Research Article
BibTex RIS Cite
Year 2024, , 43 - 49, 30.03.2024
https://doi.org/10.30897/ijegeo.1416523

Abstract

References

  • Acciaro, M., Vanelslander, T., Sys, C., Ferrari, C., Roumboutsos, A., Giuliano, G., Lam, J. S. L., Kapros, S. (2014). Environmental sustainability in seaports: a framework for successful innovation. Maritime Policy & Management, 41(5), 480–500. doi.org/10.1080/03088839.2014.932926
  • Andersson, J., Grönkvist, S. (2019). Large-scale storage of hydrogen. International Journal of Hydrogen Energy, 44(23), 11901–11919. doi.org/10.1016/j.ijhydene.2019.03.063
  • Bayirhan, İ., Gazioğlu, C. (2021). New Maritime Trade Routes in the Arctic Region: one of the Strongest Alternative to the Suez Canal. International Journal of Environment and Geoinformatics, 8(3), 397-401. doi.org/10.30897/ijegeo.911179
  • Carlo, H. J., Vis, I. F. A., Roodbergen, K. J. (2014). Storage yard operations in container terminals: Literature overview, trends, and research directions. European Journal of Operational Research, 235(2), 412–430. doi.org/10.1016/J.EJOR.2013.10.054
  • Carpenter, A., Skinner, J. A., and Johansson, T. M. (2021). Conclusions: Connecting Sustainable Development Goals to the Maritime Domain (pp. 489–507). Springer, Cham. doi.org/10.1007/978-3-030-69325-1_22
  • Gharehgozli, A. H., Roy, D., de Koster, M. B. M. (2014). Sea Container Terminals: New Technologies, OR Models, and Emerging Research Areas. SSRN Electronic Journal. doi.org/10.2139/SSRN.2469175
  • Gibbs, D., Rigot-Muller, P., Mangan, J., Lalwani, C. (2014). The role of sea ports in end-to-end maritime transport chain emissions. Energy Policy, 64, 337–348. doi.org/10.1016/J.ENPOL.2013.09.024
  • Gonzalez-Aregall, M., Bergqvist, R. (2019). Green port initiatives for a more sustainable port-city interaction: The case study of Barcelona. In Maritime Transport and Regional Sustainability 109–132. Elsevier. doi.org/10.1016/B978-0-12-819134-7.00007-1
  • Gültepe Mataracı, G. D. (2016). Yeşil Liman Yaklaşımı ve Liman İşletmelerinde Sürdürülebilirlik. Istanbul Technical University.
  • Huang, W., Yu, M., Li, H., Tai, N. (2023). Energy Management of Integrated Energy System in Large Ports (Vol. 18). Springer Nature Singapore. doi.org/10.1007/978-981-99-8795-5
  • Inal, O. B. (2023). Legislative Approach to Fuel Cells in the Turkish Maritime Industry. IHTEC 2023 - International Hydrogen Technologies Congress, 236(4). doi.org/10.1177/14750902221074191
  • Inal, O. B., Charpentier, J. F., Deniz, C. (2022). Hybrid power and propulsion systems for ships: Current status and future challenges. Renewable and Sustainable Energy Reviews, 156. doi.org/10.1016/j.rser.2021.111965
  • Inal, O. B., Deniz, C. (2020). Assessment of fuel cell types for ships: Based on multi-criteria decision analysis. Journal of Cleaner Production, 265, 121734. doi.org/10.1016/j.jclepro.2020.121734
  • Inal, O. B., Deniz, C. (2021). Emission Analysis of LNG Fuelled Molten Carbonate Fuel Cell System for a Chemical Tanker Ship: A Case Study. Marine Science and Technology Bulletin, 10, 118–133. doi.org/10.33714/masteb.827195
  • Inal, O. B., Zincir, B., Dere, C. (2022). Hydrogen as Maritime Transportation Fuel: A Pathway for Decarbonization. In A. K. Agarwal and H. Valera (Eds.), Greener and Scalable E-fuels for Decarbonization of Transport 67–110. Springer Singapore. doi.org/10.1007/978-981-16-8344-2_4
  • Kanellos, F. D., Tsekouras, G. J., Nikolaidis, V. C., Prousalidis, J. M. (2023). Toward Smart Green Seaports: What should be done to transform seaports into intelligent and environment-friendly energy systems? IEEE Electrification Magazine, 11(1), 33–42. doi.org/10.1109/MELE.2022.3232980
  • Köseoğlu, M. C., Solmaz, M. S. (2019). Yeşil Liman Yaklaşımı: Türkiye ve Dünya Yeşil Liman Ölçütlerinin Karşılaştırılmalı Bir Değerlendirmesi. IV. Ulusal Liman Kongresi, 41–60. doi.org/10.18872/0.2019.2
  • Lin, C. Y., Dai, G. L., Wang, S., Fu, X. M. (2022). The Evolution of Green Port Research: A Knowledge Mapping Analysis. Sustainability (Switzerland), 14(19). doi.org/10.3390/su141911857
  • Parise, G., Honorati, A. (2015). Port cranes with energy balanced drive. 2014 AEIT Annual Conference - From Research to Industry: The Need for a More Effective Technology Transfer, AEIT 2014. doi.org/10.1109/AEIT.2014.7002047
  • Port of Hamburg Magazine. (2018). www.mediaserver.hamburg.de/Nicole
  • Satir, T., Doğan-Sağlamtimur, N. (2018). The protection of marine aquatic life: Green Port (EcoPort) model inspired by Green Port concept in selected ports from Turkey, Europe and the USA. Periodicals of Engineering and Natural Sciences, 6(1), 120–129. doi.org/10.21533/pen.v6i1.149
  • Schinas, O., Butler, M. (2016). Feasibility and commercial considerations of LNG-fueled ships. Ocean Engineering, 122, 84–96. doi.org/10.1016/j.oceaneng.2016.04.031
  • Schmidt, J., Meyer-Barlag, C., Eisel, M., Kolbe, L. M., Appelrath, H. J. (2015). Using battery-electric AGVs in container terminals — Assessing the potential and optimizing the economic viability. Research in Transportation Business & Management, 17, 99–111. doi.org/10.1016/ J.RTBM.2015.09.002
  • Sevim, C., Zincir, B. (2022). Biodiesel and Renewable Diesel as a Drop-in Fuel for Decarbonized Maritime Transportation. In: Agarwal, A.K., Valera, H. (eds) Potential and Challenges of Low Carbon Fuels for Sustainable Transport. Energy, Environment, and Sustainability. Springer, Singapore. doi.org/10.1007/978-981-16-8414-2_10
  • Sevim, C., Zincir, B. (2023). Lifecycle Emissions of Fossil Fuels and Biofuels for Maritime Transportation: A Requirement Analysis. Energy, Environment, and Sustainability, 27–44. doi.org/10.1007/978-981-99-1677-1_3/COVER
  • Singh, S., Jain, S., Ps, V., Tiwari, A. K., Nouni, M. R., Pandey, J. K., Goel, S. (2015). Hydrogen: A sustainable fuel for future of the transport sector. In Renewable and Sustainable Energy Reviews (Vol. 51). doi.org/10.1016/j.rser.2015.06.040
  • Song, S., and Poh, K. L. (2017). Solar PV leasing in Singapore: enhancing return on investments with options. IOP Conference Series: Earth and Environmental Science, 67(1), 012020. doi.org/10.1088/1755-1315/67/1/012020
  • UN. (n.d.). THE 17 GOALS | Sustainable Development. Retrieved January 4, 2024, from sdgs.un.org/goals Ustun, T. S., Ozansoy, C., Zayegh, A. (2012). Modeling of a centralized microgrid protection system and distributed energy resources according to IEC 61850-7-420. IEEE Transactions on Power Systems, 27(3), 1560–1567. doi.org/10.1109/TPWRS. 2012.2185072
  • Velasquez, S., and Martinez de Oses, F. X. (2013). SHIPPOL, Towards an Automatic Green House Effect Gases Tracing and Accounting System in Harbor Areas by Using AIS Technology. Journal of Maritime Research, X(3), 37–46.
  • Yang, Y. C., Lin, C. L. (2013). Performance analysis of cargo-handling equipment from a green container terminal perspective. Transportation Research Part D: Transport and Environment, 23, 9–11. doi.org/10.1016/J.TRD.2013.03.009
  • Zincir, B. (2022a). Analyzing marine engineering curriculum from the perspective of the sustainable development goals. Marine Science and Technology Bulletin, 11(2), 158–168. doi.org/10.33714/ masteb.1079480
  • Zincir, B. (2022b). Environmental and economic evaluation of ammonia as a fuel for short-sea shipping: A case study. International Journal of Hydrogen Energy, 47(41), 18148–18168. doi.org/10.1016/J.IJHYDENE.2022.03.281
  • Zincir, B. (2022c). Environmental and economic evaluation of ammonia as a fuel for short-sea shipping: A case study. International Journal of Hydrogen Energy. doi.org/10.1016/j.ijhydene. 2022.03.281
  • Zincir, B. (2023). Slow steaming application for short-sea shipping to comply with the CII regulation. Brodogradnja, 74(2), 21–38. doi.org/10.21278/ brod74202
  • Zis, T., North, R. J., Angeloudis, P., Ochieng, W. Y., Bell, M. G. H. (2014). Evaluation of cold ironing and speed reduction policies to reduce ship emissions near and at ports. Maritime Economics and Logistics, 16(4), 371–398. doi.org/10.1057/ MEL.2014.6/FIGURES/9

An Approach to Green Ports in Terms of Low-Carbon Energy and Sustainability

Year 2024, , 43 - 49, 30.03.2024
https://doi.org/10.30897/ijegeo.1416523

Abstract

Decarbonization compromise holds a significant place as a crucial topic in all industries worldwide today. The maritime sector is also getting its share from this carbon-neutral movement. Ports, being one of the vital areas in the maritime industry, are significantly affected by this decarbonization movement. In this context, a clear connection is observed between decarbonization compromise, green ports, and sustainable development goals in ports. For many years, the European Sea Ports Organization has been prioritizing environmental concerns, sustainable development goals, and the concept of green ports. This article focuses on prioritizing the elements that should be considered among sustainable development goals and green ports, taking into account the European Sea Ports Organization’s environmental priorities over the last five years. Accordingly, an approach proposal about the low-carbon energy technologies has been put forward.

References

  • Acciaro, M., Vanelslander, T., Sys, C., Ferrari, C., Roumboutsos, A., Giuliano, G., Lam, J. S. L., Kapros, S. (2014). Environmental sustainability in seaports: a framework for successful innovation. Maritime Policy & Management, 41(5), 480–500. doi.org/10.1080/03088839.2014.932926
  • Andersson, J., Grönkvist, S. (2019). Large-scale storage of hydrogen. International Journal of Hydrogen Energy, 44(23), 11901–11919. doi.org/10.1016/j.ijhydene.2019.03.063
  • Bayirhan, İ., Gazioğlu, C. (2021). New Maritime Trade Routes in the Arctic Region: one of the Strongest Alternative to the Suez Canal. International Journal of Environment and Geoinformatics, 8(3), 397-401. doi.org/10.30897/ijegeo.911179
  • Carlo, H. J., Vis, I. F. A., Roodbergen, K. J. (2014). Storage yard operations in container terminals: Literature overview, trends, and research directions. European Journal of Operational Research, 235(2), 412–430. doi.org/10.1016/J.EJOR.2013.10.054
  • Carpenter, A., Skinner, J. A., and Johansson, T. M. (2021). Conclusions: Connecting Sustainable Development Goals to the Maritime Domain (pp. 489–507). Springer, Cham. doi.org/10.1007/978-3-030-69325-1_22
  • Gharehgozli, A. H., Roy, D., de Koster, M. B. M. (2014). Sea Container Terminals: New Technologies, OR Models, and Emerging Research Areas. SSRN Electronic Journal. doi.org/10.2139/SSRN.2469175
  • Gibbs, D., Rigot-Muller, P., Mangan, J., Lalwani, C. (2014). The role of sea ports in end-to-end maritime transport chain emissions. Energy Policy, 64, 337–348. doi.org/10.1016/J.ENPOL.2013.09.024
  • Gonzalez-Aregall, M., Bergqvist, R. (2019). Green port initiatives for a more sustainable port-city interaction: The case study of Barcelona. In Maritime Transport and Regional Sustainability 109–132. Elsevier. doi.org/10.1016/B978-0-12-819134-7.00007-1
  • Gültepe Mataracı, G. D. (2016). Yeşil Liman Yaklaşımı ve Liman İşletmelerinde Sürdürülebilirlik. Istanbul Technical University.
  • Huang, W., Yu, M., Li, H., Tai, N. (2023). Energy Management of Integrated Energy System in Large Ports (Vol. 18). Springer Nature Singapore. doi.org/10.1007/978-981-99-8795-5
  • Inal, O. B. (2023). Legislative Approach to Fuel Cells in the Turkish Maritime Industry. IHTEC 2023 - International Hydrogen Technologies Congress, 236(4). doi.org/10.1177/14750902221074191
  • Inal, O. B., Charpentier, J. F., Deniz, C. (2022). Hybrid power and propulsion systems for ships: Current status and future challenges. Renewable and Sustainable Energy Reviews, 156. doi.org/10.1016/j.rser.2021.111965
  • Inal, O. B., Deniz, C. (2020). Assessment of fuel cell types for ships: Based on multi-criteria decision analysis. Journal of Cleaner Production, 265, 121734. doi.org/10.1016/j.jclepro.2020.121734
  • Inal, O. B., Deniz, C. (2021). Emission Analysis of LNG Fuelled Molten Carbonate Fuel Cell System for a Chemical Tanker Ship: A Case Study. Marine Science and Technology Bulletin, 10, 118–133. doi.org/10.33714/masteb.827195
  • Inal, O. B., Zincir, B., Dere, C. (2022). Hydrogen as Maritime Transportation Fuel: A Pathway for Decarbonization. In A. K. Agarwal and H. Valera (Eds.), Greener and Scalable E-fuels for Decarbonization of Transport 67–110. Springer Singapore. doi.org/10.1007/978-981-16-8344-2_4
  • Kanellos, F. D., Tsekouras, G. J., Nikolaidis, V. C., Prousalidis, J. M. (2023). Toward Smart Green Seaports: What should be done to transform seaports into intelligent and environment-friendly energy systems? IEEE Electrification Magazine, 11(1), 33–42. doi.org/10.1109/MELE.2022.3232980
  • Köseoğlu, M. C., Solmaz, M. S. (2019). Yeşil Liman Yaklaşımı: Türkiye ve Dünya Yeşil Liman Ölçütlerinin Karşılaştırılmalı Bir Değerlendirmesi. IV. Ulusal Liman Kongresi, 41–60. doi.org/10.18872/0.2019.2
  • Lin, C. Y., Dai, G. L., Wang, S., Fu, X. M. (2022). The Evolution of Green Port Research: A Knowledge Mapping Analysis. Sustainability (Switzerland), 14(19). doi.org/10.3390/su141911857
  • Parise, G., Honorati, A. (2015). Port cranes with energy balanced drive. 2014 AEIT Annual Conference - From Research to Industry: The Need for a More Effective Technology Transfer, AEIT 2014. doi.org/10.1109/AEIT.2014.7002047
  • Port of Hamburg Magazine. (2018). www.mediaserver.hamburg.de/Nicole
  • Satir, T., Doğan-Sağlamtimur, N. (2018). The protection of marine aquatic life: Green Port (EcoPort) model inspired by Green Port concept in selected ports from Turkey, Europe and the USA. Periodicals of Engineering and Natural Sciences, 6(1), 120–129. doi.org/10.21533/pen.v6i1.149
  • Schinas, O., Butler, M. (2016). Feasibility and commercial considerations of LNG-fueled ships. Ocean Engineering, 122, 84–96. doi.org/10.1016/j.oceaneng.2016.04.031
  • Schmidt, J., Meyer-Barlag, C., Eisel, M., Kolbe, L. M., Appelrath, H. J. (2015). Using battery-electric AGVs in container terminals — Assessing the potential and optimizing the economic viability. Research in Transportation Business & Management, 17, 99–111. doi.org/10.1016/ J.RTBM.2015.09.002
  • Sevim, C., Zincir, B. (2022). Biodiesel and Renewable Diesel as a Drop-in Fuel for Decarbonized Maritime Transportation. In: Agarwal, A.K., Valera, H. (eds) Potential and Challenges of Low Carbon Fuels for Sustainable Transport. Energy, Environment, and Sustainability. Springer, Singapore. doi.org/10.1007/978-981-16-8414-2_10
  • Sevim, C., Zincir, B. (2023). Lifecycle Emissions of Fossil Fuels and Biofuels for Maritime Transportation: A Requirement Analysis. Energy, Environment, and Sustainability, 27–44. doi.org/10.1007/978-981-99-1677-1_3/COVER
  • Singh, S., Jain, S., Ps, V., Tiwari, A. K., Nouni, M. R., Pandey, J. K., Goel, S. (2015). Hydrogen: A sustainable fuel for future of the transport sector. In Renewable and Sustainable Energy Reviews (Vol. 51). doi.org/10.1016/j.rser.2015.06.040
  • Song, S., and Poh, K. L. (2017). Solar PV leasing in Singapore: enhancing return on investments with options. IOP Conference Series: Earth and Environmental Science, 67(1), 012020. doi.org/10.1088/1755-1315/67/1/012020
  • UN. (n.d.). THE 17 GOALS | Sustainable Development. Retrieved January 4, 2024, from sdgs.un.org/goals Ustun, T. S., Ozansoy, C., Zayegh, A. (2012). Modeling of a centralized microgrid protection system and distributed energy resources according to IEC 61850-7-420. IEEE Transactions on Power Systems, 27(3), 1560–1567. doi.org/10.1109/TPWRS. 2012.2185072
  • Velasquez, S., and Martinez de Oses, F. X. (2013). SHIPPOL, Towards an Automatic Green House Effect Gases Tracing and Accounting System in Harbor Areas by Using AIS Technology. Journal of Maritime Research, X(3), 37–46.
  • Yang, Y. C., Lin, C. L. (2013). Performance analysis of cargo-handling equipment from a green container terminal perspective. Transportation Research Part D: Transport and Environment, 23, 9–11. doi.org/10.1016/J.TRD.2013.03.009
  • Zincir, B. (2022a). Analyzing marine engineering curriculum from the perspective of the sustainable development goals. Marine Science and Technology Bulletin, 11(2), 158–168. doi.org/10.33714/ masteb.1079480
  • Zincir, B. (2022b). Environmental and economic evaluation of ammonia as a fuel for short-sea shipping: A case study. International Journal of Hydrogen Energy, 47(41), 18148–18168. doi.org/10.1016/J.IJHYDENE.2022.03.281
  • Zincir, B. (2022c). Environmental and economic evaluation of ammonia as a fuel for short-sea shipping: A case study. International Journal of Hydrogen Energy. doi.org/10.1016/j.ijhydene. 2022.03.281
  • Zincir, B. (2023). Slow steaming application for short-sea shipping to comply with the CII regulation. Brodogradnja, 74(2), 21–38. doi.org/10.21278/ brod74202
  • Zis, T., North, R. J., Angeloudis, P., Ochieng, W. Y., Bell, M. G. H. (2014). Evaluation of cold ironing and speed reduction policies to reduce ship emissions near and at ports. Maritime Economics and Logistics, 16(4), 371–398. doi.org/10.1057/ MEL.2014.6/FIGURES/9
There are 35 citations in total.

Details

Primary Language English
Subjects Maritime Engineering (Other)
Journal Section Research Articles
Authors

Ömer Berkehan İnal 0000-0003-1890-203X

Çağlar Dere 0000-0003-1670-1998

Early Pub Date March 23, 2024
Publication Date March 30, 2024
Submission Date January 8, 2024
Acceptance Date March 6, 2024
Published in Issue Year 2024

Cite

APA İnal, Ö. B., & Dere, Ç. (2024). An Approach to Green Ports in Terms of Low-Carbon Energy and Sustainability. International Journal of Environment and Geoinformatics, 11(1), 43-49. https://doi.org/10.30897/ijegeo.1416523