Research Article
BibTex RIS Cite

THE ERODIBILITY FACTOR IN AGRICULTURAL LANDS OF GAZIANTEP, TURKEY

Year 2020, Volume: 5 Issue: 1, 12 - 20, 31.01.2020

Abstract

Soil erosion is the most important land degradation worldwide. Turkish soils are highly threatened by erosion mainly due to natural physical-geographic conditions as well as historic and current land-use. A number of soil erosion studies have been per-formed for different parts of Turkey; however, no erodibility potential-related data is available for Gaziantep province. In this study we evaluate the susceptibility of agricul-tural land in Gaziantep province to erosion (erodibility potential) by the use of the erodibility factor K on the basis of the soil texture, soil organic matter (SOM) content, soil aggregation and water permeability. Moreover, the nutrient supply of soils was in-vestigated in order to further elucidate the impact of soil erosion on soil fertility. The study revealed that all investigated soils had to be categorized as threatened by erosion due to a high to extremely high erodibility potential, with K-factors ranging between 0.33 and 0.79. Further K-factor was positively correlation to SOM as well as aggregate stability (ΔGMD) mainly due to grain-size compositions. According to these results, there is a generally high risk of erosion for the investigated soils and future erosion events might also be followed by a measurable loss of nutrients and subsequently loss of soil fertility. As a major outcome of the present survey, a regional soil protection concept should be developed and implemented for Gaziantep region, wherein the study results provide a basis for information sessions with regard to erosion.

Supporting Institution

Gaziantep Üniversitesi Bilimsel Araştırmalar Birimi

Project Number

BAPB FEF0808

Thanks

We would like to thank the Gaziantep University for funding the project and the department of forestry for providing some data.

References

  • [1] Boardman, J., Poesen, J. (2006): Soil erosion in Europe: Major Processes, Causes and Consequences, in: Boardman, J., Poesen, J. (eds.), Soil erosion in Europe. John Wiley & Sons, Chichester, West Sussex, p. 479-489; 479, 480, 481, 484, 485.
  • [2] Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., ... & Blair, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267(5201), 1117-1123.
  • [3] Zhu, B., Li, Z., Li, P., Liu, G., & Xue, S. (2010). Soil erodibility, microbial biomass, and physical–chemical property changes during long-term natural vegetation restoration: a case study in the Loess Plateau, China. Ecological Research, 25(3), 531-541.
  • [4] Millennium Ecosystem Assessment (2005): Ecosystems and Human Well-being: Synthesis. Island Press, Washington, DC, p. V.
  • [5] Lal, R. (2003). Soil erosion and the global carbon budget. Environment international, 29(4), 437-450.
  • [6] Field, D. J., Koppi, A. J., Jarrett, L. E., Abbott, L. K., Cattle, S. R., Grant, C. D., ... & Weatherley, A. J. (2011). Soil science teaching principles. Geoderma, 167, 9-14.
  • [7] Nouhou Bako, A., Darboux, F., James, F., Josserand, C., & Lucas, C. (2016). Pressure and shear stress caused by raindrop impact at the soil surface: Scaling laws depending on the water depth. Earth Surface Processes and Landforms, 41(9), 1199-1210.
  • [8] Ben‐Hur, M., & Agassi, M. (1997). Predicting interrill erodibility factor from measured infiltration rate. Water Resources Research, 33(10), 2409-2415.
  • [9] Rousseva, S., Lazarov, A., Tsvetkova, E., Marinov, I., Malinov, I., Kroumov, V., & Stefanova, V. (2006). Bulgaria. Soil erosion in Europe, 167-181.
  • [10] Sanchis, M. S., Torri, D., Borselli, L., & Poesen, J. (2008). Climate effects on soil erodibility. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 33(7), 1082-1097.
  • [11] Singh, M. J., & Khera, K. L. (2008). Soil erodibility indices under different land uses in lower Shiwaliks. Tropical Ecology, 49(2), 113.
  • [12] Wilke, B.-M., Horn, R. (2010): Bodenerosion, in: Scheffer, F., Schachtschabel, P., Blume, H.-P. (Bearb.): Lehrbuch der Bodenkunde Scheffer Schachtschabel, 16. Ed. Spektrum, Akademischer Verlag, Heidelberg/Berlin, p. 506-513; 511, 512.
  • [13] Heckrath, G., Djurhuus, J., Quine, T.A., Van Oost, K., Govers, G., Zhang, Y. (2005) Tillage erosion and its effects on soil properties and crop yield in Denmark. J. Environ. Qual. 34, 312-324; 312.
  • [14] Van der Knijff, J. M. F., Jones, R. J. A., & Montanarella, L. (1999). Soil erosion risk assessment in Italy. European Soil Bureau, European Commission.
  • [15] Wang, B., Zheng, F., Römkens, M. J., & Darboux, F. (2013). Soil erodibility for water erosion: A perspective and Chinese experiences. Geomorphology, 187, 1-10.
  • [16] Bagarello, V., Di Stefano, C., Ferro, V., Giuseppe, G., & Iovino, M. (2009). A pedotransfer function for estimating the soil erodibility factor in Sicily. Journal of Agricultural Engineering, 40(3), 7–13.
  • [17] Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). agriculture handbook no. 703 (p. 384)US Department of Agriculture, Agriculture Research Service 384.
  • [18] Atalay, I (1997): Türkiye Coğrafyası. Ege Üniversitesi Basımevi Bornova,. Izmir
  • [19] Balci, A.N. (1971): Influence of Parent Material and Slope Exposure on Properties of Soils Related to Erodibility in North Central Anatolia. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, Bd.131, Heft 1, p.42-55.
  • [20] Zech, W., Cepel, N. (1977): Anatolien – ein bodengeographischer Streifzug. Sonderdruck aus den Mitteilungen der Geographischen Gesellschaft in München. Band 62.
  • [21] Çanga, M., Erpul, G. (1994): Toprak İşlemeli Tarım Alanlarında Erozyon ve Kontrolü. Topraksu, 3(2), 14-16.
  • [22] Wischmeier, W.H., Smith, D.D. (1978): Predicting Rainfall Erosion Losses Guide to Conservation, Agricultural Handbook 537. Planning, Science and Education Administration. US Dep. of Agriculture, Washington, DC, USA. P. 58.
  • [23] Özden, S., Özden, D.-M. (1998): Turkey erosion estimation model-Turtem, International symposium on arid region soils and land, Izmir, Turkey.
  • [24] Bayramin, I., Dengiz, O., Başkan, O., Parlak, M. (2003): Soil Erosion Risk Assessment with ICONA Model, Case Study: Beypazarı Area. Turkish Journal of Agriculture and Forestry, 27,105-116.
  • [25] Irvem, A., Topaloğlu, F., Uygur, V. (2007): Estimating Spatial Distribution of Soil Loss Over Seyhan River Basin in Turkey. Journal of Hydrology, 336: 30-37.
  • [26] Tunç, E., Schröder, D. (2010): Determination of the Soil Erosion level in Agricultural lands in the western part of Ankara by USLE. Ekoloji 19, 75, 58-63.
  • [27] Schwertmann, U., Vogl, W., Kainz, M. (1987): Bodenerosion durch Wasser: Vorhersage des Abtrags und Bewertung von Gegenmaßnahmen. Ulmer, Stuttgart.
  • [28] Innominate (1992): Gaziantep İli Arazi Varlığı, Tarım ve Köy İşleri Bakanlığı, Köy Hizmetleri Genel Müdürlüğü Yayınları, İl Rapor No: 27 s: 26-28, Ankara.
  • [29] Schlichting, M., Blume, E. (1966): Bodenkundliches Praktium. Verlag Paul Pary, Hamburg an Berlin.
  • [30] Richards, L.A. (1954): Diagnosis and improvement of saline and alkali soils. US Salinity Lab., US Department of Agriculture Handbook 60. California, USA.
  • [31] Kretzschmar, R., (1991): Kulturtechnisch-bodenkundliches Praktikum. Ausgewählte Laboratoriumsmethoden. Eine Anleitung zum selbstständigen Arbeiten an Böden, 7. Aufl. Selbstverlag, Univ. Kiel.
  • [32] Allison, L.E., Moodie, C.D. (1965): Carbonate. In: Black, C.A. [ed.]: Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. American Society of Agronomy, Madison, pp. 1379-1396.
  • [33] Lindsay, W.L., Norvell, W.A. (1978): Development of a DTPA Soil Test for Zinc, Iron, Manganese and Copper. Soil Sci. Amer. Jour., 42 (3): 421-428.
  • [34] Jackson, M. (1958): Soil chemical analysis. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, USA. p. 1-498.
  • [35] Schmidt, J. (1996): Entwicklung und Anwendung eines physikalisch begründeten Simulationsmodells für die Erosion geneigter landwirtschaftlicher Landflaechen. Berliner Geographische Abhandlungen, Heft, 61.
  • [36] Hartge, K.H. & Horn, R. (1989): Die physikalische Untersuchung von Böden. 2. Aufl., Enke, Stuttgart, Germany.
  • [37] Sekera, F., Brunner, A. (1943): Beiträge zur Methodik der Gareforschung. Bodenkunde und Pflanzenernährung 29, 169-212.
  • [38] AG Boden (2005): Bodenkundliche Kartieranleitung. 5th edn., Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.
  • [39] Çimrin K.M., Boysan, S. (2006): Nutrient Status of Van Agricultural Soils and Their Relationships with Some Soil Properties. Yüzüncü Yıl Üniversitesi, Ziraat Fakültesi, Tarım Bilimleri Dergisi (J. Agric. Sci.), 16(2): 105-111.
  • [40] FAO (1990): Micronutrient, Assessment at the Country Level: An International Study. FAO Soil Bulletin by Sillanpaa. Rome.
  • [41] Auerswald, K., Kainz, M., Angermüller, S. (1996): Influence of exchangeable potassium on soil erodibility. In: Soil Use and Management 12, S.117-121.
  • [42] Cihacek LJ (1999): Restoring productivity of eroded soils with manure applications, NDSU Dickinson Research and Extension Center Annual Report 1999.
  • [43] Whalen, J.K., Chang, C. (2002): Macroaggregate characteristics in cultivated soil after 25 annual manure applications. Soil Science and. Society, 66, 1637-1647.
  • [44] Koch, H.-J., Heuer, H., Tomanová, O., Märländer, B. (2008): Cumulative effect of annually repeated passes of heavy agricultural machinery on soil structural properties and sugar beet yield under two tillage systems. Soil Till. Res. 101, 69–77.
Year 2020, Volume: 5 Issue: 1, 12 - 20, 31.01.2020

Abstract

Project Number

BAPB FEF0808

References

  • [1] Boardman, J., Poesen, J. (2006): Soil erosion in Europe: Major Processes, Causes and Consequences, in: Boardman, J., Poesen, J. (eds.), Soil erosion in Europe. John Wiley & Sons, Chichester, West Sussex, p. 479-489; 479, 480, 481, 484, 485.
  • [2] Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., ... & Blair, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267(5201), 1117-1123.
  • [3] Zhu, B., Li, Z., Li, P., Liu, G., & Xue, S. (2010). Soil erodibility, microbial biomass, and physical–chemical property changes during long-term natural vegetation restoration: a case study in the Loess Plateau, China. Ecological Research, 25(3), 531-541.
  • [4] Millennium Ecosystem Assessment (2005): Ecosystems and Human Well-being: Synthesis. Island Press, Washington, DC, p. V.
  • [5] Lal, R. (2003). Soil erosion and the global carbon budget. Environment international, 29(4), 437-450.
  • [6] Field, D. J., Koppi, A. J., Jarrett, L. E., Abbott, L. K., Cattle, S. R., Grant, C. D., ... & Weatherley, A. J. (2011). Soil science teaching principles. Geoderma, 167, 9-14.
  • [7] Nouhou Bako, A., Darboux, F., James, F., Josserand, C., & Lucas, C. (2016). Pressure and shear stress caused by raindrop impact at the soil surface: Scaling laws depending on the water depth. Earth Surface Processes and Landforms, 41(9), 1199-1210.
  • [8] Ben‐Hur, M., & Agassi, M. (1997). Predicting interrill erodibility factor from measured infiltration rate. Water Resources Research, 33(10), 2409-2415.
  • [9] Rousseva, S., Lazarov, A., Tsvetkova, E., Marinov, I., Malinov, I., Kroumov, V., & Stefanova, V. (2006). Bulgaria. Soil erosion in Europe, 167-181.
  • [10] Sanchis, M. S., Torri, D., Borselli, L., & Poesen, J. (2008). Climate effects on soil erodibility. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 33(7), 1082-1097.
  • [11] Singh, M. J., & Khera, K. L. (2008). Soil erodibility indices under different land uses in lower Shiwaliks. Tropical Ecology, 49(2), 113.
  • [12] Wilke, B.-M., Horn, R. (2010): Bodenerosion, in: Scheffer, F., Schachtschabel, P., Blume, H.-P. (Bearb.): Lehrbuch der Bodenkunde Scheffer Schachtschabel, 16. Ed. Spektrum, Akademischer Verlag, Heidelberg/Berlin, p. 506-513; 511, 512.
  • [13] Heckrath, G., Djurhuus, J., Quine, T.A., Van Oost, K., Govers, G., Zhang, Y. (2005) Tillage erosion and its effects on soil properties and crop yield in Denmark. J. Environ. Qual. 34, 312-324; 312.
  • [14] Van der Knijff, J. M. F., Jones, R. J. A., & Montanarella, L. (1999). Soil erosion risk assessment in Italy. European Soil Bureau, European Commission.
  • [15] Wang, B., Zheng, F., Römkens, M. J., & Darboux, F. (2013). Soil erodibility for water erosion: A perspective and Chinese experiences. Geomorphology, 187, 1-10.
  • [16] Bagarello, V., Di Stefano, C., Ferro, V., Giuseppe, G., & Iovino, M. (2009). A pedotransfer function for estimating the soil erodibility factor in Sicily. Journal of Agricultural Engineering, 40(3), 7–13.
  • [17] Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). agriculture handbook no. 703 (p. 384)US Department of Agriculture, Agriculture Research Service 384.
  • [18] Atalay, I (1997): Türkiye Coğrafyası. Ege Üniversitesi Basımevi Bornova,. Izmir
  • [19] Balci, A.N. (1971): Influence of Parent Material and Slope Exposure on Properties of Soils Related to Erodibility in North Central Anatolia. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, Bd.131, Heft 1, p.42-55.
  • [20] Zech, W., Cepel, N. (1977): Anatolien – ein bodengeographischer Streifzug. Sonderdruck aus den Mitteilungen der Geographischen Gesellschaft in München. Band 62.
  • [21] Çanga, M., Erpul, G. (1994): Toprak İşlemeli Tarım Alanlarında Erozyon ve Kontrolü. Topraksu, 3(2), 14-16.
  • [22] Wischmeier, W.H., Smith, D.D. (1978): Predicting Rainfall Erosion Losses Guide to Conservation, Agricultural Handbook 537. Planning, Science and Education Administration. US Dep. of Agriculture, Washington, DC, USA. P. 58.
  • [23] Özden, S., Özden, D.-M. (1998): Turkey erosion estimation model-Turtem, International symposium on arid region soils and land, Izmir, Turkey.
  • [24] Bayramin, I., Dengiz, O., Başkan, O., Parlak, M. (2003): Soil Erosion Risk Assessment with ICONA Model, Case Study: Beypazarı Area. Turkish Journal of Agriculture and Forestry, 27,105-116.
  • [25] Irvem, A., Topaloğlu, F., Uygur, V. (2007): Estimating Spatial Distribution of Soil Loss Over Seyhan River Basin in Turkey. Journal of Hydrology, 336: 30-37.
  • [26] Tunç, E., Schröder, D. (2010): Determination of the Soil Erosion level in Agricultural lands in the western part of Ankara by USLE. Ekoloji 19, 75, 58-63.
  • [27] Schwertmann, U., Vogl, W., Kainz, M. (1987): Bodenerosion durch Wasser: Vorhersage des Abtrags und Bewertung von Gegenmaßnahmen. Ulmer, Stuttgart.
  • [28] Innominate (1992): Gaziantep İli Arazi Varlığı, Tarım ve Köy İşleri Bakanlığı, Köy Hizmetleri Genel Müdürlüğü Yayınları, İl Rapor No: 27 s: 26-28, Ankara.
  • [29] Schlichting, M., Blume, E. (1966): Bodenkundliches Praktium. Verlag Paul Pary, Hamburg an Berlin.
  • [30] Richards, L.A. (1954): Diagnosis and improvement of saline and alkali soils. US Salinity Lab., US Department of Agriculture Handbook 60. California, USA.
  • [31] Kretzschmar, R., (1991): Kulturtechnisch-bodenkundliches Praktikum. Ausgewählte Laboratoriumsmethoden. Eine Anleitung zum selbstständigen Arbeiten an Böden, 7. Aufl. Selbstverlag, Univ. Kiel.
  • [32] Allison, L.E., Moodie, C.D. (1965): Carbonate. In: Black, C.A. [ed.]: Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. American Society of Agronomy, Madison, pp. 1379-1396.
  • [33] Lindsay, W.L., Norvell, W.A. (1978): Development of a DTPA Soil Test for Zinc, Iron, Manganese and Copper. Soil Sci. Amer. Jour., 42 (3): 421-428.
  • [34] Jackson, M. (1958): Soil chemical analysis. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, USA. p. 1-498.
  • [35] Schmidt, J. (1996): Entwicklung und Anwendung eines physikalisch begründeten Simulationsmodells für die Erosion geneigter landwirtschaftlicher Landflaechen. Berliner Geographische Abhandlungen, Heft, 61.
  • [36] Hartge, K.H. & Horn, R. (1989): Die physikalische Untersuchung von Böden. 2. Aufl., Enke, Stuttgart, Germany.
  • [37] Sekera, F., Brunner, A. (1943): Beiträge zur Methodik der Gareforschung. Bodenkunde und Pflanzenernährung 29, 169-212.
  • [38] AG Boden (2005): Bodenkundliche Kartieranleitung. 5th edn., Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.
  • [39] Çimrin K.M., Boysan, S. (2006): Nutrient Status of Van Agricultural Soils and Their Relationships with Some Soil Properties. Yüzüncü Yıl Üniversitesi, Ziraat Fakültesi, Tarım Bilimleri Dergisi (J. Agric. Sci.), 16(2): 105-111.
  • [40] FAO (1990): Micronutrient, Assessment at the Country Level: An International Study. FAO Soil Bulletin by Sillanpaa. Rome.
  • [41] Auerswald, K., Kainz, M., Angermüller, S. (1996): Influence of exchangeable potassium on soil erodibility. In: Soil Use and Management 12, S.117-121.
  • [42] Cihacek LJ (1999): Restoring productivity of eroded soils with manure applications, NDSU Dickinson Research and Extension Center Annual Report 1999.
  • [43] Whalen, J.K., Chang, C. (2002): Macroaggregate characteristics in cultivated soil after 25 annual manure applications. Soil Science and. Society, 66, 1637-1647.
  • [44] Koch, H.-J., Heuer, H., Tomanová, O., Märländer, B. (2008): Cumulative effect of annually repeated passes of heavy agricultural machinery on soil structural properties and sugar beet yield under two tillage systems. Soil Till. Res. 101, 69–77.
There are 44 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Erdihan Tunç 0000-0001-9861-6855

Project Number BAPB FEF0808
Publication Date January 31, 2020
Acceptance Date January 28, 2020
Published in Issue Year 2020 Volume: 5 Issue: 1

Cite

APA Tunç, E. (2020). THE ERODIBILITY FACTOR IN AGRICULTURAL LANDS OF GAZIANTEP, TURKEY. The International Journal of Energy and Engineering Sciences, 5(1), 12-20.

IMPORTANT NOTES

No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, without the prior written permission of the copyright owners, unless the use is a fair dealing for the purpose of private study, research or review. The authors reserve the right that their material can be used for purely educational and research purposes. All the authors are responsible for the originality and plagiarism, multiple publication, disclosure and conflicts of interest and fundamental errors in the published works.

*Please note that  All the authors are responsible for the originality and plagiarism, multiple publication, disclosure and conflicts of interest and fundamental errors in the published works. Author(s) submitting a manuscript for publication in IJEES also accept that the manuscript may go through screening for plagiarism check using IThenticate software. For experimental works involving animals, approvals from relevant ethics committee should have been obtained beforehand assuring that the experiment was conducted according to relevant national or international guidelines on care and use of laboratory animals.  Authors may be requested to provide evidence to this end.
 
**Authors are highly recommended to obey the IJEES policies regarding copyrights/Licensing and ethics before submitting their manuscripts.


Copyright © 2025. AA. All rights reserved