Research Article
BibTex RIS Cite
Year 2024, , 106 - 118, 28.09.2024
https://doi.org/10.30897/ijegeo.1479116

Abstract

References

  • Adugna, T., Xu,W., Fan, J. (2022). Comparison of Random Forest and Support Vector Machine Classifiers for Regional Land Cover Mapping Using Coarse Resolution FY-3C Images. Remote Sens., 14, 574. doi.org/10.3390/rs14030574
  • Ahady, A. B., Kaplan, G. (2022). Classification comparison of Landsat-8 and Sentinel-2 data in Google Earth Engine, study case of the city of Kabul. International Journal of Engineering and Geosciences; 7(1); 24-31. Alami Machichi, M., Mansouri, L. E., Imani, Y., Bourja, O., Lahlou, O., Zennayi, Y., Hadria, R. (2023). Crop mapping using supervised machine learning and deep learning: a systematic literature review. International Journal of Remote Sensing, 44(8), 2717–2753.
  • Altun M., Türker, M. (2021). Çoklu Zamanlı Sentinel-2 Görüntülerinden Tarımsal Ürün Tespiti: Mardin- Kızıltepe Örneği. Afyon Kocatepe Üni. Fen ve Müh. Bilimleri Dergisi, 21(4), 881-899. doi:10.35414/akufemubid.890436 Anua, S. N., Wong, W V C. (2022). Utilizing Landsat 8 OLI for land cover classification in plantations area. IOP Conf. Ser.: Earth Environ. Sci. 1053, 012027.
  • Bantchına, B. B., Gündoğdu, K. H. (2024). Crop Type Classification using Sentinel 2A-Derived Normalized Difference Red Edge Index (NDRE) and Machine Learning Approach. Bursa Uludağ Üni. Ziraat Fak. Der., 38 (1), 89-105.
  • Basukala, A. K., Oldenburg, C., Schellberg, J., Sultanov, M., Dubovyk, O. (2017). Towards improved land use mapping of irrigated croplands: performance assessment of different image classification algorithms and approaches, European Journal of Remote Sensing, 50:1, 187-201, doi.10.1080/22797254.2017.1308235
  • Blickensdorfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., Hostert, P. (2022). Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sensing of Environment 269, 112831.
  • Bofana, J., Zhang, M., Nabil, M., Wu, B., Tian, F., Liu, W., Zeng, H., Zhang, N., Nangombe, S. S., Cipriano, A. S., Phiri, E., Mushore, D. T., Kaluba, P., Mashonjowa, E., Moyo, C. (2020). Comparison of Different Cropland Classification Methods under Diversified Agroecological Conditions in the Zambezi River Basin. Remote Sens, 12, 2096;
  • Breiman, L (1999). Random forests-random features. Technical Report 567, Statistics Department, University of California, Berkeley.
  • Cai, Y., Guan, K., Peng, J., Wang, S., Seifert, C., Wardlow, B., Li, Z. (2018). A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach. Remote Sens. Environ., 210, 35–47.
  • Çelik, O. İ., Büyüksalih, G., Gazioğlu, C. (2023). Improving the Accuracy of Satellite-Derived Bathymetry Using Multi-Layer Perceptron and Random Forest Regression Methods: A Case Study of Tavşan Island. Journal of Marine Science and Engineering, 11(11), 2090.
  • Chakhar, A., Ortega-Terol, D., Hernández-López, D., Ballesteros, R., Ortega, F. J., Moreno, A. M. (2020). Assessing the Accuracy of Multiple Classification Algorithms for Crop Classification Using Landsat-8 and Sentinel-2 Data. Remote Sens., 12, 1735. Colditz, R. (2015). An evaluation of different training sample allocation schemes for discrete and continuous land cover classification using decision tree-based algorithms. Rem. Sens. 7, 9655. doi.org/10.3390/rs70809655.
  • Çölkesen, İ., Kavzoğlu, T. (2008). Destek vektör makineleri kullanarak arazi örtüsünün sınıflandırılması: Gebze örneği. 2. Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Sempozyumu, 13-16 Ekim 2008, 35-45, Kayseri.
  • Congalton, R. G. (1991). “A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data.” Remote Sensing of Environment 37 (1): 35–46. doi:10.1016/0034- 4257(91)90048-B.
  • Debats, S.R., Luo, D., Estes, L.D., Fuchs, T.J., Caylor, K.K. (2016). A generalized computer vision approach to mapping crop fields in heterogeneous agricultural landscapes. Remote Sens. Environ., 179, 210–221.
  • Duro D. C., Franklin S. E., Dubé, M. G. (2012). A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sensing of Environment 118, 259-272.
  • Erdanaev, E., Kappas, M., Wyss, D. (2018). The Identification of Irrigated Crop Types Using Support Vector Machine, Random Forest and Maximum Likelihood Classification Methods with Sentinel-2 Data in 2018: Tashkent Province, Uzbekistan Internation Journal of Geoinformatics, Vol.18, No.2.
  • Escabias, C. B. (2017). Tree Boosting Data Competitions with XGBoost (Master's thesis, Universitat Politècnica de Catalunya).
  • Esetlili, M. T., Bektas Balcik, F., Balik Sanli, F., Kalkan, K., et al. (2018). Comparison of Object and Pixel-Based Classifications For Mapping Crops Using Rapideye Imagery: A Case Study Of Menemen Plain, Turkey. International Journal of Environment and Geoinformatics, 5(2), 231-243. doi.org/10.30897/ijegeo.442002.
  • Fu, Y., Shen, R., Song, C., Dong, J., Han, W., Ye, T., Yuan. W. (2023). Exploring the effects of training samples on the accuracy of crop mapping with machine learning algorithm Science of Remote Sensing 7, 100081.
  • Gorji, T., Yıldırım, A., Sertel, E., Tanık, A. (2019). Remote sensing approaches and mapping methods for monitoring soil salinity under different climate regimes. International Journal of Environment and Geoinformatics, 6(1), 33-49. doi.org/10.30897/ijegeo.500452.
  • Gumma, M. K., Tummala, K., Dixit, S., Collivignarelli, F., Holecz, F., Kolli, R. N., Whitbread, A. M. (2020). Crop type identification and spatial mapping using Sentinel-2 satellite data with focus on field-level information, Geocarto International, doi.10.1080/10106049.2020. 1805029
  • Heupel, K., Spengler, D., Itzerott, S. A. (2018). Progressive Crop-Type Classification Using Multitemporal Remote Sensing Data and Phenological Information. PFG, 86, 53–69, doi:10.1007/s41064-018-0050-7.
  • Htitiou, A., Boudhar, A., Lebrini, Y., Hadria, R., Lionboui, H., Elmansouri, L., Tychon, B., Benabdelouahab, T. (2019). The Performance of Random Forest Classification Based on Phenological Metrics Derived from Sentinel-2 and Landsat 8 to Map Crop Cover in an Irrigated Semi-Arid Region. Remote Sensing in Earth Systems Sciences doi.org/10.1007/s41976-019-00023-9
  • Huang, C., Davis, L. S., Townshend, J. R. G. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing 23: 725-749.
  • Immitzer, M., Vuolo, F., Atzberger, C. (2016). First experience with sentinel-2 data for crop and tree species classifications in central europe. Remote Sens. 2016, 8, 166.
  • Inglada, J., Arias, M., Tardy, B., Hagolle, O., Valero, S., Morin, D., Dedieu, G., Sepulcre, G., Bontemps, S., Defourny, P., Koetz, B. (2015). Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery. Remote Sens., 7,12356-12379. doi.org/10.3390/ rs70912356
  • Karmakar, P., Teng, S. W., Murshed, M., Shaoning Pang, S., Li, Y., Lin, H. (2024). Crop monitoring by multimodal remote sensing: A review. Remote Sensing Applications: Society and Environment 33, 101093
  • Li, C., Ma, Z., Wang, L., Yu, W., Tan, D., Gao, B., Feng, Q., Guo, H., Zhao, Y (2021). Improving the Accuracy of Land Cover Mapping by Distributing Training Samples. Remote Sens., 13, 4594. Liakos, K. G., Busato, P., Moshou, D., Pearson, S., Bochtis, D. (2018). Machine Learning in Agriculture: A Review. Sensors, 18, 2674.
  • Liu, B., Gao, L., Li, B., Marcos-Martinez, R., Bryan, B. (2020). Nonparametric machine learning for mapping forest cover and exploring influential factors. Landscape Ecol 35, 1683–1699 (2020). Löw, F., Michel, U., Dech, S., Conrad, C. (2013). Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using support vector machines. ISPRS J. Photogramm. Remote Sens., 85, 102–119.
  • Mathur, A., Foody, G. M. (2008). Crop classification by support vector machine with intelligently selected training data for an operational application. International Journal of Remote Sensing, 29, 2227-2240. doi.org/10. 1080/01431160701395203.
  • Nasrallah, A., Baghdadi, N., Mhawej, M., Faour, G., Darwish, T., Belhouchette, H., Darwich, S. A. (2018). A Novel approach for mapping wheat areas using high resolution sentinel-2 images. Sensors, 18, 2089.
  • Ozdogan, M. (2010). The spatial distribution of crop types from modis data: Temporal unmixing using independent component analysis. Remote Sens. Environ., 114, 1190–1204.
  • Pasternak, M., Pawluszek-Filipiak, K. (2022). The Evaluation of Spectral Vegetation Indexes and Redundancy Reduction on the Accuracy of Crop Type Detection. Appl. Sci., 12, 5067. doi.org/10.3390/app12105067
  • Pott, L.P., Amado, T.J.C., Schwalbert, R.A., Corassa, G.M., Ciampitti, I.A. (2021). Satellite-based data fusion crop type classification and mapping in Rio Grande do Sul, Brazil. ISPRS J. Photogrammetry Remote Sens. 176, 196–210.
  • Remelgado, R., Zaitov, S., Kenjabaev, S., Stulina, G., Sultanov, M., Ibrakhimov, M., Akhmedov, M., Dukhovny, V., Conrad, C. A. (2020). Crop Type Dataset for Consistent Land Cover Classification in Central Asia. Sci Data, 7, 250, doi:10.1038/s41597-020-00591-2.
  • Saini, R., Ghosh, S. K. (2018). Crop Classification on Single Date Sentinel-2 Imagery Using Random Forest and Support Vector Machine. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5, ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 Nüvemce, Dehradun, India
  • Savitha, C., Talari, R. (2023). Mapping cropland extent using sentinel-2 datasets and machine learning algorithms for an agriculture watershed. Smart Agricultural Technology 4, 100193.
  • See, L., Fritz, S., You, L., Ramankutty, N., Herrero, M., Justice, C., Becker-Reshef,I., Thornton, P., Erb, K., Gong, P., Tang, H., Van Der Velde, M., Ericksen, P., McCallum, I., Kraxner, F., Obersteiner, M. (2015). Improved global cropland data as an essential ingredient for food security. Glob. Food Secur., 4, 37–45.
  • Segarra, J., Araus, J. L., Kefauver, S. C. (2022). Farming and Earth Observation: Sentinel-2 data to estimate within-field wheat grain yield. International Journal of Applied Earth Observations and Geoinformation 107, 102697.
  • She, B., Yang, Y., Zhao, Z., Huang, L., Liang, D., Zhang, D. (2020). Identification and mapping of soybean and maize crops based on Sentinel-2 data. Int J Agric & Biol Eng 13(6) 171.
  • Şimşek, F. F. (2024). Hızlandırılmış makine öğrenmesi algoritmaları ile tarım parseli tabanlı ürün desen sınıflandırması. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(1),314-330. doi.org/10.53433/yyufbed.1416820
  • Şimşek, F. F., Durduran, S. S. (2023). Açık kaynak kodlu Eo-learn kütüphanesi ve çok zamanlı Sentinel-2 görüntüleri ile tarımsal ürün sınıflandırması. Journal of Geodesy and Geoinformation, 10(1), 45-62. doi.org/10.9733/ JGG.2023R0004.T
  • Song, X.-P., Potapov, P.V., Krylov, A., King, L., Di Bella, C. M., Hudson, A., Khan, A., Adusei, B., Stehman, S.V., Hansen, M.C. (2017). National-scale soybean mapping and area estimation in the united states using medium resolution satellite imagery and field survey. Remote Sens. Environ., 190, 383–395.
  • Tatsumi, K., Yamashiki, Y., Torres, M. A. C., Taipe, C. L. R. (2015). Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data. Computers and Electronics in Agriculture 115, 171-179.
  • Thanh, N. P., Kappas, M. (2018). Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery. Sensors 18(1) 18. doi.org/10.3390/s18010018
  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150.
  • Tuvdendorj, B., Zeng, H., Wu, B., Elnashar, A., Zhang, M., Tian, F., Nabil, M., Nanzad, L., Bulkhbai, A., Natsagdorj, N. (2022). Performance and the Optimal Integration of Sentinel-1/2 Time-Series Features for Crop Classification in Northern Mongolia. Remote Sens.,14, 1830.
  • Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. New York: Springer-Verlag, p. 188.
  • Verma, P., Raghubanshi, A., Srivastava, P. K., Raghubanshi, A. S. (2020). Appraisal of kappa-based metrics and disagreement indices of accuracy assessment for parametric and nonparametric techniques used in LULC classification and change detection. Model.EarthSyst. Environ. 6,1045–1059.
  • Vogiatzis, M., Eleftheriadis, I. (2023). Comparison of Pixel-Based Classification Algorithms Using Landsat-8 OLI and Sentinel-2 MSI for Land Use/Land Cover Mapping in a Heterogeneous Landscape. doi:10.20944/preprints202307.1043.v2
  • Vuolo, F., Neuwirth, M., Immitzer, M., Atzberger, C., Ng, W.-T. (2018). How much does multi-temporal sentinel-2 data improve crop type classification? Int. J. Appl. Earth Obs. Geoinf., 72, 122–130.
  • Wakulińska, M., Marcinkowska-Ochtyra, A. (2020). Multi-Temporal Sentinel-2 Data in Classification of Mountain Vegetation. Remote Sensing 2020, 12, 2696, doi:10.3390/rs12172696.
  • Yaşar, O., Yağcı, A. L. (2023). Yersel referans verilerinin doğruluğunun çok zamanlı Sentinel-2 uydu görüntüleri ile araştırılması: Arpa ve Buğday örneği. Geomatik, 8(3), 277-292
  • Yi, Z., Jia, L., Chen, Q. (2020). Crop Classification Using Multi-Temporal Sentinel-2 Data in the Shiyang River Basin of China. Remote Sensing., 12(24):4052. doi.org/10.3390/rs12244052
  • Zhang, H. K., Roy, D. P. (2017). Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification. Remote Sensing of Environment 197, 15-34. doi.org/10.1016/j.rse.2017.05.02
  • Zheng, B., Myint, S., Thenkabail, P. S., Aggarwal, R. (2015). A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. International Journal of Applied Earth Observation and Geoinformation 34, 103–112.
  • Zhong, L., Gong, P., Biging, G. S. (2014). Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery. Remote Sensing of Environment 140, 1-13. doi.org/10.1016/j.rse.2013.08.023.

Classification of Agricultural Crops with Random Forest and Support Vector Machine Algorithms Using Sentinel-2 and Landsat-8 Images

Year 2024, , 106 - 118, 28.09.2024
https://doi.org/10.30897/ijegeo.1479116

Abstract

Monitoring crop development and mapping cultivated areas are important for reducing risks to food security due to climate change. Remote sensing techniques contribute significantly to the efficient and effective management of agricultural production. In this study, agricultural fields (sunflower, wheat, maize, oat, chickpea, sugar beet, alfalfa, onion, fallow) and other fields (non-agricultural, pasture, lake) were identified by using Random Forest (RF) and Support Vector Machines (SVM) machine learning algorithms with Sentinel-2 and Landsat-8 images in the area covering Polatlı, Haymana and Gölbaşı districts of Ankara province Multi-temporal images were used to distinguish winter and summer crops, taking into account crop development periods. As a result of classification; the overall accuracy of RF and SVM models with S2 images are 89.5% and 84.6% and kappa coefficients are 0.88 and 0.83, while the overall accuracy of RF and SVM models with L8 images are 79% and 78.1% and kappa coefficients are 0.76 and 0.75. RF model was found to have higher prediction accuracy than SVM. Sentinel-2 imagery has a higher accuracy in all classes compared to Landsat-8, indicating that Sentinel-2 imagery with its high temporal and spatial resolution is more suitable and has a great potential for agricultural crop pattern detection.

References

  • Adugna, T., Xu,W., Fan, J. (2022). Comparison of Random Forest and Support Vector Machine Classifiers for Regional Land Cover Mapping Using Coarse Resolution FY-3C Images. Remote Sens., 14, 574. doi.org/10.3390/rs14030574
  • Ahady, A. B., Kaplan, G. (2022). Classification comparison of Landsat-8 and Sentinel-2 data in Google Earth Engine, study case of the city of Kabul. International Journal of Engineering and Geosciences; 7(1); 24-31. Alami Machichi, M., Mansouri, L. E., Imani, Y., Bourja, O., Lahlou, O., Zennayi, Y., Hadria, R. (2023). Crop mapping using supervised machine learning and deep learning: a systematic literature review. International Journal of Remote Sensing, 44(8), 2717–2753.
  • Altun M., Türker, M. (2021). Çoklu Zamanlı Sentinel-2 Görüntülerinden Tarımsal Ürün Tespiti: Mardin- Kızıltepe Örneği. Afyon Kocatepe Üni. Fen ve Müh. Bilimleri Dergisi, 21(4), 881-899. doi:10.35414/akufemubid.890436 Anua, S. N., Wong, W V C. (2022). Utilizing Landsat 8 OLI for land cover classification in plantations area. IOP Conf. Ser.: Earth Environ. Sci. 1053, 012027.
  • Bantchına, B. B., Gündoğdu, K. H. (2024). Crop Type Classification using Sentinel 2A-Derived Normalized Difference Red Edge Index (NDRE) and Machine Learning Approach. Bursa Uludağ Üni. Ziraat Fak. Der., 38 (1), 89-105.
  • Basukala, A. K., Oldenburg, C., Schellberg, J., Sultanov, M., Dubovyk, O. (2017). Towards improved land use mapping of irrigated croplands: performance assessment of different image classification algorithms and approaches, European Journal of Remote Sensing, 50:1, 187-201, doi.10.1080/22797254.2017.1308235
  • Blickensdorfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., Hostert, P. (2022). Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sensing of Environment 269, 112831.
  • Bofana, J., Zhang, M., Nabil, M., Wu, B., Tian, F., Liu, W., Zeng, H., Zhang, N., Nangombe, S. S., Cipriano, A. S., Phiri, E., Mushore, D. T., Kaluba, P., Mashonjowa, E., Moyo, C. (2020). Comparison of Different Cropland Classification Methods under Diversified Agroecological Conditions in the Zambezi River Basin. Remote Sens, 12, 2096;
  • Breiman, L (1999). Random forests-random features. Technical Report 567, Statistics Department, University of California, Berkeley.
  • Cai, Y., Guan, K., Peng, J., Wang, S., Seifert, C., Wardlow, B., Li, Z. (2018). A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach. Remote Sens. Environ., 210, 35–47.
  • Çelik, O. İ., Büyüksalih, G., Gazioğlu, C. (2023). Improving the Accuracy of Satellite-Derived Bathymetry Using Multi-Layer Perceptron and Random Forest Regression Methods: A Case Study of Tavşan Island. Journal of Marine Science and Engineering, 11(11), 2090.
  • Chakhar, A., Ortega-Terol, D., Hernández-López, D., Ballesteros, R., Ortega, F. J., Moreno, A. M. (2020). Assessing the Accuracy of Multiple Classification Algorithms for Crop Classification Using Landsat-8 and Sentinel-2 Data. Remote Sens., 12, 1735. Colditz, R. (2015). An evaluation of different training sample allocation schemes for discrete and continuous land cover classification using decision tree-based algorithms. Rem. Sens. 7, 9655. doi.org/10.3390/rs70809655.
  • Çölkesen, İ., Kavzoğlu, T. (2008). Destek vektör makineleri kullanarak arazi örtüsünün sınıflandırılması: Gebze örneği. 2. Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Sempozyumu, 13-16 Ekim 2008, 35-45, Kayseri.
  • Congalton, R. G. (1991). “A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data.” Remote Sensing of Environment 37 (1): 35–46. doi:10.1016/0034- 4257(91)90048-B.
  • Debats, S.R., Luo, D., Estes, L.D., Fuchs, T.J., Caylor, K.K. (2016). A generalized computer vision approach to mapping crop fields in heterogeneous agricultural landscapes. Remote Sens. Environ., 179, 210–221.
  • Duro D. C., Franklin S. E., Dubé, M. G. (2012). A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sensing of Environment 118, 259-272.
  • Erdanaev, E., Kappas, M., Wyss, D. (2018). The Identification of Irrigated Crop Types Using Support Vector Machine, Random Forest and Maximum Likelihood Classification Methods with Sentinel-2 Data in 2018: Tashkent Province, Uzbekistan Internation Journal of Geoinformatics, Vol.18, No.2.
  • Escabias, C. B. (2017). Tree Boosting Data Competitions with XGBoost (Master's thesis, Universitat Politècnica de Catalunya).
  • Esetlili, M. T., Bektas Balcik, F., Balik Sanli, F., Kalkan, K., et al. (2018). Comparison of Object and Pixel-Based Classifications For Mapping Crops Using Rapideye Imagery: A Case Study Of Menemen Plain, Turkey. International Journal of Environment and Geoinformatics, 5(2), 231-243. doi.org/10.30897/ijegeo.442002.
  • Fu, Y., Shen, R., Song, C., Dong, J., Han, W., Ye, T., Yuan. W. (2023). Exploring the effects of training samples on the accuracy of crop mapping with machine learning algorithm Science of Remote Sensing 7, 100081.
  • Gorji, T., Yıldırım, A., Sertel, E., Tanık, A. (2019). Remote sensing approaches and mapping methods for monitoring soil salinity under different climate regimes. International Journal of Environment and Geoinformatics, 6(1), 33-49. doi.org/10.30897/ijegeo.500452.
  • Gumma, M. K., Tummala, K., Dixit, S., Collivignarelli, F., Holecz, F., Kolli, R. N., Whitbread, A. M. (2020). Crop type identification and spatial mapping using Sentinel-2 satellite data with focus on field-level information, Geocarto International, doi.10.1080/10106049.2020. 1805029
  • Heupel, K., Spengler, D., Itzerott, S. A. (2018). Progressive Crop-Type Classification Using Multitemporal Remote Sensing Data and Phenological Information. PFG, 86, 53–69, doi:10.1007/s41064-018-0050-7.
  • Htitiou, A., Boudhar, A., Lebrini, Y., Hadria, R., Lionboui, H., Elmansouri, L., Tychon, B., Benabdelouahab, T. (2019). The Performance of Random Forest Classification Based on Phenological Metrics Derived from Sentinel-2 and Landsat 8 to Map Crop Cover in an Irrigated Semi-Arid Region. Remote Sensing in Earth Systems Sciences doi.org/10.1007/s41976-019-00023-9
  • Huang, C., Davis, L. S., Townshend, J. R. G. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing 23: 725-749.
  • Immitzer, M., Vuolo, F., Atzberger, C. (2016). First experience with sentinel-2 data for crop and tree species classifications in central europe. Remote Sens. 2016, 8, 166.
  • Inglada, J., Arias, M., Tardy, B., Hagolle, O., Valero, S., Morin, D., Dedieu, G., Sepulcre, G., Bontemps, S., Defourny, P., Koetz, B. (2015). Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery. Remote Sens., 7,12356-12379. doi.org/10.3390/ rs70912356
  • Karmakar, P., Teng, S. W., Murshed, M., Shaoning Pang, S., Li, Y., Lin, H. (2024). Crop monitoring by multimodal remote sensing: A review. Remote Sensing Applications: Society and Environment 33, 101093
  • Li, C., Ma, Z., Wang, L., Yu, W., Tan, D., Gao, B., Feng, Q., Guo, H., Zhao, Y (2021). Improving the Accuracy of Land Cover Mapping by Distributing Training Samples. Remote Sens., 13, 4594. Liakos, K. G., Busato, P., Moshou, D., Pearson, S., Bochtis, D. (2018). Machine Learning in Agriculture: A Review. Sensors, 18, 2674.
  • Liu, B., Gao, L., Li, B., Marcos-Martinez, R., Bryan, B. (2020). Nonparametric machine learning for mapping forest cover and exploring influential factors. Landscape Ecol 35, 1683–1699 (2020). Löw, F., Michel, U., Dech, S., Conrad, C. (2013). Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using support vector machines. ISPRS J. Photogramm. Remote Sens., 85, 102–119.
  • Mathur, A., Foody, G. M. (2008). Crop classification by support vector machine with intelligently selected training data for an operational application. International Journal of Remote Sensing, 29, 2227-2240. doi.org/10. 1080/01431160701395203.
  • Nasrallah, A., Baghdadi, N., Mhawej, M., Faour, G., Darwish, T., Belhouchette, H., Darwich, S. A. (2018). A Novel approach for mapping wheat areas using high resolution sentinel-2 images. Sensors, 18, 2089.
  • Ozdogan, M. (2010). The spatial distribution of crop types from modis data: Temporal unmixing using independent component analysis. Remote Sens. Environ., 114, 1190–1204.
  • Pasternak, M., Pawluszek-Filipiak, K. (2022). The Evaluation of Spectral Vegetation Indexes and Redundancy Reduction on the Accuracy of Crop Type Detection. Appl. Sci., 12, 5067. doi.org/10.3390/app12105067
  • Pott, L.P., Amado, T.J.C., Schwalbert, R.A., Corassa, G.M., Ciampitti, I.A. (2021). Satellite-based data fusion crop type classification and mapping in Rio Grande do Sul, Brazil. ISPRS J. Photogrammetry Remote Sens. 176, 196–210.
  • Remelgado, R., Zaitov, S., Kenjabaev, S., Stulina, G., Sultanov, M., Ibrakhimov, M., Akhmedov, M., Dukhovny, V., Conrad, C. A. (2020). Crop Type Dataset for Consistent Land Cover Classification in Central Asia. Sci Data, 7, 250, doi:10.1038/s41597-020-00591-2.
  • Saini, R., Ghosh, S. K. (2018). Crop Classification on Single Date Sentinel-2 Imagery Using Random Forest and Support Vector Machine. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5, ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 Nüvemce, Dehradun, India
  • Savitha, C., Talari, R. (2023). Mapping cropland extent using sentinel-2 datasets and machine learning algorithms for an agriculture watershed. Smart Agricultural Technology 4, 100193.
  • See, L., Fritz, S., You, L., Ramankutty, N., Herrero, M., Justice, C., Becker-Reshef,I., Thornton, P., Erb, K., Gong, P., Tang, H., Van Der Velde, M., Ericksen, P., McCallum, I., Kraxner, F., Obersteiner, M. (2015). Improved global cropland data as an essential ingredient for food security. Glob. Food Secur., 4, 37–45.
  • Segarra, J., Araus, J. L., Kefauver, S. C. (2022). Farming and Earth Observation: Sentinel-2 data to estimate within-field wheat grain yield. International Journal of Applied Earth Observations and Geoinformation 107, 102697.
  • She, B., Yang, Y., Zhao, Z., Huang, L., Liang, D., Zhang, D. (2020). Identification and mapping of soybean and maize crops based on Sentinel-2 data. Int J Agric & Biol Eng 13(6) 171.
  • Şimşek, F. F. (2024). Hızlandırılmış makine öğrenmesi algoritmaları ile tarım parseli tabanlı ürün desen sınıflandırması. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(1),314-330. doi.org/10.53433/yyufbed.1416820
  • Şimşek, F. F., Durduran, S. S. (2023). Açık kaynak kodlu Eo-learn kütüphanesi ve çok zamanlı Sentinel-2 görüntüleri ile tarımsal ürün sınıflandırması. Journal of Geodesy and Geoinformation, 10(1), 45-62. doi.org/10.9733/ JGG.2023R0004.T
  • Song, X.-P., Potapov, P.V., Krylov, A., King, L., Di Bella, C. M., Hudson, A., Khan, A., Adusei, B., Stehman, S.V., Hansen, M.C. (2017). National-scale soybean mapping and area estimation in the united states using medium resolution satellite imagery and field survey. Remote Sens. Environ., 190, 383–395.
  • Tatsumi, K., Yamashiki, Y., Torres, M. A. C., Taipe, C. L. R. (2015). Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data. Computers and Electronics in Agriculture 115, 171-179.
  • Thanh, N. P., Kappas, M. (2018). Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery. Sensors 18(1) 18. doi.org/10.3390/s18010018
  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150.
  • Tuvdendorj, B., Zeng, H., Wu, B., Elnashar, A., Zhang, M., Tian, F., Nabil, M., Nanzad, L., Bulkhbai, A., Natsagdorj, N. (2022). Performance and the Optimal Integration of Sentinel-1/2 Time-Series Features for Crop Classification in Northern Mongolia. Remote Sens.,14, 1830.
  • Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. New York: Springer-Verlag, p. 188.
  • Verma, P., Raghubanshi, A., Srivastava, P. K., Raghubanshi, A. S. (2020). Appraisal of kappa-based metrics and disagreement indices of accuracy assessment for parametric and nonparametric techniques used in LULC classification and change detection. Model.EarthSyst. Environ. 6,1045–1059.
  • Vogiatzis, M., Eleftheriadis, I. (2023). Comparison of Pixel-Based Classification Algorithms Using Landsat-8 OLI and Sentinel-2 MSI for Land Use/Land Cover Mapping in a Heterogeneous Landscape. doi:10.20944/preprints202307.1043.v2
  • Vuolo, F., Neuwirth, M., Immitzer, M., Atzberger, C., Ng, W.-T. (2018). How much does multi-temporal sentinel-2 data improve crop type classification? Int. J. Appl. Earth Obs. Geoinf., 72, 122–130.
  • Wakulińska, M., Marcinkowska-Ochtyra, A. (2020). Multi-Temporal Sentinel-2 Data in Classification of Mountain Vegetation. Remote Sensing 2020, 12, 2696, doi:10.3390/rs12172696.
  • Yaşar, O., Yağcı, A. L. (2023). Yersel referans verilerinin doğruluğunun çok zamanlı Sentinel-2 uydu görüntüleri ile araştırılması: Arpa ve Buğday örneği. Geomatik, 8(3), 277-292
  • Yi, Z., Jia, L., Chen, Q. (2020). Crop Classification Using Multi-Temporal Sentinel-2 Data in the Shiyang River Basin of China. Remote Sensing., 12(24):4052. doi.org/10.3390/rs12244052
  • Zhang, H. K., Roy, D. P. (2017). Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification. Remote Sensing of Environment 197, 15-34. doi.org/10.1016/j.rse.2017.05.02
  • Zheng, B., Myint, S., Thenkabail, P. S., Aggarwal, R. (2015). A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. International Journal of Applied Earth Observation and Geoinformation 34, 103–112.
  • Zhong, L., Gong, P., Biging, G. S. (2014). Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery. Remote Sensing of Environment 140, 1-13. doi.org/10.1016/j.rse.2013.08.023.
There are 57 citations in total.

Details

Primary Language English
Subjects Photogrammetry and Remote Sensing
Journal Section Research Articles
Authors

Murat Güven Tuğaç 0000-0001-5941-5487

Fatih Fehmi Şimşek 0000-0003-4016-4408

Harun Torunlar 0000-0003-3504-7231

Early Pub Date September 14, 2024
Publication Date September 28, 2024
Submission Date May 6, 2024
Acceptance Date September 14, 2024
Published in Issue Year 2024

Cite

APA Tuğaç, M. G., Şimşek, F. F., & Torunlar, H. (2024). Classification of Agricultural Crops with Random Forest and Support Vector Machine Algorithms Using Sentinel-2 and Landsat-8 Images. International Journal of Environment and Geoinformatics, 11(3), 106-118. https://doi.org/10.30897/ijegeo.1479116