islands. Soil Dynamics and Earthquake Engineering. 20, 485-491. https://doi.org/10.1016/S0267-7261(00)00098-1
  • Monkul, M. M., Gültekin, C., Gülver, M., Akın, Ö., and Eseller-Bayat, E. (2015). Estimation of liquefaction potential from dry and saturated sandy soils under drained constant volume cyclic simple shear loading. Soil Dynamics and Earthquake Engineering, 75, 27-36.
  • Moss, R. E., Seed, R. B., Kayen, R. E., Stewart, J. P., Der Kiureghian, A., and Cetin, K. O. (2006). CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering, 132(8), 1032-1051.
  • Mousavi, H., Mirzaei, N., Shabani, E., and Eskandari, Ghadi M. (2014). Seismic hazard zoning in Iran and estimating peak ground acceleration in provincial capitals. Journal of the Earth and Space Physics, 40(4),15-38. doi:10.22059/JESPHYS.2014.52404
  • Razeghi, H. R., Amiri, G. G., Amrei, S. R., and Rahimi, M. A. (2016). Probabilistic seismic hazard analyses and obtaining uniform hazard spectra of Tabriz, Iran, KSCE Journal of Civil Engineering, 20(5), 1813-1823. doi:10.1007/s12205-015-0175-9
  • Sassa, S., and Yamazaki, H. (2017). Simplified liquefaction prediction and assessment method considering waveforms and durations of earthquakes. Journal of Geotechnical and Geoenvironmental Engineering, 143(2), 04016091.
  • Seed Bolton, H., and Idriss, I. M. (1971). Simplified procedure for evaluating soil liquefaction potential. Journal of Soil Mechanics and Foundations, ASCE, 97(9), 1249-1273.
  • Tosun, H., Seyrek, E., Orhan, A., Savaş, H., and Türköz, M. U. R. A. T. (2011). Soil liquefaction potential in Eskişehir, NW Turkey. Natural Hazards and Earth System Sciences, 11(4), 1071-1082.
  • Yalcin, A., Gokceoglu, C., and Sönmez, H. (2008). Liquefaction severity map for Aksaray city center (Central Anatolia, Turkey). Natural Hazards and Earth System Sciences, 8(4), 641-649.
  • Yegian, M. K., Nogole-Sadat, M. A. A., Ghahraman, V. G., and Darai H. (1993). Liquefaction Case Histories from 1990 Manjil, Iran, Earthquake. Third Int. Conf. on Case Histories in Geotechnical Engineering (pp 613-615). St. Louis, Missouri.
  • Yilmaz, I., and Yavuzer, D. (2005). Liquefaction potential and susceptibility mapping in the city of Yalova, Turkey. Environmental Geology, 47(2), 175-184.
  • Zare, M., and Sabzali S. (2006). Spectral attenuation of strong motions in Iran. Proc. of The Third Int. Symp. Of The Effects Of Surface Geology On Seismic Motion (PP.345-354), Grenoble, France.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Masoud Hajialilue Bonab 0000-0003-2865-2492

Mahdi Asadiyan 0000-0001-8120-7908

Hamidreza Tohıdvand 0000-0003-2849-4383

Muhammed Mahmudi 0000-0002-3937-3571

Publication Date July 15, 2021
Submission Date January 15, 2021
Published in Issue Year 2021 Volume: 3 Issue: 1

Cite

APA Hajialilue Bonab, M., Asadiyan, M., Tohıdvand, H., Mahmudi, M. (2021). Determination of Liquefaction Potential of Tabriz City, Northwest of Iran. Uluslararası Doğu Anadolu Fen Mühendislik Ve Tasarım Dergisi, 3(1), 240-256. https://doi.org/10.47898/ijeased.861766