Research Article
BibTex RIS Cite
Year 2021, Volume: 8 Issue: 4, 203 - 210, 31.12.2021
https://doi.org/10.31593/ijeat.1029803

Abstract

Supporting Institution

yok

Project Number

-

Thanks

yok

References

  • Dilaver, E., Turbofan Motorlar ve Çalışma Sistemi, 2014. https://www.slideshare.net/dilaverhan/turbofan-motorlar-ve-alima-sistemi. (10 September 2021).
  • Turan, Ö. 2000. “Gaz Türbinli Motorlarda Performans Analizi ve Değerlendirme Programları”. Master thesis, Anadolu Üniversitesi, Sivil Havacılık Anabilim Dalı, Eskişehir, Türkiye, 109-112.
  • Gökeniş, F. ve Kodal, A. 2021. “Artyanmalı Turbojet Motoru Performans Analizi ve Öndizaynı”. Thesis, İstanbul Teknik Üniversitesi, Uçak ve Uzay Bilimleri Fakültesi, İstanbul, Türkiye, 1-18 http://siga.uubf.itu.edu.tr/uubftez/upload/itu/uubf/ucak/Furkan_Gokenis-ucak-20210128.pdf. (10 september 2021).
  • Patel, H. R. 2016. “Parametric Cycle Analysis Of Adaptive Cycle Engine”. Master thesis, The Unıversıty Of Texas At Arlıngton, Aerospace Engineering, Arlington, USA, 4-51.
  • Liew, K. H., Urip, E. and Yang, S. L. 2005. Parametric cycle analysis of a turbofan engine with an interstage turbine burner. Journal of propulsion and power, 21(3). 546-551.
  • Dankanich, A. and Peters, D. 2017. Turbofan Engine Bypass Ratio as a Function of Thrust and Fuel Flow. Mechanical Engineering and Materials Science, Washington University, Independent Study. 34.
  • Shwin, K. 2010. On-design cycle analysis of a separate-flow turbofan engine with an interstage turbine burner. In 2010 Second International Conference on Computer Modeling and Simulation, 22-24 January., Vol.4, Sanya, China, 21-24.
  • Krishnaraj, R. and Wessley, G. J. J. 2018. Performance Analysis of a Micro Turbofan Engine using Matlab and GSP Intended for the Propulsion of Male UAVs. International Journal of Pure and Applied Mathematics, 118(20), 157-163.
  • Onal, O. and Turan, O. 2016. Calculation and Comparison of a turbofan engine performance parameters with various definitions. International Journal of Aerospace and Mechanical Engineering, 10(10), 1751-1755.
  • Turan, Ö., Orhan İ. and Karakoç, O. 2012. Yüksek Bypasslı Turbofan Motorlarının Performans Analizleri ile İlgili Bilgisayar Yazılımı Geliştirme. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 1(1), 21-40.
  • Ekici, S., Şöhret, Y. and Karakoç, T. H. 2017. Turbojet Motorlar İçin Performans Değerlendirme Parametreleri. Journal of Aviation, 1(1), 32-38.
  • Domitrovidr, A., Bazijanacr, E. and Stojkoviiz, V. 2002. Mathematical Model For Prediction Of Single-Spool Turbojet Engine Off-Design Performance. First Simposyum Of Explosive Materials, Weapons And Military Technology. 25-28 September, Ohrid, Macedonia, 511-519.
  • Swamy, Y. M. 2012. Parametric Analysis of a Detonation-Type Turbofan. Master thesis, The University Of Texas At Arlington, Aerospace Engineering, Arlington, USA, 14-44.
  • Turan, Ö. and Karakoç, T. H. 2009. Ardyanmalı Ve Ayrık Akışlı Turbofanlarda Fan Basınç Oranı Ve Bypass Oranıyla Toplam Verimin Değişiminin İncelenmesi. Journal of Aeronautics and Space Technologies, 4(2), 67-76.
  • Parker, K. I. and Guo, T. H. 2003. Development of a turbofan engine simulation in a graphical simulation environment. Glenn Research Center, Cleveland, Ohio, USA.
  • Gorji, M., Kazemi, A. And Ganji, D. D. 2012. Thermodynamic Study of Turbofan Engine in Off-Design Conditions. Journal of Basic and Applied Scientific Research, 2(11), 11239-11253.
  • Roux, J. A. 2011. Parametric ideal scramjet cycle analysis. Journal of Thermophysics and Heat Transfer, 25(4), 581-585.
  • Liu, F. and Sirignano, W. A. 2001. Turbojet and turbofan engine performance increases through turbine burners. Journal of propulsion and power, 17(3), 695-705.
  • Durmuş, S. and Akyüz, M.K. 2020. Effect Of Compressıon Ratıo And Turbıne Inlet Temperature On Turboprop Engıne Performance. International Engineering and Natural Sciences Conference, 5-6 November, Diyarbakır, Turkey, 299-307.
  • Moore, J. 2016. “Parametric ideal cycle analysis of a scramjet engine at a constant combustion mach number”. Ph.D. thesis, Mechanical Engineering University of Missouri, Columbia, America, 6-40.
  • Montgomerie, B. Design of a turbofan engine cycle with afterburner for a conceptual UAV, 2005. Scientific report, FOI-R-1835—SE, ISSN 1650-1942.
  • Bayir M. and Alquadah B., D. F-16 Turbofan Motorlarında İtki-Bypass Oranlarının Karşılaştırılması. Milli Savunma Üniversitesi Hava Harp Okulu Havacılık ve Uzay Mühendisliği Bölümü Bitirme Projesi, 2019.
  • Nordqvist, M., Kareliusson, J., da Silva, E. R. and Kyprianidis, K. 2017. Conceptual Design of a Turbofan Engine for a Supersonic Business Jet. In International Symposium on Air Breathing Engines, ISABE 2017, 3-8 September Manchester, United Kingdom, 2580-2597.
  • Glenn Research Center. Turbofan Engine, https://www.grc.nasa.gov/www/k-12/airplane/aturbf.html (13 October 2021)
  • Mattingly, J. D. Elements of gas turbine propulsion. Second edition, American Institute of Aeronautics and Astronautics, USA, 1996.
  • Wikipedia, Specific Thrust, 2018. https://en.wikipedia.org/wiki/Specific_thrust (14 September 2021)
  • Farokhi, S. Aircraft propulsion. Second edition, John Wiley & Sons, USA, 2014.
  • Mattingly, J. D. Aircraft engine design. Second edition, American Institute of Aeronautics and Astronautics, USA, 2002.
  • NASA, Specific Thrust, 2016. https://www.grc.nasa.gov/www/k-12/airplane/specth.html (02 October 2021).

Examination of parametric cycle analysis of a turbofan engine with Python code

Year 2021, Volume: 8 Issue: 4, 203 - 210, 31.12.2021
https://doi.org/10.31593/ijeat.1029803

Abstract

In this study, the performance analysis of the engine was carried out according to the parameters determined by parametric cycle analysis in turbofan engines with afterburner and separate exhaust streams. The main purpose of the study is to determine the relationship between engine performance values, design parameters and flight ambient values. For this, the effects of Mach number, compressor pressure ratio and bypass ratio values on specific thrust, fuel-air ratio, specific fuel consumption and engine efficiency were investigated. The open source code PYTHON programming language was used in the study and the results were presented as graphically. Results consistent with the studies in the literature were obtained. According to the results, it was observed that the specific thrust values and the total efficiency values increased with the increase of the Mach number. On the other hand, with the increase of the Mach number, the fuel-air ratio decreased and more fuel consumption was required to provide the required thrust value. In the case of afterburning, as the bypass ratio increases, the specific thrust value and the total efficiency value decrease, whereas the specific fuel consumption of turbofan engines without afterburning increases.

Project Number

-

References

  • Dilaver, E., Turbofan Motorlar ve Çalışma Sistemi, 2014. https://www.slideshare.net/dilaverhan/turbofan-motorlar-ve-alima-sistemi. (10 September 2021).
  • Turan, Ö. 2000. “Gaz Türbinli Motorlarda Performans Analizi ve Değerlendirme Programları”. Master thesis, Anadolu Üniversitesi, Sivil Havacılık Anabilim Dalı, Eskişehir, Türkiye, 109-112.
  • Gökeniş, F. ve Kodal, A. 2021. “Artyanmalı Turbojet Motoru Performans Analizi ve Öndizaynı”. Thesis, İstanbul Teknik Üniversitesi, Uçak ve Uzay Bilimleri Fakültesi, İstanbul, Türkiye, 1-18 http://siga.uubf.itu.edu.tr/uubftez/upload/itu/uubf/ucak/Furkan_Gokenis-ucak-20210128.pdf. (10 september 2021).
  • Patel, H. R. 2016. “Parametric Cycle Analysis Of Adaptive Cycle Engine”. Master thesis, The Unıversıty Of Texas At Arlıngton, Aerospace Engineering, Arlington, USA, 4-51.
  • Liew, K. H., Urip, E. and Yang, S. L. 2005. Parametric cycle analysis of a turbofan engine with an interstage turbine burner. Journal of propulsion and power, 21(3). 546-551.
  • Dankanich, A. and Peters, D. 2017. Turbofan Engine Bypass Ratio as a Function of Thrust and Fuel Flow. Mechanical Engineering and Materials Science, Washington University, Independent Study. 34.
  • Shwin, K. 2010. On-design cycle analysis of a separate-flow turbofan engine with an interstage turbine burner. In 2010 Second International Conference on Computer Modeling and Simulation, 22-24 January., Vol.4, Sanya, China, 21-24.
  • Krishnaraj, R. and Wessley, G. J. J. 2018. Performance Analysis of a Micro Turbofan Engine using Matlab and GSP Intended for the Propulsion of Male UAVs. International Journal of Pure and Applied Mathematics, 118(20), 157-163.
  • Onal, O. and Turan, O. 2016. Calculation and Comparison of a turbofan engine performance parameters with various definitions. International Journal of Aerospace and Mechanical Engineering, 10(10), 1751-1755.
  • Turan, Ö., Orhan İ. and Karakoç, O. 2012. Yüksek Bypasslı Turbofan Motorlarının Performans Analizleri ile İlgili Bilgisayar Yazılımı Geliştirme. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 1(1), 21-40.
  • Ekici, S., Şöhret, Y. and Karakoç, T. H. 2017. Turbojet Motorlar İçin Performans Değerlendirme Parametreleri. Journal of Aviation, 1(1), 32-38.
  • Domitrovidr, A., Bazijanacr, E. and Stojkoviiz, V. 2002. Mathematical Model For Prediction Of Single-Spool Turbojet Engine Off-Design Performance. First Simposyum Of Explosive Materials, Weapons And Military Technology. 25-28 September, Ohrid, Macedonia, 511-519.
  • Swamy, Y. M. 2012. Parametric Analysis of a Detonation-Type Turbofan. Master thesis, The University Of Texas At Arlington, Aerospace Engineering, Arlington, USA, 14-44.
  • Turan, Ö. and Karakoç, T. H. 2009. Ardyanmalı Ve Ayrık Akışlı Turbofanlarda Fan Basınç Oranı Ve Bypass Oranıyla Toplam Verimin Değişiminin İncelenmesi. Journal of Aeronautics and Space Technologies, 4(2), 67-76.
  • Parker, K. I. and Guo, T. H. 2003. Development of a turbofan engine simulation in a graphical simulation environment. Glenn Research Center, Cleveland, Ohio, USA.
  • Gorji, M., Kazemi, A. And Ganji, D. D. 2012. Thermodynamic Study of Turbofan Engine in Off-Design Conditions. Journal of Basic and Applied Scientific Research, 2(11), 11239-11253.
  • Roux, J. A. 2011. Parametric ideal scramjet cycle analysis. Journal of Thermophysics and Heat Transfer, 25(4), 581-585.
  • Liu, F. and Sirignano, W. A. 2001. Turbojet and turbofan engine performance increases through turbine burners. Journal of propulsion and power, 17(3), 695-705.
  • Durmuş, S. and Akyüz, M.K. 2020. Effect Of Compressıon Ratıo And Turbıne Inlet Temperature On Turboprop Engıne Performance. International Engineering and Natural Sciences Conference, 5-6 November, Diyarbakır, Turkey, 299-307.
  • Moore, J. 2016. “Parametric ideal cycle analysis of a scramjet engine at a constant combustion mach number”. Ph.D. thesis, Mechanical Engineering University of Missouri, Columbia, America, 6-40.
  • Montgomerie, B. Design of a turbofan engine cycle with afterburner for a conceptual UAV, 2005. Scientific report, FOI-R-1835—SE, ISSN 1650-1942.
  • Bayir M. and Alquadah B., D. F-16 Turbofan Motorlarında İtki-Bypass Oranlarının Karşılaştırılması. Milli Savunma Üniversitesi Hava Harp Okulu Havacılık ve Uzay Mühendisliği Bölümü Bitirme Projesi, 2019.
  • Nordqvist, M., Kareliusson, J., da Silva, E. R. and Kyprianidis, K. 2017. Conceptual Design of a Turbofan Engine for a Supersonic Business Jet. In International Symposium on Air Breathing Engines, ISABE 2017, 3-8 September Manchester, United Kingdom, 2580-2597.
  • Glenn Research Center. Turbofan Engine, https://www.grc.nasa.gov/www/k-12/airplane/aturbf.html (13 October 2021)
  • Mattingly, J. D. Elements of gas turbine propulsion. Second edition, American Institute of Aeronautics and Astronautics, USA, 1996.
  • Wikipedia, Specific Thrust, 2018. https://en.wikipedia.org/wiki/Specific_thrust (14 September 2021)
  • Farokhi, S. Aircraft propulsion. Second edition, John Wiley & Sons, USA, 2014.
  • Mattingly, J. D. Aircraft engine design. Second edition, American Institute of Aeronautics and Astronautics, USA, 2002.
  • NASA, Specific Thrust, 2016. https://www.grc.nasa.gov/www/k-12/airplane/specth.html (02 October 2021).
There are 29 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Ayşe Nur Dişlitaş This is me 0000-0002-0017-1585

Bilge Albayrak Çeper 0000-0001-5556-5170

Project Number -
Publication Date December 31, 2021
Submission Date November 29, 2021
Acceptance Date December 22, 2021
Published in Issue Year 2021 Volume: 8 Issue: 4

Cite

APA Dişlitaş, A. N., & Albayrak Çeper, B. (2021). Examination of parametric cycle analysis of a turbofan engine with Python code. International Journal of Energy Applications and Technologies, 8(4), 203-210. https://doi.org/10.31593/ijeat.1029803
AMA Dişlitaş AN, Albayrak Çeper B. Examination of parametric cycle analysis of a turbofan engine with Python code. IJEAT. December 2021;8(4):203-210. doi:10.31593/ijeat.1029803
Chicago Dişlitaş, Ayşe Nur, and Bilge Albayrak Çeper. “Examination of Parametric Cycle Analysis of a Turbofan Engine With Python Code”. International Journal of Energy Applications and Technologies 8, no. 4 (December 2021): 203-10. https://doi.org/10.31593/ijeat.1029803.
EndNote Dişlitaş AN, Albayrak Çeper B (December 1, 2021) Examination of parametric cycle analysis of a turbofan engine with Python code. International Journal of Energy Applications and Technologies 8 4 203–210.
IEEE A. N. Dişlitaş and B. Albayrak Çeper, “Examination of parametric cycle analysis of a turbofan engine with Python code”, IJEAT, vol. 8, no. 4, pp. 203–210, 2021, doi: 10.31593/ijeat.1029803.
ISNAD Dişlitaş, Ayşe Nur - Albayrak Çeper, Bilge. “Examination of Parametric Cycle Analysis of a Turbofan Engine With Python Code”. International Journal of Energy Applications and Technologies 8/4 (December 2021), 203-210. https://doi.org/10.31593/ijeat.1029803.
JAMA Dişlitaş AN, Albayrak Çeper B. Examination of parametric cycle analysis of a turbofan engine with Python code. IJEAT. 2021;8:203–210.
MLA Dişlitaş, Ayşe Nur and Bilge Albayrak Çeper. “Examination of Parametric Cycle Analysis of a Turbofan Engine With Python Code”. International Journal of Energy Applications and Technologies, vol. 8, no. 4, 2021, pp. 203-10, doi:10.31593/ijeat.1029803.
Vancouver Dişlitaş AN, Albayrak Çeper B. Examination of parametric cycle analysis of a turbofan engine with Python code. IJEAT. 2021;8(4):203-10.