Research Article
BibTex RIS Cite
Year 2021, Volume: 6 Issue: 1, 9 - 19, 01.02.2021
https://doi.org/10.26833/ijeg.665175

Abstract

References

  • Alberga V, Krogager E, Chandra M & Wanielik G (2004). Potential of coherent decompositions in SAR polarimetry and interferometry. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA.
  • Albinet C, Borderies P, Koleck T, Rocca F, Tebaldini S, Villard L, Toan T L, Hamadi A & Minh D H T (2012). TropiSCAT: A ground based polarimetric scatterometer experiment in tropical forests. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (JSTARS), 5(3), 1060-1066.
  • Baffelli S, Frey O, Werner C & Hajnsek I (2018). Polarimetric calibration of the Ku Band advanced polarimetric radar interferometer (KAPRI). IEEE Transactions on Geoscience and Remote Sensing, 56(4), 2295–2311.
  • Brown S C M, Quegan S, Morrison K, Bennett J C & Cookmartin G (2003). High-resolution measurements of scattering in wheat canopies-implications for crop parameter retrieval. IEEE Transactions on Geoscience and Remote Sensing, 41(7), 1602–1610.
  • Chen S W, Li Y Z, Wang X S, Xiao S P & Sato M (2014). Modeling and interpretation of scattering mechanisms in polarimetric synthetic aperture radar: Advances and perspectives. IEEE Signal Processing Magazine, 31, 79–89.
  • Chen S W, Wang X S, Xiao S P & Sato M (2018). Advanced polarimetric target decomposition. In: Target scattering mechanism in polarimetric synthetic aperture radar. Singapore: Springer.
  • Cho B L, Kong Y K, Park H G & Kim Y S (2006). Automobile-based SAR/InSAR system for ground experiments. IEEE Geoscience and Remote Sensing Letters, 3(3), 401-405.
  • Cloude S R & Pottier E (1996). A review of target decomposition theorems in radar polarimetry. IEEE Transactions on Geoscience and Remote Sensing, 34(2), 498 –518.
  • Cloude S R & Pottier E (1997). An entropy based classification scheme for land applications of polarimetric SAR. IEEE Transactions on Geoscience and Remote Sensing, 35(1), 68–78.
  • Cloude S R (2010). Polarisation application in remote sensing. Oxford: Oxford Univ. Press.
  • Cuenca L M (2017). Contribution to ground-based and UAV SAR systems for Earth observation. Ph. D. dissertation, Universitat Politecnica de Catalunya, Barcelona, Spain.
  • Demirci S, Yilmaz B, Isiker H, Gokkan S & Ozdemir C (2019). Characterization of natural and manmade targets from L-band ground-based polarimetric synthetic aperture radar data. Journal of Applied Remote Sensing, 13(4), doi: 10.1117/1.JRS.13.044512.
  • Freeman A & Durden S L (1998). A three-component scattering model for polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 36(3), 963–973. Gonzalez-Partida J T, Almorox-Gonzalez P, Burgos-Garcia M & Dorta-Naranjo B P (2008). SAR system for UAV operation with motion error compensation beyond the resolution cell. Sensors, 8(5), 3384-3405. DOI: 10.3390/s8053384
  • Iglesias R, Aguasca A, Fabregas X, Mallorqui J J, Monells D & Lopez C (2015a). Ground-based polarimetric SAR interferometry for the monitoring of terrain displacement phenomena–Part I: Theoretical description. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(3), 980-993.
  • Iglesias R, Aguasca A, Fabregas X, Mallorqui J J, Monells D & Lopez C (2015b). Ground-based polarimetric SAR interferometry for the monitoring of terrain displacement phenomena–Part II: applications. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 8(3), 994-1007.
  • Kang M K, Kim K E, Lee H, Cho S J & Lee J H (2009). Preliminary results of polarimetric characteristics for C-band quad-polarization GB-SAR images using H/A/alpha polarimetric decomposition theorem. Korean Journal of Remote Sensing, 25(6), 531-546.
  • Krogager E (1990). New decomposition of the radar target scattering matrix. Electronics Letters, 26, 1525–1527.
  • Lee H, Cho S J, Sung N H & Kim J H (2007). Development of a GB-SAR (II): Focusing algorithms. Korean Journal of Remote Sensing, 23(4), 247–256.
  • Lee H, Ji Y & Han H (2016). Experiments on a ground-based tomographic synthetic aperture radar. Remote Sensing, 8(8), 1-11. DOI: 10.3390/rs8080667
  • Lee H, Lee J -H, Kim K –E, Sung N –H & Cho S –J (2014). Development of a truck-mounted arc-scanning synthetic aperture radar. IEEE Transaction on Geoscience and Remote Sensing, 52(5), 2773-2779.
  • Lee J & Pottier E (2009). Polarimetric radar imaging: From basics to applications. Boca Raton: Taylor & Francis.
  • Lim K S & Koo V C (2008). Design and construction of wideband VNA ground-based radar system with real and synthetic aperture measurement capabilities. Progress in Electromagnetics Research, PIER, 86, 259–275.
  • Minh D H T, Tebaldini S, Rocca F, Toan T L, Borderies P, Koleck T, Albinet C, Hamadi A & Villard L (2014). Vertical structure of P-Band temporal decorrelation at the Paracou forest: Results from TropiScat. IEEE Geoscience and Remote Sensing Letters, 11(8), 1438–1442.
  • Moreira A, Prats-Iraola P, Younis M, Krieger G, Hajnsek I & Papathanassiou K (2013). A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 1(1), 6-43. DOI: 10.1109/MGRS.2013.2248301
  • Ouchi K (2013). Recent trend and advance of synthetic aperture radar with selected topics. Remote Sensing, 5(2), 716-807. DOI: 10.3390/rs5020716
  • Ozdemir C, Demirci S, Yigit E & Yilmaz B (2014). A review on migration methods in B-Scan ground penetrating radar imaging. Mathematical Problems in Engineering, 1-16. DOI: 10.1155/2014/280738
  • Penner J F & Long D G (2017). Ground-based 3D radar imaging of trees using a 2D synthetic aperture. Electronics, 6(11), 1-13. DOI: 10.3390/electronics6010011
  • Pipia L (2009). Polarimetric differential SAR interferometry with ground-based sensors. Ph.D. dissertation, Universitat Politecnica de Catalunya, Barcelona, Spain.
  • Pipia L, Fabregas X, Aguasca A & Lopez-Martinez C (2013). Polarimetric temporal analysis of urban environments with a ground-based SAR. IEEE Transactions on Geoscience and Remote Sensing, 51(4), 2343–2360.
  • Sevgen S C (2019). Airborne LIDAR data classification in complex urban area using random forest: A case study of Bergama, Turkey. International Journal of Engineering and Geosciences, 4(1), 45-51. DOI: 10.26833/ijeg.440828
  • The MathWorks, Inc. MATLAB, Release 2018. Natick, Massachusetts, United States.
  • Van Zyl J J & Kim Y (2011). Synthetic aperture radar polarimetry. Hoboken, NJ: John Wiley & Sons, Inc.
  • Xing S, Li Y, Dai D & Wang X (2013). Three-dimensional reconstruction of man-made objects using polarimetric tomographic SAR. IEEE Transactions on Geoscience and Remote Sensing, 51(6), 3694–3705.
  • Yilmaz A & Erdogan M (2018). Designing high resolution countrywide DEM for Turkey. International Journal of Engineering and Geosciences, 3(3), 98-107. DOI: 10.26833/ijeg.384822
  • Yilmaz M & Uysal M (2017). Comparing uniform and random data reduction methods for DTM accuracy. International Journal of Engineering and Geosciences, 2(1), 9-16. DOI: 10.26833/ijeg.286003
  • Zhou Z S (2003). Application of a ground-based polarimetric SAR system for environmental study. Ph.D. dissertation, The Graduate School of Engineering, Tohoku University, Sendai, Japan.
  • Zhou Z S (2004). Development of a ground-based polarimetric broadband SAR system for noninvasive ground-truth validation in vegetation monitoring. IEEE Transactions on Geoscience and Remote Sensing, 42(9), 1803–1810.

An investigation of the performances of polarimetric target decompositions using GB-SAR imaging

Year 2021, Volume: 6 Issue: 1, 9 - 19, 01.02.2021
https://doi.org/10.26833/ijeg.665175

Abstract

Ground-based synthetic aperture radar (GB-SAR) systems are mostly utilized to be practical practices in improved understanding of the complex mechanism of microwave backscattering. They also provide complementary information on evaluating the validity of the polarimetric analysis of air-borne or satellite-borne SAR applications. This study investigates some capabilities of polarimetric L-band GB-SAR imaging by testing its performance against a typical terrain and various kinds of manmade targets. Trihedral corner reflectors are also included in the analyses because of their importance in data calibration. Polarimetric backscattering signatures of different targets are analyzed in terms of qualitative assessment of amplitude images and identification and classification of scattering mechanisms through target decomposition techniques. The findings of these analyses and detailed discussions are presented. Specifically, the entropy/mean-alpha ((H/α ̅)) classification results are shown to be capable of clearly identifying the dominant scattering mechanisms occurring within the investigated scene.

References

  • Alberga V, Krogager E, Chandra M & Wanielik G (2004). Potential of coherent decompositions in SAR polarimetry and interferometry. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA.
  • Albinet C, Borderies P, Koleck T, Rocca F, Tebaldini S, Villard L, Toan T L, Hamadi A & Minh D H T (2012). TropiSCAT: A ground based polarimetric scatterometer experiment in tropical forests. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (JSTARS), 5(3), 1060-1066.
  • Baffelli S, Frey O, Werner C & Hajnsek I (2018). Polarimetric calibration of the Ku Band advanced polarimetric radar interferometer (KAPRI). IEEE Transactions on Geoscience and Remote Sensing, 56(4), 2295–2311.
  • Brown S C M, Quegan S, Morrison K, Bennett J C & Cookmartin G (2003). High-resolution measurements of scattering in wheat canopies-implications for crop parameter retrieval. IEEE Transactions on Geoscience and Remote Sensing, 41(7), 1602–1610.
  • Chen S W, Li Y Z, Wang X S, Xiao S P & Sato M (2014). Modeling and interpretation of scattering mechanisms in polarimetric synthetic aperture radar: Advances and perspectives. IEEE Signal Processing Magazine, 31, 79–89.
  • Chen S W, Wang X S, Xiao S P & Sato M (2018). Advanced polarimetric target decomposition. In: Target scattering mechanism in polarimetric synthetic aperture radar. Singapore: Springer.
  • Cho B L, Kong Y K, Park H G & Kim Y S (2006). Automobile-based SAR/InSAR system for ground experiments. IEEE Geoscience and Remote Sensing Letters, 3(3), 401-405.
  • Cloude S R & Pottier E (1996). A review of target decomposition theorems in radar polarimetry. IEEE Transactions on Geoscience and Remote Sensing, 34(2), 498 –518.
  • Cloude S R & Pottier E (1997). An entropy based classification scheme for land applications of polarimetric SAR. IEEE Transactions on Geoscience and Remote Sensing, 35(1), 68–78.
  • Cloude S R (2010). Polarisation application in remote sensing. Oxford: Oxford Univ. Press.
  • Cuenca L M (2017). Contribution to ground-based and UAV SAR systems for Earth observation. Ph. D. dissertation, Universitat Politecnica de Catalunya, Barcelona, Spain.
  • Demirci S, Yilmaz B, Isiker H, Gokkan S & Ozdemir C (2019). Characterization of natural and manmade targets from L-band ground-based polarimetric synthetic aperture radar data. Journal of Applied Remote Sensing, 13(4), doi: 10.1117/1.JRS.13.044512.
  • Freeman A & Durden S L (1998). A three-component scattering model for polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 36(3), 963–973. Gonzalez-Partida J T, Almorox-Gonzalez P, Burgos-Garcia M & Dorta-Naranjo B P (2008). SAR system for UAV operation with motion error compensation beyond the resolution cell. Sensors, 8(5), 3384-3405. DOI: 10.3390/s8053384
  • Iglesias R, Aguasca A, Fabregas X, Mallorqui J J, Monells D & Lopez C (2015a). Ground-based polarimetric SAR interferometry for the monitoring of terrain displacement phenomena–Part I: Theoretical description. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(3), 980-993.
  • Iglesias R, Aguasca A, Fabregas X, Mallorqui J J, Monells D & Lopez C (2015b). Ground-based polarimetric SAR interferometry for the monitoring of terrain displacement phenomena–Part II: applications. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 8(3), 994-1007.
  • Kang M K, Kim K E, Lee H, Cho S J & Lee J H (2009). Preliminary results of polarimetric characteristics for C-band quad-polarization GB-SAR images using H/A/alpha polarimetric decomposition theorem. Korean Journal of Remote Sensing, 25(6), 531-546.
  • Krogager E (1990). New decomposition of the radar target scattering matrix. Electronics Letters, 26, 1525–1527.
  • Lee H, Cho S J, Sung N H & Kim J H (2007). Development of a GB-SAR (II): Focusing algorithms. Korean Journal of Remote Sensing, 23(4), 247–256.
  • Lee H, Ji Y & Han H (2016). Experiments on a ground-based tomographic synthetic aperture radar. Remote Sensing, 8(8), 1-11. DOI: 10.3390/rs8080667
  • Lee H, Lee J -H, Kim K –E, Sung N –H & Cho S –J (2014). Development of a truck-mounted arc-scanning synthetic aperture radar. IEEE Transaction on Geoscience and Remote Sensing, 52(5), 2773-2779.
  • Lee J & Pottier E (2009). Polarimetric radar imaging: From basics to applications. Boca Raton: Taylor & Francis.
  • Lim K S & Koo V C (2008). Design and construction of wideband VNA ground-based radar system with real and synthetic aperture measurement capabilities. Progress in Electromagnetics Research, PIER, 86, 259–275.
  • Minh D H T, Tebaldini S, Rocca F, Toan T L, Borderies P, Koleck T, Albinet C, Hamadi A & Villard L (2014). Vertical structure of P-Band temporal decorrelation at the Paracou forest: Results from TropiScat. IEEE Geoscience and Remote Sensing Letters, 11(8), 1438–1442.
  • Moreira A, Prats-Iraola P, Younis M, Krieger G, Hajnsek I & Papathanassiou K (2013). A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 1(1), 6-43. DOI: 10.1109/MGRS.2013.2248301
  • Ouchi K (2013). Recent trend and advance of synthetic aperture radar with selected topics. Remote Sensing, 5(2), 716-807. DOI: 10.3390/rs5020716
  • Ozdemir C, Demirci S, Yigit E & Yilmaz B (2014). A review on migration methods in B-Scan ground penetrating radar imaging. Mathematical Problems in Engineering, 1-16. DOI: 10.1155/2014/280738
  • Penner J F & Long D G (2017). Ground-based 3D radar imaging of trees using a 2D synthetic aperture. Electronics, 6(11), 1-13. DOI: 10.3390/electronics6010011
  • Pipia L (2009). Polarimetric differential SAR interferometry with ground-based sensors. Ph.D. dissertation, Universitat Politecnica de Catalunya, Barcelona, Spain.
  • Pipia L, Fabregas X, Aguasca A & Lopez-Martinez C (2013). Polarimetric temporal analysis of urban environments with a ground-based SAR. IEEE Transactions on Geoscience and Remote Sensing, 51(4), 2343–2360.
  • Sevgen S C (2019). Airborne LIDAR data classification in complex urban area using random forest: A case study of Bergama, Turkey. International Journal of Engineering and Geosciences, 4(1), 45-51. DOI: 10.26833/ijeg.440828
  • The MathWorks, Inc. MATLAB, Release 2018. Natick, Massachusetts, United States.
  • Van Zyl J J & Kim Y (2011). Synthetic aperture radar polarimetry. Hoboken, NJ: John Wiley & Sons, Inc.
  • Xing S, Li Y, Dai D & Wang X (2013). Three-dimensional reconstruction of man-made objects using polarimetric tomographic SAR. IEEE Transactions on Geoscience and Remote Sensing, 51(6), 3694–3705.
  • Yilmaz A & Erdogan M (2018). Designing high resolution countrywide DEM for Turkey. International Journal of Engineering and Geosciences, 3(3), 98-107. DOI: 10.26833/ijeg.384822
  • Yilmaz M & Uysal M (2017). Comparing uniform and random data reduction methods for DTM accuracy. International Journal of Engineering and Geosciences, 2(1), 9-16. DOI: 10.26833/ijeg.286003
  • Zhou Z S (2003). Application of a ground-based polarimetric SAR system for environmental study. Ph.D. dissertation, The Graduate School of Engineering, Tohoku University, Sendai, Japan.
  • Zhou Z S (2004). Development of a ground-based polarimetric broadband SAR system for noninvasive ground-truth validation in vegetation monitoring. IEEE Transactions on Geoscience and Remote Sensing, 42(9), 1803–1810.
There are 37 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Şevket Demirci 0000-0002-3020-7067

Caner Özdemir 0000-0003-2615-4203

Publication Date February 1, 2021
Published in Issue Year 2021 Volume: 6 Issue: 1

Cite

APA Demirci, Ş., & Özdemir, C. (2021). An investigation of the performances of polarimetric target decompositions using GB-SAR imaging. International Journal of Engineering and Geosciences, 6(1), 9-19. https://doi.org/10.26833/ijeg.665175
AMA Demirci Ş, Özdemir C. An investigation of the performances of polarimetric target decompositions using GB-SAR imaging. IJEG. February 2021;6(1):9-19. doi:10.26833/ijeg.665175
Chicago Demirci, Şevket, and Caner Özdemir. “An Investigation of the Performances of Polarimetric Target Decompositions Using GB-SAR Imaging”. International Journal of Engineering and Geosciences 6, no. 1 (February 2021): 9-19. https://doi.org/10.26833/ijeg.665175.
EndNote Demirci Ş, Özdemir C (February 1, 2021) An investigation of the performances of polarimetric target decompositions using GB-SAR imaging. International Journal of Engineering and Geosciences 6 1 9–19.
IEEE Ş. Demirci and C. Özdemir, “An investigation of the performances of polarimetric target decompositions using GB-SAR imaging”, IJEG, vol. 6, no. 1, pp. 9–19, 2021, doi: 10.26833/ijeg.665175.
ISNAD Demirci, Şevket - Özdemir, Caner. “An Investigation of the Performances of Polarimetric Target Decompositions Using GB-SAR Imaging”. International Journal of Engineering and Geosciences 6/1 (February 2021), 9-19. https://doi.org/10.26833/ijeg.665175.
JAMA Demirci Ş, Özdemir C. An investigation of the performances of polarimetric target decompositions using GB-SAR imaging. IJEG. 2021;6:9–19.
MLA Demirci, Şevket and Caner Özdemir. “An Investigation of the Performances of Polarimetric Target Decompositions Using GB-SAR Imaging”. International Journal of Engineering and Geosciences, vol. 6, no. 1, 2021, pp. 9-19, doi:10.26833/ijeg.665175.
Vancouver Demirci Ş, Özdemir C. An investigation of the performances of polarimetric target decompositions using GB-SAR imaging. IJEG. 2021;6(1):9-19.