Research Article
BibTex RIS Cite
Year 2023, , 41 - 50, 19.03.2023
https://doi.org/10.30897/ijegeo.1119695

Abstract

References

  • Abrams, M. (2016). ASTER GLOBAL DEM VERSION 3, AND NEW ASTER WATER BODY DATASET. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B4, 107‑110. https://doi.org/10.5194/isprsarchives-XLI-B4-107-2016
  • Abrams, M., Bailey, B., Tsu, H., & Hato, M. (2010). The ASTER Global DEM. Photogrammetric Engineering and Remote Sensing, 76(4), 344‑348.
  • ASTER GDEM Validation Team. (2009). ASTER Global DEM Validation Summary Report. http://www.ersdac.or.jp/GDEM/E/3.html. https://ci.nii.ac.jp/naid/10029324842/
  • ASTER GDEM Validation Team. (2011). ASTER Global Digital Elevation Model Version 2—Summary of validation results. NASA. http://pubs.er.usgs.gov/publication/70005960
  • Athmania, D., & Achour, H. (2014). External Validation of the ASTER GDEM2, GMTED2010 and CGIAR-CSI- SRTM v4.1 Free Access Digital Elevation Models (DEMs) in Tunisia and Algeria. Remote Sensing, 6(5), 4600‑4620. https://doi.org/10.3390/rs6054600
  • Carabajal, C. C. (2011). ASTER GLOBAL DEM VERSION 2.0 EVALUATION USING ICESat GEODETIC GROUND CONTROL. NASA Goddard Space Flight Center: Greenbelt, Maryland, 47.
  • Carter, J. R. (1988). Digital Representations of Topographic Surfaces. PHOTOGRAMMETRIC ENGINEERING, 4.
  • Dietrich, W. E., & Perron, J. T. (2006). The search for a topographic signature of life. Nature, 439(7075), 411‑418. https://doi.org/10.1038/nature04452
  • El Hage, M., Simonetto, E., Faour, G., & Polidori, L. (2012). EVALUATION OF ELEVATION, SLOPE AND STREAM NETWORK QUALITY OF SPOT DEMS. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, I‑2, 63‑67. https://doi.org/10.5194/isprsannals-I-2-63-2012
  • Elkhrachy, I. (2017). Vertical accuracy assessment for SRTM and ASTER Digital Elevation Models : A case study of Najran city, Saudi Arabia. 11.
  • Ensle, F., Heinzel, J., & Koch, B. (2012). Evaluating Height Differences between Global Digital Surface Models and ICESat Heights at Footprint Geolocation. GIS Ostrava 2012: Surface Models for Geosciences, 37‑48.
  • Farr, T. G., & Kobrick, M. (2000). Shuttle radar topography mission produces a wealth of data. Eos, Transactions American Geophysical Union, 81(48), 583. https://doi.org/10.1029/EO081i048p00583
  • Fujisada, H., Bailey, G. B., Kelly, G. G., Hara, S., & Abrams, M. J. (2005). ASTER DEM performance. In IEEE Transactions on Geoscience and Remote Sensing (Vol. 43, Numéro 12, p. 7). https://doi.org/10.1109/TGRS.2005.847924
  • Gesch, D., Oimoen, M., Danielson, J., & Meyer, D. (2016). VALIDATION OF THE ASTER GLOBAL DIGITAL ELEVATION MODEL VERSION 3 OVER THE CONTERMINOUS UNITED STATES. 6.
  • Gesch, D., Oimoen, M., Zhang, Z., Meyer, D., & Danielson, J. (2012). VALIDATION OF THE ASTER GLOBAL DIGITAL ELEVATION MODEL VERSION 2 OVER THE CONTERMINOUS UNITED STATES. 7.
  • Gorokhovich, Y., & Voustianiouk, A. (2006). Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics. Remote Sensing of Environment, 104(4), 409‑415. https://doi.org/10.1016/j.rse.2006.05.012
  • Hirt, C., Filmer, M. S., & Featherstone, W. E. (2010). Comparison and validation of the recent freely available ASTER-GDEM ver1, SRTM ver4.1 and GEODATA DEM-9S ver3 digital elevation models over Australia. Australian Journal of Earth Sciences, 57(3), 337‑347. https://doi.org/10.1080/08120091003677553
  • Huang, Z., & Lees, B. (2005). Representing and reducing error in natural‐resource classification using model combination. International Journal of Geographical Information Science, 19(5), 603‑621. https://doi.org/10.1080/13658810500032446
  • Jarvis, A., Guevara, E., Reuter, H. I., & Nelson, A. D. (2008). Hole-filled SRTM for the globe : Version 4 : data grid. https://research.utwente.nl/en/publications/hole-filled-srtm-for-the-globe-version-4-data-grid
  • Jarvis, A., Reuter, H. I., Nelson, A., & Guevara, E. (2006). Hole-filled seamless SRTM data V3. International Centre for Tropical Agriculture (CIAT).
  • Lane, S. N., James, T. D., & Crowell, M. D. (2000). Application of Digital Photogrammetry to Complex Topography for Geomorphological Research. The Photogrammetric Record, 16(95), 793‑821. https://doi.org/10.1111/0031-868X.00152
  • Leica Geosystems, G. (2006). Leica GRX 1200 Series : Technical Data. Printed in Switzerland.
  • Liu, J. G., & Mason, P. (2013). Essential Image Processing and GIS for Remote Sensing. https://nbn-resolving.org/urn:nbn:de:101:1-201412208115
  • Ludwig, R., & Schneider, P. (2006). Validation of digital elevation models from SRTM X-SAR for applications in hydrologic modeling. ISPRS Journal of Photogrammetry and Remote Sensing, 60(5), 339‑358. https://doi.org/10.1016/j.isprsjprs.2006.05.003
  • Maune, D. F. (2001). Digital elevation model technologies and applications : The DEM users manual (American Society for Photogrammetry and Remote Sensing, Éd.). American Society for Photogrammetry and Remote Sensing.
  • Miliaresis, G. Ch., & Paraschou, C. V. E. (2005). Vertical accuracy of the SRTM DTED level 1 of Crete. International Journal of Applied Earth Observation and Geoinformation, 7(1), 49‑59. https://doi.org/10.1016/j.jag.2004.12.001
  • Miliaresis, G. Ch., & Paraschou, C. V. E. (2011). An evaluation of the accuracy of the ASTER GDEM and the role of stack number : A case study of Nisiros Island, Greece. Remote Sensing Letters, 2(2), 127‑135. https://doi.org/10.1080/01431161.2010.503667
  • Miller, C. L., & Laflamme, R. A. (1958). The Digital Terrain Model—Theory & Application. PHOTOGRAMMETRIC ENGINEERING, 10.
  • Mouratidis, A., Briole, P., & Katsambalos, K. (2010). SRTM 3″ DEM (versions 1, 2, 3, 4) validation by means of extensive kinematic GPS measurements : A case study from North Greece. International Journal of Remote Sensing, 31(23), 6205‑6222. https://doi.org/10.1080/01431160903401403
  • Oksanen, J., & Sarjakoski, T. (2005). Error propagation of DEM-based surface derivatives. Computers & Geosciences, 31(8), 1015‑1027. https://doi.org/10.1016/j.cageo.2005.02.014
  • Rabus, B., Eineder, M., Roth, A., & Bamler, R. (2003). The shuttle radar topography mission—A new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Photogrammetry and Remote Sensing, 57(4), 241‑262. https://doi.org/10.1016/S0924-2716(02)00124-7
  • Reuter, H. I., Nelson, A., & Jarvis, A. (2007). An evaluation of void‐filling interpolation methods for SRTM data. International Journal of Geographical Information Science, 21(9), 983‑1008. https://doi.org/10.1080/13658810601169899
  • Rexer, M., & Hirt, C. (2014). Comparison of free high resolution digital elevation data sets (ASTER GDEM2, SRTM v2.1/v4.1) and validation against accurate heights from the Australian National Gravity Database. Australian Journal of Earth Sciences, 61(2), 213‑226. https://doi.org/10.1080/08120099.2014.884983
  • Rey, J.-M. (1997). Techniques GPS en mode cinématique [Text/html,application/pdf]. https://doi.org/10.5169/SEALS-235359
  • Rodríguez, E., Morris, C. S., Belz, J. E., Chapin, E. C., Martin, J. M., Daffer, W., & Hensley, S. (2005). An Assessment of the SRTM Topographic Products. 143.
  • Satgé, F., Bonnet, M. P., Timouk, F., Calmant, S., Pillco, R., Molina, J., Lavado-Casimiro, W., Arsen, A., Crétaux, J. F., & Garnier, J. (2015). Accuracy assessment of SRTM v4 and ASTER GDEM v2 over the Altiplano watershed using ICESat/GLAS data. International Journal of Remote Sensing, 36(2), 465‑488. https://doi.org/10.1080/01431161.2014.999166
  • Shapiro, L. G., & Stockman, G. C. (2001). Computer Vision (1st edition). Pearson.
  • Slater, J. A., Garvey, G., Johnston, C., Haase, J., Heady, B., Kroenung, G., & Little, J. (2006). The SRTM Data “Finishing” Process and Products. Photogrammetric Engineering & Remote Sensing, 72(3), 237‑247. https://doi.org/10.14358/PERS.72.3.237
  • Slater, J. A., Heady, B., Kroenung, G., Curtis, W., Haase, J., Hoegemann, D., Shockley, C., & Tracy, K. (2011). Global Assessment of the New ASTER Global Digital Elevation Model. Photogrammetric Engineering & Remote Sensing, 77(4), 335‑349. https://doi.org/10.14358/PERS.77.4.335
  • Sun, G., Ranson, K. J., Kharuk, V. I., & Kovacs, K. (2003). Validation of surface height from shuttle radar topography mission using shuttle laser altimeter. Remote Sensing of Environment, 88(4), 401‑411. https://doi.org/10.1016/j.rse.2003.09.001
  • Tahiri, D., Alaoui, A., Zeddib, H., & Rasmy, L. (2011). ÉVALUATION DU MNT GLOBAL ASTER GDEM SUR LE TERRITOIRE MAROCAIN. In The 25th International Cartographic Conference. French Committee of Cartography. https://icaci.org/files/documents/ICC_proceedings/ICC2011/
  • van Zyl, J. J. (2001). The Shuttle Radar Topography Mission (SRTM) : A breakthrough in remote sensing of topography. Acta Astronautica, 48(5‑12), 559‑565. https://doi.org/10.1016/S0094-5765(01)00020-0
  • Zhao, G., Xue, H., & Ling, F. (2010). Assessment of ASTER GDEM performance by comparing with SRTM and ICESat/GLAS data in Central China. 2010 18th International Conference on Geoinformatics, 1‑5. https://doi.org/10.1109/GEOINFORMATICS.2010.5567970

Evaluation of the Accuracy of Open-Source DEMs using GPS Data

Year 2023, , 41 - 50, 19.03.2023
https://doi.org/10.30897/ijegeo.1119695

Abstract

The DEM is often required for flooding or drainage modeling, land use studies, and geological or other applications. A variety of DEMs, such as the Advanced Space Thermal Emission Radiometer (ASTER GDEM) and the Radar Topography Mission (SRTM) are currently available to the public free of charge. However, these DEMs remain a representation of reality, which requires, before any application, their evaluation using high-precision reference data. The objective of this study is to assess the quality of the two DEMs, ASTER GDEM and SRTM, in Morocco. The methodology adopted for this validation is based on two approaches: internal validation and external validation. The first validation consists of a comparison of the versions of each product with each other. This processing showed that version 2 and version 3 (1 arcsecond) are the best versions of ASTER and SRTM respectively. For the second validation, the vertical precision of DEMs is evaluated by 3551 GPS control points. The overall vertical accuracy attests to a ″ RMSE ″ mean square error of 8.17 and 10.15 respectively for ASTER and SRTM, compared to the GPS elevation points. These ″ RMSE ″ values are the lowest compared to the other versions of these two products, which confirms the quality of version 2 of ASTER GDEM and that of version 3 (1 arcsecond) of SRTM. An in-depth analysis of SRTM version 3 data (1 arcsecond) and ASTER GDEM v2, shows the presence of outliers associated with the slope, which shows the degradation of the performance of these DEMs with the increase of the slope.

References

  • Abrams, M. (2016). ASTER GLOBAL DEM VERSION 3, AND NEW ASTER WATER BODY DATASET. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B4, 107‑110. https://doi.org/10.5194/isprsarchives-XLI-B4-107-2016
  • Abrams, M., Bailey, B., Tsu, H., & Hato, M. (2010). The ASTER Global DEM. Photogrammetric Engineering and Remote Sensing, 76(4), 344‑348.
  • ASTER GDEM Validation Team. (2009). ASTER Global DEM Validation Summary Report. http://www.ersdac.or.jp/GDEM/E/3.html. https://ci.nii.ac.jp/naid/10029324842/
  • ASTER GDEM Validation Team. (2011). ASTER Global Digital Elevation Model Version 2—Summary of validation results. NASA. http://pubs.er.usgs.gov/publication/70005960
  • Athmania, D., & Achour, H. (2014). External Validation of the ASTER GDEM2, GMTED2010 and CGIAR-CSI- SRTM v4.1 Free Access Digital Elevation Models (DEMs) in Tunisia and Algeria. Remote Sensing, 6(5), 4600‑4620. https://doi.org/10.3390/rs6054600
  • Carabajal, C. C. (2011). ASTER GLOBAL DEM VERSION 2.0 EVALUATION USING ICESat GEODETIC GROUND CONTROL. NASA Goddard Space Flight Center: Greenbelt, Maryland, 47.
  • Carter, J. R. (1988). Digital Representations of Topographic Surfaces. PHOTOGRAMMETRIC ENGINEERING, 4.
  • Dietrich, W. E., & Perron, J. T. (2006). The search for a topographic signature of life. Nature, 439(7075), 411‑418. https://doi.org/10.1038/nature04452
  • El Hage, M., Simonetto, E., Faour, G., & Polidori, L. (2012). EVALUATION OF ELEVATION, SLOPE AND STREAM NETWORK QUALITY OF SPOT DEMS. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, I‑2, 63‑67. https://doi.org/10.5194/isprsannals-I-2-63-2012
  • Elkhrachy, I. (2017). Vertical accuracy assessment for SRTM and ASTER Digital Elevation Models : A case study of Najran city, Saudi Arabia. 11.
  • Ensle, F., Heinzel, J., & Koch, B. (2012). Evaluating Height Differences between Global Digital Surface Models and ICESat Heights at Footprint Geolocation. GIS Ostrava 2012: Surface Models for Geosciences, 37‑48.
  • Farr, T. G., & Kobrick, M. (2000). Shuttle radar topography mission produces a wealth of data. Eos, Transactions American Geophysical Union, 81(48), 583. https://doi.org/10.1029/EO081i048p00583
  • Fujisada, H., Bailey, G. B., Kelly, G. G., Hara, S., & Abrams, M. J. (2005). ASTER DEM performance. In IEEE Transactions on Geoscience and Remote Sensing (Vol. 43, Numéro 12, p. 7). https://doi.org/10.1109/TGRS.2005.847924
  • Gesch, D., Oimoen, M., Danielson, J., & Meyer, D. (2016). VALIDATION OF THE ASTER GLOBAL DIGITAL ELEVATION MODEL VERSION 3 OVER THE CONTERMINOUS UNITED STATES. 6.
  • Gesch, D., Oimoen, M., Zhang, Z., Meyer, D., & Danielson, J. (2012). VALIDATION OF THE ASTER GLOBAL DIGITAL ELEVATION MODEL VERSION 2 OVER THE CONTERMINOUS UNITED STATES. 7.
  • Gorokhovich, Y., & Voustianiouk, A. (2006). Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics. Remote Sensing of Environment, 104(4), 409‑415. https://doi.org/10.1016/j.rse.2006.05.012
  • Hirt, C., Filmer, M. S., & Featherstone, W. E. (2010). Comparison and validation of the recent freely available ASTER-GDEM ver1, SRTM ver4.1 and GEODATA DEM-9S ver3 digital elevation models over Australia. Australian Journal of Earth Sciences, 57(3), 337‑347. https://doi.org/10.1080/08120091003677553
  • Huang, Z., & Lees, B. (2005). Representing and reducing error in natural‐resource classification using model combination. International Journal of Geographical Information Science, 19(5), 603‑621. https://doi.org/10.1080/13658810500032446
  • Jarvis, A., Guevara, E., Reuter, H. I., & Nelson, A. D. (2008). Hole-filled SRTM for the globe : Version 4 : data grid. https://research.utwente.nl/en/publications/hole-filled-srtm-for-the-globe-version-4-data-grid
  • Jarvis, A., Reuter, H. I., Nelson, A., & Guevara, E. (2006). Hole-filled seamless SRTM data V3. International Centre for Tropical Agriculture (CIAT).
  • Lane, S. N., James, T. D., & Crowell, M. D. (2000). Application of Digital Photogrammetry to Complex Topography for Geomorphological Research. The Photogrammetric Record, 16(95), 793‑821. https://doi.org/10.1111/0031-868X.00152
  • Leica Geosystems, G. (2006). Leica GRX 1200 Series : Technical Data. Printed in Switzerland.
  • Liu, J. G., & Mason, P. (2013). Essential Image Processing and GIS for Remote Sensing. https://nbn-resolving.org/urn:nbn:de:101:1-201412208115
  • Ludwig, R., & Schneider, P. (2006). Validation of digital elevation models from SRTM X-SAR for applications in hydrologic modeling. ISPRS Journal of Photogrammetry and Remote Sensing, 60(5), 339‑358. https://doi.org/10.1016/j.isprsjprs.2006.05.003
  • Maune, D. F. (2001). Digital elevation model technologies and applications : The DEM users manual (American Society for Photogrammetry and Remote Sensing, Éd.). American Society for Photogrammetry and Remote Sensing.
  • Miliaresis, G. Ch., & Paraschou, C. V. E. (2005). Vertical accuracy of the SRTM DTED level 1 of Crete. International Journal of Applied Earth Observation and Geoinformation, 7(1), 49‑59. https://doi.org/10.1016/j.jag.2004.12.001
  • Miliaresis, G. Ch., & Paraschou, C. V. E. (2011). An evaluation of the accuracy of the ASTER GDEM and the role of stack number : A case study of Nisiros Island, Greece. Remote Sensing Letters, 2(2), 127‑135. https://doi.org/10.1080/01431161.2010.503667
  • Miller, C. L., & Laflamme, R. A. (1958). The Digital Terrain Model—Theory & Application. PHOTOGRAMMETRIC ENGINEERING, 10.
  • Mouratidis, A., Briole, P., & Katsambalos, K. (2010). SRTM 3″ DEM (versions 1, 2, 3, 4) validation by means of extensive kinematic GPS measurements : A case study from North Greece. International Journal of Remote Sensing, 31(23), 6205‑6222. https://doi.org/10.1080/01431160903401403
  • Oksanen, J., & Sarjakoski, T. (2005). Error propagation of DEM-based surface derivatives. Computers & Geosciences, 31(8), 1015‑1027. https://doi.org/10.1016/j.cageo.2005.02.014
  • Rabus, B., Eineder, M., Roth, A., & Bamler, R. (2003). The shuttle radar topography mission—A new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Photogrammetry and Remote Sensing, 57(4), 241‑262. https://doi.org/10.1016/S0924-2716(02)00124-7
  • Reuter, H. I., Nelson, A., & Jarvis, A. (2007). An evaluation of void‐filling interpolation methods for SRTM data. International Journal of Geographical Information Science, 21(9), 983‑1008. https://doi.org/10.1080/13658810601169899
  • Rexer, M., & Hirt, C. (2014). Comparison of free high resolution digital elevation data sets (ASTER GDEM2, SRTM v2.1/v4.1) and validation against accurate heights from the Australian National Gravity Database. Australian Journal of Earth Sciences, 61(2), 213‑226. https://doi.org/10.1080/08120099.2014.884983
  • Rey, J.-M. (1997). Techniques GPS en mode cinématique [Text/html,application/pdf]. https://doi.org/10.5169/SEALS-235359
  • Rodríguez, E., Morris, C. S., Belz, J. E., Chapin, E. C., Martin, J. M., Daffer, W., & Hensley, S. (2005). An Assessment of the SRTM Topographic Products. 143.
  • Satgé, F., Bonnet, M. P., Timouk, F., Calmant, S., Pillco, R., Molina, J., Lavado-Casimiro, W., Arsen, A., Crétaux, J. F., & Garnier, J. (2015). Accuracy assessment of SRTM v4 and ASTER GDEM v2 over the Altiplano watershed using ICESat/GLAS data. International Journal of Remote Sensing, 36(2), 465‑488. https://doi.org/10.1080/01431161.2014.999166
  • Shapiro, L. G., & Stockman, G. C. (2001). Computer Vision (1st edition). Pearson.
  • Slater, J. A., Garvey, G., Johnston, C., Haase, J., Heady, B., Kroenung, G., & Little, J. (2006). The SRTM Data “Finishing” Process and Products. Photogrammetric Engineering & Remote Sensing, 72(3), 237‑247. https://doi.org/10.14358/PERS.72.3.237
  • Slater, J. A., Heady, B., Kroenung, G., Curtis, W., Haase, J., Hoegemann, D., Shockley, C., & Tracy, K. (2011). Global Assessment of the New ASTER Global Digital Elevation Model. Photogrammetric Engineering & Remote Sensing, 77(4), 335‑349. https://doi.org/10.14358/PERS.77.4.335
  • Sun, G., Ranson, K. J., Kharuk, V. I., & Kovacs, K. (2003). Validation of surface height from shuttle radar topography mission using shuttle laser altimeter. Remote Sensing of Environment, 88(4), 401‑411. https://doi.org/10.1016/j.rse.2003.09.001
  • Tahiri, D., Alaoui, A., Zeddib, H., & Rasmy, L. (2011). ÉVALUATION DU MNT GLOBAL ASTER GDEM SUR LE TERRITOIRE MAROCAIN. In The 25th International Cartographic Conference. French Committee of Cartography. https://icaci.org/files/documents/ICC_proceedings/ICC2011/
  • van Zyl, J. J. (2001). The Shuttle Radar Topography Mission (SRTM) : A breakthrough in remote sensing of topography. Acta Astronautica, 48(5‑12), 559‑565. https://doi.org/10.1016/S0094-5765(01)00020-0
  • Zhao, G., Xue, H., & Ling, F. (2010). Assessment of ASTER GDEM performance by comparing with SRTM and ICESat/GLAS data in Central China. 2010 18th International Conference on Geoinformatics, 1‑5. https://doi.org/10.1109/GEOINFORMATICS.2010.5567970
There are 43 citations in total.

Details

Primary Language English
Subjects Photogrammetry and Remote Sensing
Journal Section Research Articles
Authors

Akif El Mhamdı 0000-0001-9321-059X

Mohammed Aarab This is me

Abdelkhalek El Fariati This is me

Publication Date March 19, 2023
Published in Issue Year 2023

Cite

APA El Mhamdı, A., Aarab, M., & El Fariati, A. (2023). Evaluation of the Accuracy of Open-Source DEMs using GPS Data. International Journal of Environment and Geoinformatics, 10(1), 41-50. https://doi.org/10.30897/ijegeo.1119695