Research Article
BibTex RIS Cite
Year 2023, Volume: 8 Issue: 3, 251 - 261, 15.10.2023
https://doi.org/10.26833/ijeg.1140959

Abstract

References

  • Hastaoglu, K. O., & Sanli, D. U. (2011). Monitoring Koyulhisar landslide using rapid static GPS: a strategy to remove biases from vertical velocities. Natural hazards, 58, 1275-1294.
  • Malet, J. P., Maquaire, O., & Calais, E. (2002). The use of Global Positioning System techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology, 43(1-2), 33-54.
  • Erdoğan, S., Şahin, M., Tiryakioğlu, İ., Gülal, E., & Telli, A. K. (2009). GPS velocity and strain rate fields in Southwest Anatolia from repeated GPS measurements. Sensors, 9(3), 2017-2034.
  • Hager, B. H., King, R. W., & Murray, M. H. (1991). Measurement of crustal deformation using the Global Positioning System. Annual Review of Earth and Planetary Sciences, 19(1), 351-382.
  • Tiryakioğlu, I. (2015). Geodetic aspects of the 19 May 2011 Simav earthquake in Turkey. Geomatics, Natural Hazards and Risk, 6(1), 76-89.
  • Celebi, M. (2000). GPS in dynamic monitoring of long-period structures. Soil Dynamics and Earthquake Engineering, 20(5-8), 477-483.
  • Lovse, J. W., Teskey, W. F., Lachapelle, G., & Cannon, M. E. (1995). Dynamic deformation monitoring of tall structure using GPS technology. Journal of surveying engineering, 121(1), 35-40.
  • Moschas, F., & Stiros, S. (2011). Measurement of the dynamic displacements and of the modal frequencies of a short-span pedestrian bridge using GPS and an accelerometer. Engineering structures, 33(1), 10-17.
  • Genrich, J. F., & Bock, Y. (1992). Rapid resolution of crustal motion at short ranges with the Global Positioning System. Journal of Geophysical Research: Solid Earth, 97(B3), 3261-3269.
  • Bulbul, S., Bilgen, B., & Inal, C. (2021). The performance assessment of Precise Point Positioning (PPP) under various observation conditions. Measurement, 171, 108780.
  • Kouba, J., & Héroux, P. (2001). GPS precise point positioning using IGS orbit products. GPS solutions, 5(2), 12-28.
  • Li, T., Wang, J., & Laurichesse, D. (2014). Modeling and quality control for reliable precise point positioning integer ambiguity resolution with GNSS modernization. GPS solutions, 18, 429-442.
  • Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., & Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of geophysical research: solid earth, 102(B3), 5005-5017.
  • Alçay, S., & Atiz, Ö. (2021). Farklı yazılımlar kullanılarak gerçek zamanlı hassas nokta konum belirleme (RT-PPP) yönteminin performansının incelenmesi. Geomatik, 6(1), 77-83.
  • İnyurt, S., & Ulukavak, M. (2020). Web tabanlı GNSS Yazılımlarının (CSRS-PPP, Trimble-RTX) Performansının Araştırılması. Geomatik, 5(2), 120-126.
  • Uçarlı, A. C., Demir, F., Erol, S., & Alkan, R. M. (2021). Farklı GNSS uydu sistemlerinin hassas nokta konumlama (PPP) tekniğinin performansına etkisinin incelenmesi. Geomatik, 6(3), 247-258.
  • Pırtı, A., & Yazıcı, D. (2022). İnternet tabanlı GNSS yazılımlarının doğruluk açısından değerlendirilmesi. Geomatik, 7(2), 88-105.
  • Ogutcu, S. (2020). Performance assessment of IGS combined/JPL individual rapid and ultra-rapid products: Consideration of Precise Point Positioning technique. International Journal of Engineering and Geosciences, 5(1), 1-14.
  • Ogutcu, S. (2020). Performance analysis of ambiguity resolution on PPP and relative positioning techniques: consideration of satellite geometry. International Journal of Engineering and Geosciences, 5(2), 73-93.
  • Öğütcü, S., Shakor, A., & Farhan, H. (2022). Investigating the effect of observation interval on GPS, GLONASS, Galileo and BeiDou static PPP. International Journal of Engineering and Geosciences, 7(3), 294-301.
  • Özdemir, E. G. (2022). Bağıl ve mutlak (PPP) konum çözüm yaklaşımı sunan Web-Tabanlı çevrimiçi veri değerlendirme servislerinin farklı gözlem periyotlarındaki performanslarının araştırılması. Geomatik, 7(1), 41-51.
  • Alcay, S., Ogutcu, S., Kalayci, I., & Yigit, C. O. (2019). Displacement monitoring performance of relative positioning and Precise Point Positioning (PPP) methods using simulation apparatus. Advances in Space Research, 63(5), 1697-1707.
  • Aydin, C., Uygur, S. Ö., Cetin, S., Özdemir, A., & Dogan, U. (2019). Ability of GPS PPP in 2D deformation analysis with respect to GPS network solution. Survey review, 51(366), 199-212.
  • Capilla, R. M., Berné, J. L., Martín, A., & Rodrigo, R. (2016). Simulation case study of deformations and landslides using real-time GNSS precise point positioning technique. Geomatics, Natural Hazards and Risk, 7(6), 1856-1873.
  • Farzaneh, S., Safari, A., & Parvazi, K. (2022). Precise estimation of horizontal displacement by combination of multi-GNSS (Galileo and GPS) observations via the LS-VCE method. Applied Geomatics, 14(2), 267-286.
  • Yigit, C. O., Coskun, M. Z., Yavasoglu, H., Arslan, A., & Kalkan, Y. (2016). The potential of GPS Precise Point Positioning method for point displacement monitoring: A case study. Measurement, 91, 398-404.
  • Choy, S., Bisnath, S., & Rizos, C. (2017). Uncovering common misconceptions in GNSS Precise Point Positioning and its future prospect. GPS solutions, 21, 13-22.
  • Pan, L., Xiaohong, Z., & Fei, G. (2017). Ambiguity resolved precise point positioning with GPS and BeiDou. Journal of geodesy, 91, 25-40.
  • Li, X., Li, X., Yuan, Y., Zhang, K., Zhang, X., & Wickert, J. (2018). Multi-GNSS phase delay estimation and PPP ambiguity resolution: GPS, BDS, GLONASS, Galileo. Journal of geodesy, 92, 579-608.
  • Geng, J., Guo, J., Meng, X., & Gao, K. (2020). Speeding up PPP ambiguity resolution using triple-frequency GPS/BeiDou/Galileo/QZSS data. Journal of Geodesy, 94, 1-15.
  • Katsigianni, G., Loyer, S., & Perosanz, F. (2019). Ppp and ppp-ar kinematic post-processed performance of gps-only, galileo-only and multi-gnss. Remote sensing, 11(21), 2477.
  • Psychas, D., Verhagen, S., & Teunissen, P. J. (2020). Precision analysis of partial ambiguity resolution-enabled PPP using multi-GNSS and multi-frequency signals. Advances in Space Research, 66(9), 2075-2093.
  • Bezcioğlu, M., Yiğit, C. Ö., & Bodur, M. N. (2019). Kinematik PPP-AR ve Geleneksel PPP Yöntemlerin Performanslarının Değerlendirilmesi: Antarktika Yarımadası Örneği. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 19(1), 162-169.
  • Bezcioglu, M., Yigit, C. O., & El-Mowafy, A. (2019). Kinematic PPP-AR in Antarctic. Sea technology, 60(2), 20-23.
  • Atiz, O. F., Ogutcu, S., Alcay, S., Li, P., & Bugdayci, I. (2021). Performance investigation of LAMBDA and bootstrapping methods for PPP narrow-lane ambiguity resolution. Geo-Spatial Information Science, 24(4), 604-614.
  • Verhagen, S., & Teunissen, P. J. (2013). The ratio test for future GNSS ambiguity resolution. GPS solutions, 17, 535-548.
  • Geng, J., Chen, X., Pan, Y., Mao, S., Li, C., Zhou, J., & Zhang, K. (2019). PRIDE PPP-AR: an open-source software for GPS PPP ambiguity resolution. GPS Solutions, 23, 1-10.

Investigation of the capability of multi-GNSS PPP-AR method in detecting permanent displacements

Year 2023, Volume: 8 Issue: 3, 251 - 261, 15.10.2023
https://doi.org/10.26833/ijeg.1140959

Abstract

The traditional-precise point positioning (PPP) technique may provide a positioning as precise as the relative positioning technique in long-term observation durations. However, since it cannot provide high-precision positioning due to ambiguity problem in short-term observations, the interest in the PPP-AR (Ambiguity Resolution) technique has increased. The main purpose of this study is to investigate the performance of traditional-PPP and PPP-AR techniques for monitoring permanent displacements, considering different observation durations based on different satellite combinations. For this purpose, a displacement simulator that can move precisely in one direction and in the horizontal plane over a small distance was used. 6 different displacements were simulated, and all collected GNSS observations were evaluated with traditional-PPP, PPP-AR, and relative methods. Moreover, these methods were examined by considering the Global Positioning System (GPS), European Global Navigation Satellite System (Galileo), and GPS/Galileo satellite combinations. The findings clearly demonstrated the superiority of the PPP-AR technique outperformed the traditional-PPP technique in short-term observation durations and emphasize the contribution of multi-GNSS (Global Navigation Satellite System) combinations to both methods.

References

  • Hastaoglu, K. O., & Sanli, D. U. (2011). Monitoring Koyulhisar landslide using rapid static GPS: a strategy to remove biases from vertical velocities. Natural hazards, 58, 1275-1294.
  • Malet, J. P., Maquaire, O., & Calais, E. (2002). The use of Global Positioning System techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology, 43(1-2), 33-54.
  • Erdoğan, S., Şahin, M., Tiryakioğlu, İ., Gülal, E., & Telli, A. K. (2009). GPS velocity and strain rate fields in Southwest Anatolia from repeated GPS measurements. Sensors, 9(3), 2017-2034.
  • Hager, B. H., King, R. W., & Murray, M. H. (1991). Measurement of crustal deformation using the Global Positioning System. Annual Review of Earth and Planetary Sciences, 19(1), 351-382.
  • Tiryakioğlu, I. (2015). Geodetic aspects of the 19 May 2011 Simav earthquake in Turkey. Geomatics, Natural Hazards and Risk, 6(1), 76-89.
  • Celebi, M. (2000). GPS in dynamic monitoring of long-period structures. Soil Dynamics and Earthquake Engineering, 20(5-8), 477-483.
  • Lovse, J. W., Teskey, W. F., Lachapelle, G., & Cannon, M. E. (1995). Dynamic deformation monitoring of tall structure using GPS technology. Journal of surveying engineering, 121(1), 35-40.
  • Moschas, F., & Stiros, S. (2011). Measurement of the dynamic displacements and of the modal frequencies of a short-span pedestrian bridge using GPS and an accelerometer. Engineering structures, 33(1), 10-17.
  • Genrich, J. F., & Bock, Y. (1992). Rapid resolution of crustal motion at short ranges with the Global Positioning System. Journal of Geophysical Research: Solid Earth, 97(B3), 3261-3269.
  • Bulbul, S., Bilgen, B., & Inal, C. (2021). The performance assessment of Precise Point Positioning (PPP) under various observation conditions. Measurement, 171, 108780.
  • Kouba, J., & Héroux, P. (2001). GPS precise point positioning using IGS orbit products. GPS solutions, 5(2), 12-28.
  • Li, T., Wang, J., & Laurichesse, D. (2014). Modeling and quality control for reliable precise point positioning integer ambiguity resolution with GNSS modernization. GPS solutions, 18, 429-442.
  • Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., & Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of geophysical research: solid earth, 102(B3), 5005-5017.
  • Alçay, S., & Atiz, Ö. (2021). Farklı yazılımlar kullanılarak gerçek zamanlı hassas nokta konum belirleme (RT-PPP) yönteminin performansının incelenmesi. Geomatik, 6(1), 77-83.
  • İnyurt, S., & Ulukavak, M. (2020). Web tabanlı GNSS Yazılımlarının (CSRS-PPP, Trimble-RTX) Performansının Araştırılması. Geomatik, 5(2), 120-126.
  • Uçarlı, A. C., Demir, F., Erol, S., & Alkan, R. M. (2021). Farklı GNSS uydu sistemlerinin hassas nokta konumlama (PPP) tekniğinin performansına etkisinin incelenmesi. Geomatik, 6(3), 247-258.
  • Pırtı, A., & Yazıcı, D. (2022). İnternet tabanlı GNSS yazılımlarının doğruluk açısından değerlendirilmesi. Geomatik, 7(2), 88-105.
  • Ogutcu, S. (2020). Performance assessment of IGS combined/JPL individual rapid and ultra-rapid products: Consideration of Precise Point Positioning technique. International Journal of Engineering and Geosciences, 5(1), 1-14.
  • Ogutcu, S. (2020). Performance analysis of ambiguity resolution on PPP and relative positioning techniques: consideration of satellite geometry. International Journal of Engineering and Geosciences, 5(2), 73-93.
  • Öğütcü, S., Shakor, A., & Farhan, H. (2022). Investigating the effect of observation interval on GPS, GLONASS, Galileo and BeiDou static PPP. International Journal of Engineering and Geosciences, 7(3), 294-301.
  • Özdemir, E. G. (2022). Bağıl ve mutlak (PPP) konum çözüm yaklaşımı sunan Web-Tabanlı çevrimiçi veri değerlendirme servislerinin farklı gözlem periyotlarındaki performanslarının araştırılması. Geomatik, 7(1), 41-51.
  • Alcay, S., Ogutcu, S., Kalayci, I., & Yigit, C. O. (2019). Displacement monitoring performance of relative positioning and Precise Point Positioning (PPP) methods using simulation apparatus. Advances in Space Research, 63(5), 1697-1707.
  • Aydin, C., Uygur, S. Ö., Cetin, S., Özdemir, A., & Dogan, U. (2019). Ability of GPS PPP in 2D deformation analysis with respect to GPS network solution. Survey review, 51(366), 199-212.
  • Capilla, R. M., Berné, J. L., Martín, A., & Rodrigo, R. (2016). Simulation case study of deformations and landslides using real-time GNSS precise point positioning technique. Geomatics, Natural Hazards and Risk, 7(6), 1856-1873.
  • Farzaneh, S., Safari, A., & Parvazi, K. (2022). Precise estimation of horizontal displacement by combination of multi-GNSS (Galileo and GPS) observations via the LS-VCE method. Applied Geomatics, 14(2), 267-286.
  • Yigit, C. O., Coskun, M. Z., Yavasoglu, H., Arslan, A., & Kalkan, Y. (2016). The potential of GPS Precise Point Positioning method for point displacement monitoring: A case study. Measurement, 91, 398-404.
  • Choy, S., Bisnath, S., & Rizos, C. (2017). Uncovering common misconceptions in GNSS Precise Point Positioning and its future prospect. GPS solutions, 21, 13-22.
  • Pan, L., Xiaohong, Z., & Fei, G. (2017). Ambiguity resolved precise point positioning with GPS and BeiDou. Journal of geodesy, 91, 25-40.
  • Li, X., Li, X., Yuan, Y., Zhang, K., Zhang, X., & Wickert, J. (2018). Multi-GNSS phase delay estimation and PPP ambiguity resolution: GPS, BDS, GLONASS, Galileo. Journal of geodesy, 92, 579-608.
  • Geng, J., Guo, J., Meng, X., & Gao, K. (2020). Speeding up PPP ambiguity resolution using triple-frequency GPS/BeiDou/Galileo/QZSS data. Journal of Geodesy, 94, 1-15.
  • Katsigianni, G., Loyer, S., & Perosanz, F. (2019). Ppp and ppp-ar kinematic post-processed performance of gps-only, galileo-only and multi-gnss. Remote sensing, 11(21), 2477.
  • Psychas, D., Verhagen, S., & Teunissen, P. J. (2020). Precision analysis of partial ambiguity resolution-enabled PPP using multi-GNSS and multi-frequency signals. Advances in Space Research, 66(9), 2075-2093.
  • Bezcioğlu, M., Yiğit, C. Ö., & Bodur, M. N. (2019). Kinematik PPP-AR ve Geleneksel PPP Yöntemlerin Performanslarının Değerlendirilmesi: Antarktika Yarımadası Örneği. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 19(1), 162-169.
  • Bezcioglu, M., Yigit, C. O., & El-Mowafy, A. (2019). Kinematic PPP-AR in Antarctic. Sea technology, 60(2), 20-23.
  • Atiz, O. F., Ogutcu, S., Alcay, S., Li, P., & Bugdayci, I. (2021). Performance investigation of LAMBDA and bootstrapping methods for PPP narrow-lane ambiguity resolution. Geo-Spatial Information Science, 24(4), 604-614.
  • Verhagen, S., & Teunissen, P. J. (2013). The ratio test for future GNSS ambiguity resolution. GPS solutions, 17, 535-548.
  • Geng, J., Chen, X., Pan, Y., Mao, S., Li, C., Zhou, J., & Zhang, K. (2019). PRIDE PPP-AR: an open-source software for GPS PPP ambiguity resolution. GPS Solutions, 23, 1-10.
There are 37 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Mert Bezcioğlu 0000-0001-7179-8361

Tayyib Ucar 0000-0002-4070-4024

Cemal Özer Yiğit 0000-0002-1942-7667

Early Pub Date May 8, 2023
Publication Date October 15, 2023
Published in Issue Year 2023 Volume: 8 Issue: 3

Cite

APA Bezcioğlu, M., Ucar, T., & Yiğit, C. Ö. (2023). Investigation of the capability of multi-GNSS PPP-AR method in detecting permanent displacements. International Journal of Engineering and Geosciences, 8(3), 251-261. https://doi.org/10.26833/ijeg.1140959
AMA Bezcioğlu M, Ucar T, Yiğit CÖ. Investigation of the capability of multi-GNSS PPP-AR method in detecting permanent displacements. IJEG. October 2023;8(3):251-261. doi:10.26833/ijeg.1140959
Chicago Bezcioğlu, Mert, Tayyib Ucar, and Cemal Özer Yiğit. “Investigation of the Capability of Multi-GNSS PPP-AR Method in Detecting Permanent Displacements”. International Journal of Engineering and Geosciences 8, no. 3 (October 2023): 251-61. https://doi.org/10.26833/ijeg.1140959.
EndNote Bezcioğlu M, Ucar T, Yiğit CÖ (October 1, 2023) Investigation of the capability of multi-GNSS PPP-AR method in detecting permanent displacements. International Journal of Engineering and Geosciences 8 3 251–261.
IEEE M. Bezcioğlu, T. Ucar, and C. Ö. Yiğit, “Investigation of the capability of multi-GNSS PPP-AR method in detecting permanent displacements”, IJEG, vol. 8, no. 3, pp. 251–261, 2023, doi: 10.26833/ijeg.1140959.
ISNAD Bezcioğlu, Mert et al. “Investigation of the Capability of Multi-GNSS PPP-AR Method in Detecting Permanent Displacements”. International Journal of Engineering and Geosciences 8/3 (October 2023), 251-261. https://doi.org/10.26833/ijeg.1140959.
JAMA Bezcioğlu M, Ucar T, Yiğit CÖ. Investigation of the capability of multi-GNSS PPP-AR method in detecting permanent displacements. IJEG. 2023;8:251–261.
MLA Bezcioğlu, Mert et al. “Investigation of the Capability of Multi-GNSS PPP-AR Method in Detecting Permanent Displacements”. International Journal of Engineering and Geosciences, vol. 8, no. 3, 2023, pp. 251-6, doi:10.26833/ijeg.1140959.
Vancouver Bezcioğlu M, Ucar T, Yiğit CÖ. Investigation of the capability of multi-GNSS PPP-AR method in detecting permanent displacements. IJEG. 2023;8(3):251-6.