Topographical features affecting the distribution of wind power plants (WPPs) in Türkiye
Year 2025,
Volume: 10 Issue: 3, 339 - 351
Emre Özşahin
,
Kerem Girgin
,
Tolgahan Köse
Abstract
Site selection for installing Wind Power Plants (WPPs) is very important for the planning process based on various economic, social and environmental parameters and national legislation. This selection is usually influenced by some criteria that favor or restrict wind speed and WPPs installation potential. Topographical features are a primary criterion affecting wind speed and WPPs installation potential. In this study, it is aimed to address the topographical features affecting the distribution of WPPs in Türkiye. The study is very important in terms of utilizing Türkiye's WPPs potential in the most economical way and identifying potential resource areas more accurately. Within the scope of the study, 3980 WPPs in Türkiye were identified with Google Earth Pro supported Remote Sensing (RS) tools and a WPPs inventory was created. These data were associated with different factor maps used to explain topographical features such as elevation, slope, aspect, topographic relief and landforms. Factor maps were produced using Geographic Information Systems (GIS) techniques using a 30 m resolution digital elevation model (DEM). Various statistical methods quantitatively explained the generated data. The results of the study showed that areas with elevation of 250-500 m, slope of 10-20%, aspect direction of west and southeast, topographic relief of 0-50 m and topographical features dominated by slope landforms are more preferred in WPPs site selection in Türkiye. It was determined that the elevation factor was the most important topographical variable (69.10%) in WPPs site selection. Therefore, it is understood that it is extremely important for decision-makers to take topographical features into consideration in planning studies to identify areas suitable for WPPs located in Türkiye. In addition, this study provides information and recommendations that will help those who will work on the determination of areas suitable for the installation of WPPs.
Thanks
We would like to thank Mehmet KONURAY, Projects and Events Manager of Turkish Wind Energy Association (TÜREB) for his contribution in obtaining the Turkish Wind Energy Statistical Reports, Energy Market Regulatory Authority (EMRA) for sharing the coordinates of the tribunes in the WPPs facilities with licenses in force in Türkiye, and Mikayil ÖZTÜRK and Tuğrul Turan SARI for their support in transferring the coordinates of the WPPs to the map.
References
- Tercan, E., Tapkın, S., Latinopoulos, D., Dereli, M.A., Tsiropoulos, A., & Ak, M.F. (2020). A GIS-based multicriteria model for offshore wind energy power plants site selection in both sides of the Aegean Sea. Environmental Monitoring and Assessment, 192, 652. https://doi.org/10.1007/s10661-020-08603-9
- Çelik, İ., Yıldız, C., & Şekkeli, M. (2018). Rüzgâr Enerji Santrali kurulumunda rüzgâr türbinlerinin mikro yerleşimi için bir optimizasyon modeli. Gazi University Journal of Science Part C: Design and Technology, 6(4), 898-908. https://doi.org/10.29109/gujsc.424155
- Konurhan, Z., & Başaran, E. (2024). Rüzgâr Enerji Santrali (RES) Yer Seçimi için BWM-CBS Tabanlı Bir Yaklaşım: Tunceli Örneği. Coğrafya Dergisi, 47, 15-28. https://doi.org/10.26650/JGEOG2023-1233104
- Rediske, G., Burin, H.P., Rigo, P.D., Rosa, C.B., Michels, L., & Siluk, J.C.M. (2021). Wind power plant site selection: A systematic review. Renewable and Sustainable Energy Reviews, 148, 111293. https://doi.org/10.1016/j.rser.2021.111293
- Alavi, S.M.S., Maleki, A., & Khaleghi, A. (2022). Optimal site selection for wind power plant using multicriteria decision-making methods: A case study in eastern Iran. International Journal of Low-Carbon Technologies, 17, 1319-1337, https://doi.org/10.1093/ijlct/ctac009
- Arca, D., & Keskin Çıtıroğlu, H. (2020). Rüzgar Enerjisi Santral (RES) Yapım Yerlerinin CBS Dayalı Çok Kriterli Karar Analizi ile Belirlenmesi: Yenice İlçesi (KARABÜK) Örneği. Karaelmas Fen ve Mühendislik Dergisi, 10(2), 168-176. https://doi.org/10.7212/zkufbd.v10i2.1602
- Tercan, E. (2021). Land suitability assessment for wind farms through best‒worst method and GIS in Balıkesir province of Turkey. Sustainable Energy Technologies and Assessments, 47, 101491. https://doi.org/10.1016/j.seta.2021.101491
- Sekeroglu, A., & Erol, D. (2023). Site selection modeling of hybrid renewable energy facilities using suitability index in spatial planning. Renewable Energy, 219(1), 119458. https://doi.org/10.1016/j.renene.2023.119458
- Yaman, A. (2024). A GIS-based multicriteria decision-making approach (GIS-MCDM) for determination of the most appropriate site selection of onshore wind farm in Adana, Turkey. Clean Technologies and Environmental Policy, 26, 4231-4254. https://doi.org/10.1007/s10098-024-02866-3
- Şahin, G., Koç, A., & van Sark, W. (2024). Multicriteria decision making for solar power - Wind power plant site selection using a GIS-intuitionistic fuzzy-based approach with an application in the Netherlands. Energy Strategy Reviews, 51, 101307. https://doi.org/10.1016/j.esr.2024.101307
- Zhang, J., Cheng, C., & Yu, S. (2024). Recognizing the mapping relationship between wind power output and meteorological information at a province level by coupling GIS and CNN Technologies. Applied Energy, 360, 122791. https://doi.org/10.1016/j.apenergy.2024.122791
- Ekiz, S., Şirin, A., & Erener, A. (2022). En uygun rüzgâr enerji santrali yerlerinin coğrafi bilgi sistemleri ile belirlenmesi: Kocaeli ili örneği. Jeodezi ve Jeoinformasyon Dergisi, 9(1), 59-79. https://doi.org/10.9733/JGG.2022R0005.T
- Liu, Z., Guo, H., Zhang, Y., & Zuo, Z. (2025). A Comprehensive Review of Wind Power Prediction Based on Machine Learning: Models, Applications, and Challenges. Energies, 18(2), 350. https://doi.org/10.3390/en18020350
- Daneshvar Rouyendegh, B., Yildizbasi, A., & Arikan, Ü.Z.B. (2018). Using Intuitionistic Fuzzy TOPSIS in Site Selection of Wind Power Plants in Turkey. Advances in Fuzzy Systems, 6703798. https://doi.org/10.1155/2018/6703798
- Yıldız, S.S. (2021). Balıkesir İli Rüzgâr Hızı Haritalarının Hazırlanması ve Rüzgâr Enerjisi Potansiyeli Açısından İncelenmesi. Geomatik, 6(3), 198-206. https://doi.org/10.29128/geomatik.737567
- Emeksiz, C., & Demirci, B. (2019). The determination of offshore wind energy potential of Turkey by using novelty hybrid site selection method. Sustainable Energy Technologies and Assessments, 36, 100562. https://doi.org/10.1016/j.seta.2019.100562
- Aydin, N.Y., Kentel, E., & Duzgun, S. (2010). GIS-based environmental assessment of wind energy systems for spatial planning: A case study from Western Turkey. Renewable and Sustainable Energy Reviews, 14(1), 364-373. https://doi.org/10.1016/j.rser.2009.07.023
- Sözen, A., Mirzapour, A., Cakır, M.T., İskender, Ü., & Çipil, F. (2015). Veri Zarflama ve Topsis Yaklaşımları Kullanılarak Türkiye Şehirlerinde Rüzgâr Santralleri için En İyi Yer Seçimi. Gazi Mühendislik Bilimleri Dergisi (GMBD), 1(1), 173-193. https://dergipark.org.tr/tr/download/article-file/304785
- Arı, E.S., & Gencer, C. (2020). The use and comparison of a deterministic, a stochastic, and a hybrid multiple-criteria decision-making method for site selection of wind power plants: An application in Turkey. Wind Engineering, 44(1), 60-74. https://doi.org/10.1177/0309524X19849831
- Derse, O., & Yılmaz, E. (2021). Optimal site selection for wind energy: a case study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(3), 6660-6677. https://doi.org/10.1080/15567036.2021.1955048
- Darende, P., Rouyendegh (B. Erdebilli), B.D., & Khaniyev, T. (2021). Regional Examination of Energy Investments in Turkey Using an Intuitionistic Fuzzy Method. In: Topcu, Y.I., Özaydın, Ö., Kabak, Ö., Önsel Ekici, Ş. (eds) Multiple Criteria Decision Making. MCDM 2019. Contributions to Management Science. Springer. https://doi.org/10.1007/978-3-030-52406-7_7
- Çolak, Z. (2024). A hybrid MCDM method for enhancing site selection for wind power plants in Turkey. Energy for Sustainable Development, 82, 101536. https://doi.org/10.1016/j.esd.2024.101536
- Demir, A., Dinçer, A.E., Çiftçi, C., Gülçimen, S., Uzal, N., & Yılmaz, K. (2024). Wind farm site selection using GIS-based multicriteria analysis with Life cycle assessment integration. Earth Science Informatics, 17, 1591-1608. https://doi.org/10.1007/s12145-024-01227-4
- Urfalı, T., & Eymen, A. (2021). CBS ve AHP Yöntemi Yardımıyla Kayseri İli Örneğinde Rüzgâr Enerji Santrallerinin Yer Seçimi. Geomatik, 6(3), 227-237. https://doi.org/10.29128/geomatik.772453
- Yılmaz, D., Akkaya, S., & Vaheddoost, B. (2023). Gemlik İlçesi rüzgâr enerji santrali potansiyel yer analizi. Geomatik, 8(3), 264-276. https://doi.org/10.29128/geomatik.1209940
- Akova, İ. (2011). Development potential of wind energy in Turkey. EchoGéo. https://doi.org/10.4000/echogeo.12457
- İlkılıç, Z. (2016). Türkiye’de Rüzgar Enerjisi ve Rüzgar Enerji Sistemlerinin Gelişimi. Batman Üniversitesi Yaşam Bilimleri Dergisi, 6(2/2), 1-13. https://dergipark.org.tr/tr/download/article-file/313658
- Pınar, A., Buldur, A., & Tuncer, T. (2020). Türkiye’deki Rüzgâr Enerji Santralleri Dağılışının Coğrafi Perspektiften Analizi. Doğu Coğrafya Dergisi, 25(43), 167-182. https://doi.org/10.17295/ataunidcd.662785
- Unal, M., Cilek, A., & Tekin, S. (2024). Maximum Entropy Method for Wind Farm Site Selection: Implications for River Basin Ecosystems Under Climate Change. Water, 16(24), 3679. https://doi.org/10.3390/w16243679
- Lyu, X., Li, X., Zhang, C., Dang, D., Wang, K., & Lou, A. (2024). Mapping the carbon mitigation potential of photovoltaic development in the Gobi and desert regions of China. Energy, 308, 132936. https://doi.org/10.1016/j.energy.2024.132936
- Chaibi, M., Ben Ghoulam, E.M., Khallouk, N., Tarik, L., El Yousfi, Y., El Hmaidi, A., Berrada, M., & Mabrouki, J. (2024). A novel fuzzy-multicriteria-GIS-machine learning approach for onshore wind power plant site selection. Euro-Mediterranean Journal for Environmental Integration, https://doi.org/10.1007/s41207-024-00653-6
- ESRI (2023). Forest-based classification and regression (Spatial Statistics). https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/forestbasedclassificationregression.htm
- Breiman, L. (2001). Random forest. Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324
- Çömert, R., Matcı, D. K., & Avdan, U. (2019). Object based burned area mapping with random forest algorithm. International Journal of Engineering and Geosciences, 4(2), 78-87. https://doi.org/10.26833/ijeg.455595
- İlkiliç, C., & Türkbay, İ. (2010). Determination and utilization of wind energy potential for Turkey. Renewable and Sustainable Energy Reviews, 14(8), 2202-2207. https://doi.org/10.1016/j.rser.2010.03.033
- EPDK. (2024). Elektrik Piyasası Üretim Lisansları. T.C. Enerji Piyasası Düzenleme Kurumu. https://lisans.epdk.gov.tr/epvys-web/faces/pages/lisans/elektrikUretim/elektrikUretimOzetSorgula.xhtml
- Google Earth Pro. (2024). Google Earth Pro programındaki altlık uydu görüntüsü.
- Frankl, A., Zwertvaegher, A., Poesen, J., & Nyssen, J. (2012). Transferring Google Earth observations to GIS-software: example from gully erosion study. International Journal of Digital Earth, 6(2), 196-201. https://doi.org/10.1080/17538947.2012.744777
- Tezel, D., Aydemir, S., Taşkın, C., & Gündoğan, Ü. (2022). 3D Modeling and Land Management in Protected Areas: Fethiye-Göcek SEPA. Advanced Geomatics, 2(2), 37–48. https://publish.mersin.edu.tr/index.php/geomatics/article/view/267
- Neal, J., & Hawker, N. (2023). FABDEM V1-2. https://doi.org/10.5523/bris.s5hqmjcdj8yo2ibzi9b4ew3sn
- Özdemir, H., & Akbaş, A. (2023). Sayısal yükseklik modelerindeki mekânsal çözünürlük değişkenliğinin taşkın tehlike analizine etkileri. Cografya Dergisi, 46, 137-156. https://doi.org/10.26650/JGEOG2023-1177718
- Yilmaz, H. M., Yakar, M., Mutluoglu, O., Kavurmaci, M. M., & Yurt, K. (2012). Monitoring of soil erosion in Cappadocia region (Selime-Aksaray-Turkey). Environmental Earth Sciences, 66, 75-81.
- Cürebal, İ., & Özşahin, E. (2022). Harita Bilgisi (Bilgisayar Uygulamalı Tasarım ve Analiz). Ekin Basın Yayın Dağıtım, Bursa.
- Hasanzaeh, M., Valizadeh Kamran, K., Feizizadeh, B., & Hassanzadeh Mollabashi, S. (2024). GIS based spatial decision-making approach for solar energy site selection, Ardabil, Iran. International Journal of Engineering and Geosciences, 9(1), 115-130. https://doi.org/10.26833/ijeg.1341451
- Çolak, E., Bediroğlu, G., & Memişoğlu Baykal, T. (2024). GIS-based determination of potential snow avalanche areas: A case study of Rize Province of Türkiye. International Journal of Engineering and Geosciences, 9(2), 199-210. https://doi.org/10.26833/ijeg.1367334
- Jonuzi, E., Alkan, T., Durduran, S.S., & Selvi, H.Z. (2024). Using GIS-supported MCDA method for appropriate site selection of parking lots: The case study of the city of Tetovo, North Macedonia. International Journal of Engineering and Geosciences, 9(1), 86-98. https://doi.org/10.26833/ijeg.1319605
- Clifton, A., Barber, S., Stökl, A., Frank, H., & Karlsson, T. (2022). Research challenges and needs for the deployment of wind energy in hilly and mountainous regions, Wind Energy Science, 7, 2231-2254. https://doi.org/10.5194/wes-7-2231-2022
- Doumit, J. (2024). Estimating the efficacy of solar photovoltaic panels in Lebanon using a digital surface model: A geospatial approach. Mersin Photogrammetry Journal, 6(1), 22-31. https://doi.org/10.53093/mephoj.1401603
- Najatishendi, E., Ergene, E.M., Uzar, M., Balık Şanlı, F. (2022). Production of flood risk maps: Ayancık Stream Example. Mersin Photogrammetry Journal, 4(1), 14-23. https://doi.org/10.53093/mephoj.1123378
- Yürek, Ö., Birant, D., & Yürek, İ. (2021). Wind Power Generation Prediction Using Machine Learning Algorithms. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 23(67), 107-119. https://doi.org/10.21205/deufmd.2021236709
- Başara, A.C., Tabar, M.E., Gülsün, S., & Şişman, Y. (2022). Monitoring Urban Sprawl in Atakum District Using CORINE Data. Advanced Geomatics, 2(2), 49–56. https://publish.mersin.edu.tr/index.php/geomatics/article/view/481
- Unel, F. B., Kusak, L., & Yakar, M. (2023). GeoValueIndex map of public property assets generating via Analytic Hierarchy Process and Geographic Information System for Mass Appraisal: GeoValueIndex. Aestimum, 82, 51-69.
- Yeniay, E., & Şık, A. (2023). Spatial ecological risk analysis in peach farming in Manisa. Advanced GIS, 3(2), 59–67. https://publish.mersin.edu.tr/index.php/agis/article/view/1044
- Makhmudov, R., & Teymurov, M. (2024). Importance of using GIS software in the process of application of Analogue terrains and Counter-approach technologies in water resources assessment. Advanced Remote Sensing, 4(1), 36–45. https://publish.mersin.edu.tr/index.php/arsej/article/view/1163
- Siraj, M., Mahmood, S., & Habib, W. (2023). Geo-spatial assessment of land cover change in District Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan. Advanced Remote Sensing, 3(1), 1–9. https://publish.mersin.edu.tr/index.php/arsej/article/view/686
- Ünel, F. B., Kuşak, L., Yakar, M., & Doğan, H. (2023). Coğrafi bilgi sistemleri ve analitik hiyerarşi prosesi kullanarak Mersin ilinde otomatik meteoroloji gözlem istasyonu yer seçimi. Geomatik, 8(2), 107-123.
- Aghayeva, F. (2024). Wildfire hazard and risk assessment: The case of Gabala district. Advanced GIS, 4(1), 01–09. https://publish.mersin.edu.tr/index.php/agis/article/view/1089
- Valizadeh Kamran, K., Nasiri, A., Zandi, R., Shafiei, N., & Farzin, R. (2022). An assessment of physical development prediction in Shiraz (Iran) and its relationship with geomorphological factors. Advanced Remote Sensing, 2(2), 47–57. https://publish.mersin.edu.tr/index.php/arsej/article/view/347
- Pathak, S., Acharya, S., Bk, S., Karn, G., & Thapa, U. (2024). UAV-based topographical mapping and accuracy assessment of orthophoto using GCP. Mersin Photogrammetry Journal, 6(1), 1-8. https://doi.org/10.53093/mephoj.1350426
- Shorabeh, S.N., Firozjaei, H.K., Firozjaei, M.K., Jelokhani-Niaraki, M., Homaee, M., & Nematollahi, O. (2022). The site selection of wind energy power plant using GIS-multicriteria evaluation from economic perspectives. Renewable and Sustainable Energy Reviews, 168, 112778. https://doi.org/10.1016/j.rser.2022.112778
- Özşahin, E., & Kaymaz, Ç.K. (2013). Rüzgâr Enerji Santrallerinin (RES) Kuruluş Yeri Seçiminin CBS İle Analizi: Hatay Örneği. TÜBAV Bilim Dergisi, 6(2), 1-18. https://dergipark.org.tr/tr/download/article-file/200976
- Gull, A., Liaqut, A., & Mahmood, S. (2023). Landslide Risk Assessment using Geo-spatial Technique: A study of District Abbottabad, Khyber Pakhtunkhwa, Pakistan. Advanced Geomatics, 3(2), 47–55. https://publish.mersin.edu.tr/index.php/geomatics/article/view/983
- Çalışkan, M. (2011). Türkiye Rüzgâr Enerjisi Potansiyeli ve Mevcut Yatırımlar. Rüzgâr Enerjisi ve Santralleri Semineri (27 Mayıs 2011), Rahmi Koç Müzesi Konferans Salonu, İstanbul.
- Cunden, T.S.M., Doorga, J., Lollchund, M.R., & Rughooputh, S.D.D.V. (2020). Multilevel constraints wind farms siting for a complex terrain in a tropical region using MCDM approach coupled with GIS. Energy, 211, 118533. https://doi.org/10.1016/j.energy.2020.118533
- Mostafaeipour, A., Sadeghi, S., Jahangiri, M., Nematollahi, O., & Rezaeian Sabbagh, A. (2020). Investigation of accurate location planning for wind farm establishment: a case study. Journal of Engineering, Design and Technology, 18(4), 821-845. https://doi.org/10.1108/JEDT-08-2019-0208
- Kim, H.G., Kang, Y.H., & Kim, J.Y. (2017). Evaluation of wind resource potential in mountainous region considering morphometric terrain characteristics. Wind Engineering, 41(2), 114-123. https://doi.org/10.1177/0309524X16689445
- Hepbasli, A., & Ozgener, O. (2004). A review on the development of wind energy in Turkey. Renewable and Sustainable Energy Reviews, 8(3), 257-276. https://doi.org/10.1016/j.rser.2003.10.006.
- Çam, E., Arcaklıoğlu, E., Çavuşoğlu, A., & Akbıyık, B. (2005). A classification mechanism for determining average wind speed and power in several regions of Turkey using artificial neural networks. Renewable Energy, 30(2), 227-239. https://doi.org/10.1016/j.renene.2004.05.008
- Değirmenci, S., Bingöl, F., & Sofuoğlu, S.C. (2017). Türkiye’de Rüzgâr Tarlası Arazilerinin Çok Kriterli Karar Analizi Kullanılarak Belirlenmesi. 4. İzmir Rüzgâr Sempozyumu (28-30 Eylül 2017), İzmir, s.: 27-32
- Bingöl, F. (2018). Rüzgar Enerji Sistemleri İçin Hava Yoğunluğunun Hesaplanması. Politeknik Dergisi, 21(2), 273-281. https://doi.org/10.2339/politeknik.385523
- Ifkirne, M., El Bouhi, Hi, Acharki, S., Pham, Q.B., Farah, A., & Linh, N.T.T. (2022). Multi-Criteria GIS-Based Analysis for Mapping Suitable Sites for Onshore Wind Farms in Southeast France. Land, 11(10), 1839. https://doi.org/10.3390/land11101839
- Yılmaz, D., Akkaya, S., & Vaheddoost, B. (2023). Gemlik İlçesi rüzgâr enerji santrali potansiyel yer analizi. Geomatik, 8(3), 264-276. https://doi.org/10.29128/geomatik.1209940
- Memduhoğlu, A., Özmen, G., Göyçek, G., & Kılıç, F. (2014). Rüzgar Türbini Kurulacak Alanların CBS–Çok Ölçütlü Karar Analizi Kullanılarak Belirlenmesi: Davutpaşa Kampüsü. V. Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Sempozyumu (UZAL-CBS 2014), 14-17 Ekim 2014, İstanbul.