Research Article
BibTex RIS Cite

Rockfall Analysis Based on UAV Technology in Kazıklıali Gorge, Aladağlar (Taurus Mountains, Turkey)

Year 2020, Volume: 7 Issue: 3, 239 - 251, 06.12.2020
https://doi.org/10.30897/ijegeo.740963

Abstract

Rockfall is one of the most dangerous types of landslides and they take place in relation to slope instability. Dynamic processes such as freeze-thaw events, seismic activities and slope characteristics are the main control factors on rockfalls. Due to both topographic and climatic characteristics, many areas in Turkey have high rockfall risk and rockfall hazards correspond to 10-12% of the natural hazards in this country. In this study, rockfall characteristics of the Kazıklıali Gorge (0.25 km2) in the lower Emli River Basin located in the SW part of the Aladağlar Mts. was investigated using unmanned air vehicle (UAV) technology and rockfall modeling. Although there is no settlement in the gorge, it is one of the most attractive rock-climbing areas in Turkey; therefore, it is important to determine its rockfall characteristics and to make a risk assessment of the gorge. To determine its rockfall properties, an orthophoto and digital surface model with 3 cm resolution were created using UAV images. All rockfall blocks more than 0.5 m in diameter were digitized as polygons in GIS. Via these polygons, density maps were created and frequency distributions were calculated. As a result, 10,348 fallen rocks were determined in Kazıklıali Canyon. According to the diameter frequency, 75.7% of fallen rocks have a diameter of <2 meters, only 2.9% are ≥5 m in diameter, 78% of all fallen rocks are <2 m2, and only 10.2% have ≥5 m2 surface area. The topographical characteristics of the canyon affect the spatial distribution of rockfall density. The upper and middle parts of the canyon, which are the narrowest, have high density; while the lower valley, which is the largest part, has low density. Rockfall analysis shows that the areas with high rockfall probability are steep slopes where kinetic energy, jump height and rock velocity are very high. According to the results of 3D rockfall analysis, the maximum kinetic energy, maximum jump height and maximum velocity reaches 1400 kJ, 15 m and 32 m/s on the canyon walls, respectively. The upper and middle parts of the canyon walls which correspond to high rockfall density have maximum kinetic energy, rock jump height and rock velocity.

References

  • Abebe, B., Dramis, F., Fubelli, G., et al. (2010). Landslides in the Ethiopian highlands and the Rift margins. J African Earth Sci, 56:131–138. https://doi.org/10.1016/j.jafrearsci.2009.06.006
  • Altın, T. (2003). Aladağlar üzerinde (Ecemiş Çayı Aklanı) buzul ve karst jeomorfolojisi. Glacial and karst geomorphology on Aladag Mountains (Ecemis river basin) İstanbul University, Social Science Inst. PhD thesis (unpublished), p. 513.
  • Antoniou, A.A., Lekkas, E. (2010). Rockfall susceptibility map for Athinios port, Santorini Island, Greece. Geomorphology, 118:152–166. https://doi.org/10.1016/j.geomorph.2009.12.015
  • Ashfield, J.R. (2001). The computer simulation and prediction of rock fall. Doctoral thesis, Durham University
  • Aydin, A., Köse, N., Akkemik, Ü., Yurtseven, H. (2012). Assessment and analysis of rockfall-caused tree injuries in a Turkish fir stand: A case study from Kastamonu-Turkey. J Mt Sci, 9:137–146. https://doi.org/10.1007/s11629-012-2233-9
  • Aydın, A. (2007). Ormanlık Alanlarda Taş ve Kaya Yuvarlanmaları. İstanbul Üniversitesi Orman Fakültesi Dergisi 57:127–144
  • Aydın, A., Eker, R. (2017). Kaya yuvarlanmalarından etkilenen orman alanlarının belirlenmesi: İnebolu örneği. İstanbul Üniversitesi Orman Fakültesi Dergisi, 67:1–1. https://doi.org/10.17099/jffiu.281710
  • Aydın, A., Köse, N., Akkemik, Ü., Yurtseven, H. (2012). Assessment and analysis of rockfall-caused tree injuries in a Turkish fir stand: A case study from Kastamonu-Turkey. J Mt Sci, 9:137–146. https://doi.org/10.1007/s11629-012-2233-9
  • Bartelt, P., Bieler, C., Bühler, Y., Christen, M., Christen, M., Dreier, L., Gerber, W., Glover, J., Schneider, M., Glocker, C., Leine, R., Schweizer, A. RAMMS:: Rockfall, SLF, WSL, ETH, https://ramms.slf.ch/ramms/downloads/RAMMS_ROCK_Manual.pdf(08.11.2019).
  • Bayari, S., Klimchouk, A., Sarıkaya, M., Nazik, L. (2019). Aladağlar Mountain Range: A Landscape-Shaped by the Interplay of Glacial, Karstic, and Fluvial Erosion. In: Landscapes and Landforms of Turkey. Springer International Publishing, pp 423–435
  • Binal, A., Ercanoǧlu, M. (2010). Assessment of rockfall potential in the Kula (Manisa, Turkey). Geopark Region. Environ Earth Sci, 61:1361–1373. https://doi.org/10.1007/s12665-010-0454-1
  • Boccardo. P., Chiabrando, F., Dutto, F., et al. (2015). UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications. Sensors, 15:15717–15737. https://doi.org/10.3390/s150715717
  • Bull, W.B., King, J., Kong, F., et al. (1994). Lichen dating of coseismic landslide hazards in alpine mountains. Geomorphology, 10:253–264
  • Cancelli, A., Crosta, G. (1994). 15. Hazard and risk assessment in rockfall prone areas. In: Risk and reliability in ground engineering. Thomas Telford Publishing, pp 177–190
  • Chau, K.T., Wong, R.H.C., Liu, J., Lee, C.F. (2003). Rockfall Hazard Analysis for Hong Kong Based on Rockfall Inventory. Rock Mech Rock Eng, 36:383–408. https://doi.org/10.1007/s00603-002-0035-z
  • Chen, G., Zheng, L., Zhang, Y., Wu, J. (2013). Numerical simulation in rockfall analysis: A close comparison of 2-D and 3-D DDA. Rock Mech Rock Eng, 46:527–541. https://doi.org/10.1007/s00603-012-0360-9
  • Chou, T., Yeh, M., Chen, Y., Chen,. Y. (2010). Disaster monitoring and management by the unmanned aerial vehicle technolgy,. In: Wagner W., Székely, B. (eds.).: ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7B.
  • Cruden, D.M., Varnes, D.J. (1996). Landslide Types and Processes, Special Report, Transportation Research Board, National Academy of Sciences, 247:36-75. Washington
  • Cybulski, P.G. (2014). Rock Fall Mitigation for an Open Pit Mine Experiencing Substantial rock fall from overblasting. Faculty and the Board of Trustees of the Colorado School of Mines, Degree of Master of Science, Geological Engineering.
  • Dietze, M., Turowski, J.M., Cook, K.L., Hovius, N. (2017). Spatiotemporal patterns, triggers and anatomies of seismically detected rockfalls. Earth Surf Dyn, 5:757–779. https://doi.org/10.5194/esurf-5-757-2017
  • Dinçer, İ., Orhan, A., Frattini, P., Crosta, G.B. (2016). Rockfall at the heritage site of the Tatlarin Underground City (Cappadocia, Turkey). Nat Hazards, 82:1075–1098. https://doi.org/10.1007/s11069-016-2234-z
  • Dorren, L.K.A. (2003). A review of rockfall mechanics and modelling approaches. Prog Phys Geogr, 27:69–87. https://doi.org/10.1191/0309133303pp359ra
  • Dorren, L.K.A., Seijmonsbergen, A.C. (2003). Comparison of three GIS-based models for predicting rockfall runout zones at a regional scale. Geomorphology, 56:49–64. https://doi.org/10.1016/S0169-555X(03).00045-X.
  • Ergünay, O. (2007). Türkiyenin Afet Profili. In: TMMOB Afet Sempozyumu. Ankara, pp 1–14
  • Erismann, T.H., Abele, G. (2001). Dynamics of rockslides and rockfalls. Springer.
  • Flageollet, J.C., Weber, D. (1996). Fall. In: Dikau R, Brunsden D, Schrott L, Ibsen ML (eds). Landslides Recognition. Identification, Movement and Causes. Wiley, Chichester, pp 13–28.
  • Geniş, M., Sakız, U., Aydıner, Ç.B. (2017). A stability assessment of the rockfall problem around the Gökgöl Tunnel (Zonguldak, Turkey). Bull Eng Geol Environ, 76:1237–1248. https://doi.org/10.1007/s10064-016-0907-1.
  • Giordan, D., Manconi, A., Facello, A., et al. (2015). Brief Communication : The use of an unmanned aerial vehicle in a rockfall emergency scenario. Nat Hazards Earth Syst Sci, 163–169. https://doi.org/10.5194/nhess-15-163-2015.
  • Gökçe, O., Özden, Ş., Demir, A. (2008). Türkiye’de afetlerin mekansal ve istatistiksel dağılımı, Afet bilgileri envanteri. Ankara.
  • Gül, M., Özbek, A., Karacan, E. (2016). Rock fall hazard assessment in Asar Hill, ancient Mabolla City, Mugla-SW Turkey. Environ Earth Sci, 75:. https://doi.org/10.1007/s12665-016-6113-4.
  • Hoek, E. (2007). Practical rock engineering e-book.
  • Karaağaç, D. (2019). Kahramanmaraş ve yakın çevresi için deprem senaryolarinin hazirlanmasi ve mekânsal (spatial). analiz teknikleriyle yerleşime uygun alanlarin belirlenmesi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Yüksek lisans tezi. Ankara.
  • Kaya, Y., Topal, T. (2015). Evaluation of rock slope stability for a touristic coastal area near Kusadasi, Aydin (Turkey).. Environ Earth Sci, 74:4187–4199. https://doi.org/10.1007/s12665-015-4473-9.
  • Kayabaşı, A. (2018). The assesment of rockfall analysis near a railroad: a case study at the Kızılinler village of Eskişehir, Turkey. Arab J Geosci, 11:. https://doi.org/10.1007/s12517-018-4175-1.
  • Keskin, İ. (2013). Evaluation of rock falls in an urban area: the case of Boğaziçi (Erzincan/Turkey).. Environ Earth Sci, 70:1619–1628. https://doi.org/10.1007/s12665-013-2247-9.
  • Kutluca, A.K. (2006). In: The Izmir City and Natural Hazard Risks. 46th Congress of the European Regional Science Association: “Enlargement, Southern Europe and the Mediterranean. www.econstor.eu.
  • Matsuoka, N. (1999). Rockfall activity from an alpine cliff during thawing periods. Geomorphology ,28:309–328.
  • McCarroll, D., Shakesby, R.A., Matthews, J.A., et al. (1998). Spatial and Temporal Patterns of Late Holocene Rockfall Activity on a Norwegian Talus Slope: A Lichenometric and Simulation-Modeling Approach. Arctic and Alpine Research, Vol. 30, No. 1, pp. 51-60.
  • Michoud, C., Derron, M., Horton, P., et al. (2012). Rockfall hazard and risk assessments along roads at a regional scale : example in Swiss Alps. Nat. Haz. and Earth Sys. Sci., 615–629. https://doi.org/10.5194/nhess-12-615-2012
  • Mineo, S., Pappalardo, G., Id, G.M. (2018). Rockfall Analysis for Preliminary Hazard Assessment of the Cliff of Taormina Saracen Castle (Sicily). Sustainability, 1–18. https://doi.org/10.3390/su10020417.
  • Özgül, N. (1983). Stratigraphy and tectonic evolution of the central Taurides. In: Tekeli O, Göncüoǧlü MC (eds). Geology of the Taurus Belt, MTA, Ankara. pp 77–90.
  • Ozturk, H.S., Kocaman, S., Gokceoglu, C. (2019). A low-cost approach for determination of discontinuity orientation using smartphone images and application to a part of Ihlara Valley (Central Turkey). Eng Geol, 254:63–75. https://doi.org/10.1016/j.enggeo.2019.04.011.
  • Öztürk, M.Z., Çetinkaya, G., Aydın, S. (2017). Köppen-Geiger İklim Sınıflandırmasına Göre Türkiye’nin İklim Tipleri. Coğrafya Derg, 17–27.
  • Parise, M. (2002). Landslide hazard zonation of slopes susceptible to rock falls and topples. Nat Hazards Earth Syst Sci, 2:37–49. https://doi.org/10.5194/nhess-2-37-2002.
  • Pellicani, R., Spilotro, G., Van, Westen. C.J. (2016). Rockfall trajectory modeling combined with heuristic analysis for assessing the rockfall hazard along the Maratea SS18 coastal road (Basilicata, Southern Italy). Landslides, 13:985–1003. https://doi.org/10.1007/s10346-015-0665-3.
  • Polat, A., Keskin, I., Denizli, I. (2016). Preventing and analysis of falling rocks: A case of Sarica village (Gürün, Turkey).. J Geol Soc India 88:763–772. https://doi.org/10.1007/s12594-016-0544-0.
  • Porter, S.C., Orombelli, G. (1981). Alpine Rockfall Hazards: Recognition and dating of rockfall deposits in the western Italian Alps lead to an understanding of the potential hazards of giant rockfalls in mountainous regions. American Scientist, Vol. 69, No. 1 (January-February 1981)., pp. 67-75.
  • Şahin, Y., Altın, F.G. (2016). Çadırkent Yer Seçimi Problemi İçin Bir Atama Modeli: Isparta Örneği - An Assignment Model For Shelter Site Selection Problem: A Case Of Isparta. Mehmet Akif Ersoy Üniversitesi Sosyal Bilim Enstitüsü Derg, 8:. https://doi.org/10.20875/sb.35069
  • Salvini, R., Mastrorocco, G., Seddaiu, M., et al. (2017). The use of an unmanned aerial vehicle for fracture mapping within a marble quarry (Carrara, Italy).: photogrammetry and discrete fracture network modelling discrete fracture network modelling. Geomatics, Nat Hazards Risk, 5705:. https://doi.org/10.1080/19475705.2016.1199053..
  • Sarıkaya, A.M., Yıldırım, C., Çiner, A. (2015a). Late Quaternary alluvial fans of Emli Valley in the Ecemiş Fault Zone, south central Turkey: Insights from cosmogenic nuclides. Geomorphology, 228:512–525. https://doi.org/10.1016/J.GEOMORPH.2014.10.008.
  • Sarıkaya, M.A., Çiner, A. (2017). Late Quaternary glaciations in the eastern Mediterranean. Geol Soc, London, Spec Publ 433:289–305. https://doi.org/10.1144/SP433.4.
  • Sarıkaya, M.A., Çiner, A., Zreda, M. (2011). Quaternary Glaciations of Turkey. Dev Quat Sci, 15:393–403. https://doi.org/10.1016/B978-0-444-53447-7.00030-1.
  • Sarıkaya, M.A., Yıldırım, C., Çiner, A. (2015b). No surface breaking on the Ecemiş Fault, central Turkey, since Late Pleistocene (~ 64.5 ka).; new geomorphic and geochronologic data from cosmogenic dating of offset alluvial fans. Tectonophysics, 649:33–46. https://doi.org/10.1016/J.TECTO.2015.02.022.
  • Schneuwly, D.M., Stoffel, M. (2008). Geomorphology Spatial analysis of rockfall activity, bounce heights and geomorphic changes over the last 50 years – A case study using dendrogeomorphology. Geomorphology, 102:522–531. https://doi.org/10.1016/j.geomorph.2008.05.043.
  • Şener, E. (2019). İnsansız Hava Araçları Kullanılarak Olası Kaya Düşmelerinin Coğrafi Bilgi Sistemleri Tabanlı 3D Modellenmesi: Kasımlar Köyü (Isparta-Türkiye). Örneği. Süleyman Demirel Üniversitesi Fen Bilim Enstitüsü Derg, 143–150. https://doi.org/10.19113/sdufenbed.501482.
  • Strunden, J., Ehlers, T.A., Brehm, D., Nettesheim, M. (2015). Spatial and temporal variations in rockfall determined from TLS measurements in a deglaciated valley, Switzerland. J Geophys Res F Earth Surf, 120:1251–1273. https://doi.org/10.1002/2014JF003274.
  • Taga, H., Zorlu, K. (2016). Assessment of rockfall hazard on the steep-high slopes: Ermenek (Karaman, Turkey).. Nat Hazards Earth Syst Sci, Discuss 1–32. https://doi.org/10.5194/nhess-2015-337.
  • Tekeli, O., Aksay, A., Urgun, B.M., İslik, A. (1983). Geology of the Aladag mountains. In: Tekeli O, Goncüöǧlü MO (eds). Geology of the Taurus Belt. Proc. Internat. Symp., Turkey,. pp 143–158.
  • Topal, T., Akin, M., Ozden, U.A. (2007). Assessment of rockfall hazard around Afyon Castle, Turkey. Environ Geol, 53:191–200. https://doi.org/10.1007/s00254-006-0633-2.
  • Topal, T., Akin, M.K., Akin, M. (2012). Rockfall hazard analysis for an historical Castle in Kastamonu (Turkey). Nat Hazards, 62:255–274. https://doi.org/10.1007/s11069-011-9995-1.
  • Topal, T., Hatipoglu, O. (2015). Assessment of slope stability and monitoring of a landslide in the Koyulhisar settlement area (Sivas, Turkey). Environ Earth Sci 74:4507–4522. https://doi.org/10.1007/s12665-015-4476-6.
  • Török. Á., Barsi, Á., Bögöly, G., et al. (2017). Slope stability and rock fall hazard assessment of volcanic tuffs using RPAS and TLS with 2D FEM slope modelling. Nat Hazards Earth Syst Sci, Discuss 1–30. https://doi.org/10.5194/nhess-2017-56.
  • Tunusluoglu, M.C., Zorlu, K. (2009). Rockfall hazard assessment in a cultural and natural heritage (Ortahisar Castle, Cappadocia, Turkey). Environ Geol, 56:963–972. https://doi.org/10.1007/s00254-008-1198-z.
  • Ulusay, R., Gokceoglu, C., Topal, T., et al. (2006). Assessment of environmental and engineering geological problems for the possible re-use of an abandoned rock-hewn settlement in Urgüp (Cappadocia)., Turkey. Environ Geol, 50:473–494. https://doi.org/10.1007/s00254-006-0222-4.
  • Van Veen, M., Jean Hutchinson D, Bonneau DA, et al. (2018). Combining temporal 3-D remote sensing data with spatial rockfall simulations for improved understanding of hazardous slopes within rail corridors. Nat Hazards Earth Syst Sci, 18:2295–2308. https://doi.org/10.5194/nhess-18-2295-2018.
  • Vidrih, R., Ribicic, M., Suhadolc, P. (2001). Seismogeological effects on rocks during the 12 April 1998 upper Soca Territory earthquake (NW Slovenia). Tectonophysics, 330:153–175.
  • Vijayakumar, S., Yacoub, T., Curran, J. (2011). On the effect of rock size and shape in rockfall analyses. San Francisco CA, USA. Whalley, W.B. (1984). Rockfalls, Slope Stab. Wiley, New York.
  • Yildirim, C., Schildgen, T.F., Echtler, H., et al. (2011). Late Neogene and active orogenic uplift in the Central Pontides associated with the North Anatolian Fault: Implications for the northern margin of the Central Anatolian Plateau, Turkey. Tectonics, 30:n/a-n/a. https://doi.org/10.1029/2010TC002756.
  • Yilmaz, I., Yildirim, M., Keskin, I. (2008). A method for mapping the spatial distribution of RockFall computer program analyses results using ArcGIS software. Bull Eng Geol Environ, 67:547–554. https://doi.org/10.1007/s10064-008-0174-x.
  • Yıldırım, C., Sarıkaya, M.A., Çiner, A. (2016). Late Pleistocene intraplate extension of the Central Anatolian Plateau, Turkey: Inferences from cosmogenic exposure dating of alluvial fan, landslide, and moraine surfaces along the Ecemiş Fault Zone. Tectonics, 35:1446–1464. https://doi.org/10.1002/2015TC004038.
  • Yılmaz, I., Yildirim M., Keskin, I. (2008). A method for mapping the spatial distribution of RockFall computer program analyses results using ArcGIS software. Bull Eng Geol Environ, 67:547–554. https://doi.org/10.1007/s10064-008-0174-x.
  • Youssef, A.M., Pradhan, B., Al-Kathery, M., et al. (2015). Assessment of rockfall hazard at Al-Noor Mountain, Makkah city (Saudi Arabia). using spatio-temporal remote sensing data and field investigation. J African Earth Sci, 101:309–321. https://doi.org/10.1016/j.jafrearsci.2014.09.021.
  • Yusoff, A.R., Darwin, N., Majid, Z., et al (2018). Comprehensive analysis of flying altitude for high resolution slope mapping using UAV technology. Int Arch Photogramm Remote Sens Spat Inf Sci, Vol XLII-3/W4, 2018 XLII:18–21.
  • Zeybek, M. Şanlıoğlu. (2014). Accurate determination of he Taşkent (Konya, Turkey). landslide using a long-range terrestrial laser scanner. Bull Eng Geol Environ, 74:61–76. https://doi.org/10.1007/s10064-014-0592-x.
  • Zorlu, K., Tunusluoglu, M.C., Gorum, T., et al. (2011). Landform effect on rockfall and hazard mapping in appadocia (Turkey).. Environ Earth Sci, 62:1685–1693. https://doi.org/10.1007/s12665-010-0653-9.
  • Zorlu, K., Türer, D., Tunusluoglu, M.C., et al. (2008). Bir yerleşim yerinin (Yaprakhisar, Kapadokya). iki boyutlu kaya düşmesi analizleri ile kaya düşmesi riski açısından değerlendirilmesi. In: IX. Bölgesel Kaya Mekaniği Sempozyumu. İzmir, pp 361–372.
  • Zreda, M., Çiner, A., Sarikaya, M.A., et al. (2011). Remarkably extensive glaciation and fast deglaciation and climate change in Turkey near the Pleistocene-Holocene boundary. Geol Soc Am, 39:1051–1054. https://doi.org/10.1130/G32097.1
  • Vo, D.T. (2015). RAMMS::Rockfall versus Rockyfor3D in rockfall trajectory simulations at the Community of Vik, Norway. Master Thesis in Geosciences Discipline: Environmental geology and geohazards, Department of Geosciences Faculty of Mathematics and Natural Sciences.

Rockfall analysis based on UAV technology in Kazıklıali Gorge, Aladağlar (Taurus Mountains, Turkey)

Year 2020, Volume: 7 Issue: 3, 239 - 251, 06.12.2020
https://doi.org/10.30897/ijegeo.740963

Abstract

References

  • Abebe, B., Dramis, F., Fubelli, G., et al. (2010). Landslides in the Ethiopian highlands and the Rift margins. J African Earth Sci, 56:131–138. https://doi.org/10.1016/j.jafrearsci.2009.06.006
  • Altın, T. (2003). Aladağlar üzerinde (Ecemiş Çayı Aklanı) buzul ve karst jeomorfolojisi. Glacial and karst geomorphology on Aladag Mountains (Ecemis river basin) İstanbul University, Social Science Inst. PhD thesis (unpublished), p. 513.
  • Antoniou, A.A., Lekkas, E. (2010). Rockfall susceptibility map for Athinios port, Santorini Island, Greece. Geomorphology, 118:152–166. https://doi.org/10.1016/j.geomorph.2009.12.015
  • Ashfield, J.R. (2001). The computer simulation and prediction of rock fall. Doctoral thesis, Durham University
  • Aydin, A., Köse, N., Akkemik, Ü., Yurtseven, H. (2012). Assessment and analysis of rockfall-caused tree injuries in a Turkish fir stand: A case study from Kastamonu-Turkey. J Mt Sci, 9:137–146. https://doi.org/10.1007/s11629-012-2233-9
  • Aydın, A. (2007). Ormanlık Alanlarda Taş ve Kaya Yuvarlanmaları. İstanbul Üniversitesi Orman Fakültesi Dergisi 57:127–144
  • Aydın, A., Eker, R. (2017). Kaya yuvarlanmalarından etkilenen orman alanlarının belirlenmesi: İnebolu örneği. İstanbul Üniversitesi Orman Fakültesi Dergisi, 67:1–1. https://doi.org/10.17099/jffiu.281710
  • Aydın, A., Köse, N., Akkemik, Ü., Yurtseven, H. (2012). Assessment and analysis of rockfall-caused tree injuries in a Turkish fir stand: A case study from Kastamonu-Turkey. J Mt Sci, 9:137–146. https://doi.org/10.1007/s11629-012-2233-9
  • Bartelt, P., Bieler, C., Bühler, Y., Christen, M., Christen, M., Dreier, L., Gerber, W., Glover, J., Schneider, M., Glocker, C., Leine, R., Schweizer, A. RAMMS:: Rockfall, SLF, WSL, ETH, https://ramms.slf.ch/ramms/downloads/RAMMS_ROCK_Manual.pdf(08.11.2019).
  • Bayari, S., Klimchouk, A., Sarıkaya, M., Nazik, L. (2019). Aladağlar Mountain Range: A Landscape-Shaped by the Interplay of Glacial, Karstic, and Fluvial Erosion. In: Landscapes and Landforms of Turkey. Springer International Publishing, pp 423–435
  • Binal, A., Ercanoǧlu, M. (2010). Assessment of rockfall potential in the Kula (Manisa, Turkey). Geopark Region. Environ Earth Sci, 61:1361–1373. https://doi.org/10.1007/s12665-010-0454-1
  • Boccardo. P., Chiabrando, F., Dutto, F., et al. (2015). UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications. Sensors, 15:15717–15737. https://doi.org/10.3390/s150715717
  • Bull, W.B., King, J., Kong, F., et al. (1994). Lichen dating of coseismic landslide hazards in alpine mountains. Geomorphology, 10:253–264
  • Cancelli, A., Crosta, G. (1994). 15. Hazard and risk assessment in rockfall prone areas. In: Risk and reliability in ground engineering. Thomas Telford Publishing, pp 177–190
  • Chau, K.T., Wong, R.H.C., Liu, J., Lee, C.F. (2003). Rockfall Hazard Analysis for Hong Kong Based on Rockfall Inventory. Rock Mech Rock Eng, 36:383–408. https://doi.org/10.1007/s00603-002-0035-z
  • Chen, G., Zheng, L., Zhang, Y., Wu, J. (2013). Numerical simulation in rockfall analysis: A close comparison of 2-D and 3-D DDA. Rock Mech Rock Eng, 46:527–541. https://doi.org/10.1007/s00603-012-0360-9
  • Chou, T., Yeh, M., Chen, Y., Chen,. Y. (2010). Disaster monitoring and management by the unmanned aerial vehicle technolgy,. In: Wagner W., Székely, B. (eds.).: ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7B.
  • Cruden, D.M., Varnes, D.J. (1996). Landslide Types and Processes, Special Report, Transportation Research Board, National Academy of Sciences, 247:36-75. Washington
  • Cybulski, P.G. (2014). Rock Fall Mitigation for an Open Pit Mine Experiencing Substantial rock fall from overblasting. Faculty and the Board of Trustees of the Colorado School of Mines, Degree of Master of Science, Geological Engineering.
  • Dietze, M., Turowski, J.M., Cook, K.L., Hovius, N. (2017). Spatiotemporal patterns, triggers and anatomies of seismically detected rockfalls. Earth Surf Dyn, 5:757–779. https://doi.org/10.5194/esurf-5-757-2017
  • Dinçer, İ., Orhan, A., Frattini, P., Crosta, G.B. (2016). Rockfall at the heritage site of the Tatlarin Underground City (Cappadocia, Turkey). Nat Hazards, 82:1075–1098. https://doi.org/10.1007/s11069-016-2234-z
  • Dorren, L.K.A. (2003). A review of rockfall mechanics and modelling approaches. Prog Phys Geogr, 27:69–87. https://doi.org/10.1191/0309133303pp359ra
  • Dorren, L.K.A., Seijmonsbergen, A.C. (2003). Comparison of three GIS-based models for predicting rockfall runout zones at a regional scale. Geomorphology, 56:49–64. https://doi.org/10.1016/S0169-555X(03).00045-X.
  • Ergünay, O. (2007). Türkiyenin Afet Profili. In: TMMOB Afet Sempozyumu. Ankara, pp 1–14
  • Erismann, T.H., Abele, G. (2001). Dynamics of rockslides and rockfalls. Springer.
  • Flageollet, J.C., Weber, D. (1996). Fall. In: Dikau R, Brunsden D, Schrott L, Ibsen ML (eds). Landslides Recognition. Identification, Movement and Causes. Wiley, Chichester, pp 13–28.
  • Geniş, M., Sakız, U., Aydıner, Ç.B. (2017). A stability assessment of the rockfall problem around the Gökgöl Tunnel (Zonguldak, Turkey). Bull Eng Geol Environ, 76:1237–1248. https://doi.org/10.1007/s10064-016-0907-1.
  • Giordan, D., Manconi, A., Facello, A., et al. (2015). Brief Communication : The use of an unmanned aerial vehicle in a rockfall emergency scenario. Nat Hazards Earth Syst Sci, 163–169. https://doi.org/10.5194/nhess-15-163-2015.
  • Gökçe, O., Özden, Ş., Demir, A. (2008). Türkiye’de afetlerin mekansal ve istatistiksel dağılımı, Afet bilgileri envanteri. Ankara.
  • Gül, M., Özbek, A., Karacan, E. (2016). Rock fall hazard assessment in Asar Hill, ancient Mabolla City, Mugla-SW Turkey. Environ Earth Sci, 75:. https://doi.org/10.1007/s12665-016-6113-4.
  • Hoek, E. (2007). Practical rock engineering e-book.
  • Karaağaç, D. (2019). Kahramanmaraş ve yakın çevresi için deprem senaryolarinin hazirlanmasi ve mekânsal (spatial). analiz teknikleriyle yerleşime uygun alanlarin belirlenmesi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Yüksek lisans tezi. Ankara.
  • Kaya, Y., Topal, T. (2015). Evaluation of rock slope stability for a touristic coastal area near Kusadasi, Aydin (Turkey).. Environ Earth Sci, 74:4187–4199. https://doi.org/10.1007/s12665-015-4473-9.
  • Kayabaşı, A. (2018). The assesment of rockfall analysis near a railroad: a case study at the Kızılinler village of Eskişehir, Turkey. Arab J Geosci, 11:. https://doi.org/10.1007/s12517-018-4175-1.
  • Keskin, İ. (2013). Evaluation of rock falls in an urban area: the case of Boğaziçi (Erzincan/Turkey).. Environ Earth Sci, 70:1619–1628. https://doi.org/10.1007/s12665-013-2247-9.
  • Kutluca, A.K. (2006). In: The Izmir City and Natural Hazard Risks. 46th Congress of the European Regional Science Association: “Enlargement, Southern Europe and the Mediterranean. www.econstor.eu.
  • Matsuoka, N. (1999). Rockfall activity from an alpine cliff during thawing periods. Geomorphology ,28:309–328.
  • McCarroll, D., Shakesby, R.A., Matthews, J.A., et al. (1998). Spatial and Temporal Patterns of Late Holocene Rockfall Activity on a Norwegian Talus Slope: A Lichenometric and Simulation-Modeling Approach. Arctic and Alpine Research, Vol. 30, No. 1, pp. 51-60.
  • Michoud, C., Derron, M., Horton, P., et al. (2012). Rockfall hazard and risk assessments along roads at a regional scale : example in Swiss Alps. Nat. Haz. and Earth Sys. Sci., 615–629. https://doi.org/10.5194/nhess-12-615-2012
  • Mineo, S., Pappalardo, G., Id, G.M. (2018). Rockfall Analysis for Preliminary Hazard Assessment of the Cliff of Taormina Saracen Castle (Sicily). Sustainability, 1–18. https://doi.org/10.3390/su10020417.
  • Özgül, N. (1983). Stratigraphy and tectonic evolution of the central Taurides. In: Tekeli O, Göncüoǧlü MC (eds). Geology of the Taurus Belt, MTA, Ankara. pp 77–90.
  • Ozturk, H.S., Kocaman, S., Gokceoglu, C. (2019). A low-cost approach for determination of discontinuity orientation using smartphone images and application to a part of Ihlara Valley (Central Turkey). Eng Geol, 254:63–75. https://doi.org/10.1016/j.enggeo.2019.04.011.
  • Öztürk, M.Z., Çetinkaya, G., Aydın, S. (2017). Köppen-Geiger İklim Sınıflandırmasına Göre Türkiye’nin İklim Tipleri. Coğrafya Derg, 17–27.
  • Parise, M. (2002). Landslide hazard zonation of slopes susceptible to rock falls and topples. Nat Hazards Earth Syst Sci, 2:37–49. https://doi.org/10.5194/nhess-2-37-2002.
  • Pellicani, R., Spilotro, G., Van, Westen. C.J. (2016). Rockfall trajectory modeling combined with heuristic analysis for assessing the rockfall hazard along the Maratea SS18 coastal road (Basilicata, Southern Italy). Landslides, 13:985–1003. https://doi.org/10.1007/s10346-015-0665-3.
  • Polat, A., Keskin, I., Denizli, I. (2016). Preventing and analysis of falling rocks: A case of Sarica village (Gürün, Turkey).. J Geol Soc India 88:763–772. https://doi.org/10.1007/s12594-016-0544-0.
  • Porter, S.C., Orombelli, G. (1981). Alpine Rockfall Hazards: Recognition and dating of rockfall deposits in the western Italian Alps lead to an understanding of the potential hazards of giant rockfalls in mountainous regions. American Scientist, Vol. 69, No. 1 (January-February 1981)., pp. 67-75.
  • Şahin, Y., Altın, F.G. (2016). Çadırkent Yer Seçimi Problemi İçin Bir Atama Modeli: Isparta Örneği - An Assignment Model For Shelter Site Selection Problem: A Case Of Isparta. Mehmet Akif Ersoy Üniversitesi Sosyal Bilim Enstitüsü Derg, 8:. https://doi.org/10.20875/sb.35069
  • Salvini, R., Mastrorocco, G., Seddaiu, M., et al. (2017). The use of an unmanned aerial vehicle for fracture mapping within a marble quarry (Carrara, Italy).: photogrammetry and discrete fracture network modelling discrete fracture network modelling. Geomatics, Nat Hazards Risk, 5705:. https://doi.org/10.1080/19475705.2016.1199053..
  • Sarıkaya, A.M., Yıldırım, C., Çiner, A. (2015a). Late Quaternary alluvial fans of Emli Valley in the Ecemiş Fault Zone, south central Turkey: Insights from cosmogenic nuclides. Geomorphology, 228:512–525. https://doi.org/10.1016/J.GEOMORPH.2014.10.008.
  • Sarıkaya, M.A., Çiner, A. (2017). Late Quaternary glaciations in the eastern Mediterranean. Geol Soc, London, Spec Publ 433:289–305. https://doi.org/10.1144/SP433.4.
  • Sarıkaya, M.A., Çiner, A., Zreda, M. (2011). Quaternary Glaciations of Turkey. Dev Quat Sci, 15:393–403. https://doi.org/10.1016/B978-0-444-53447-7.00030-1.
  • Sarıkaya, M.A., Yıldırım, C., Çiner, A. (2015b). No surface breaking on the Ecemiş Fault, central Turkey, since Late Pleistocene (~ 64.5 ka).; new geomorphic and geochronologic data from cosmogenic dating of offset alluvial fans. Tectonophysics, 649:33–46. https://doi.org/10.1016/J.TECTO.2015.02.022.
  • Schneuwly, D.M., Stoffel, M. (2008). Geomorphology Spatial analysis of rockfall activity, bounce heights and geomorphic changes over the last 50 years – A case study using dendrogeomorphology. Geomorphology, 102:522–531. https://doi.org/10.1016/j.geomorph.2008.05.043.
  • Şener, E. (2019). İnsansız Hava Araçları Kullanılarak Olası Kaya Düşmelerinin Coğrafi Bilgi Sistemleri Tabanlı 3D Modellenmesi: Kasımlar Köyü (Isparta-Türkiye). Örneği. Süleyman Demirel Üniversitesi Fen Bilim Enstitüsü Derg, 143–150. https://doi.org/10.19113/sdufenbed.501482.
  • Strunden, J., Ehlers, T.A., Brehm, D., Nettesheim, M. (2015). Spatial and temporal variations in rockfall determined from TLS measurements in a deglaciated valley, Switzerland. J Geophys Res F Earth Surf, 120:1251–1273. https://doi.org/10.1002/2014JF003274.
  • Taga, H., Zorlu, K. (2016). Assessment of rockfall hazard on the steep-high slopes: Ermenek (Karaman, Turkey).. Nat Hazards Earth Syst Sci, Discuss 1–32. https://doi.org/10.5194/nhess-2015-337.
  • Tekeli, O., Aksay, A., Urgun, B.M., İslik, A. (1983). Geology of the Aladag mountains. In: Tekeli O, Goncüöǧlü MO (eds). Geology of the Taurus Belt. Proc. Internat. Symp., Turkey,. pp 143–158.
  • Topal, T., Akin, M., Ozden, U.A. (2007). Assessment of rockfall hazard around Afyon Castle, Turkey. Environ Geol, 53:191–200. https://doi.org/10.1007/s00254-006-0633-2.
  • Topal, T., Akin, M.K., Akin, M. (2012). Rockfall hazard analysis for an historical Castle in Kastamonu (Turkey). Nat Hazards, 62:255–274. https://doi.org/10.1007/s11069-011-9995-1.
  • Topal, T., Hatipoglu, O. (2015). Assessment of slope stability and monitoring of a landslide in the Koyulhisar settlement area (Sivas, Turkey). Environ Earth Sci 74:4507–4522. https://doi.org/10.1007/s12665-015-4476-6.
  • Török. Á., Barsi, Á., Bögöly, G., et al. (2017). Slope stability and rock fall hazard assessment of volcanic tuffs using RPAS and TLS with 2D FEM slope modelling. Nat Hazards Earth Syst Sci, Discuss 1–30. https://doi.org/10.5194/nhess-2017-56.
  • Tunusluoglu, M.C., Zorlu, K. (2009). Rockfall hazard assessment in a cultural and natural heritage (Ortahisar Castle, Cappadocia, Turkey). Environ Geol, 56:963–972. https://doi.org/10.1007/s00254-008-1198-z.
  • Ulusay, R., Gokceoglu, C., Topal, T., et al. (2006). Assessment of environmental and engineering geological problems for the possible re-use of an abandoned rock-hewn settlement in Urgüp (Cappadocia)., Turkey. Environ Geol, 50:473–494. https://doi.org/10.1007/s00254-006-0222-4.
  • Van Veen, M., Jean Hutchinson D, Bonneau DA, et al. (2018). Combining temporal 3-D remote sensing data with spatial rockfall simulations for improved understanding of hazardous slopes within rail corridors. Nat Hazards Earth Syst Sci, 18:2295–2308. https://doi.org/10.5194/nhess-18-2295-2018.
  • Vidrih, R., Ribicic, M., Suhadolc, P. (2001). Seismogeological effects on rocks during the 12 April 1998 upper Soca Territory earthquake (NW Slovenia). Tectonophysics, 330:153–175.
  • Vijayakumar, S., Yacoub, T., Curran, J. (2011). On the effect of rock size and shape in rockfall analyses. San Francisco CA, USA. Whalley, W.B. (1984). Rockfalls, Slope Stab. Wiley, New York.
  • Yildirim, C., Schildgen, T.F., Echtler, H., et al. (2011). Late Neogene and active orogenic uplift in the Central Pontides associated with the North Anatolian Fault: Implications for the northern margin of the Central Anatolian Plateau, Turkey. Tectonics, 30:n/a-n/a. https://doi.org/10.1029/2010TC002756.
  • Yilmaz, I., Yildirim, M., Keskin, I. (2008). A method for mapping the spatial distribution of RockFall computer program analyses results using ArcGIS software. Bull Eng Geol Environ, 67:547–554. https://doi.org/10.1007/s10064-008-0174-x.
  • Yıldırım, C., Sarıkaya, M.A., Çiner, A. (2016). Late Pleistocene intraplate extension of the Central Anatolian Plateau, Turkey: Inferences from cosmogenic exposure dating of alluvial fan, landslide, and moraine surfaces along the Ecemiş Fault Zone. Tectonics, 35:1446–1464. https://doi.org/10.1002/2015TC004038.
  • Yılmaz, I., Yildirim M., Keskin, I. (2008). A method for mapping the spatial distribution of RockFall computer program analyses results using ArcGIS software. Bull Eng Geol Environ, 67:547–554. https://doi.org/10.1007/s10064-008-0174-x.
  • Youssef, A.M., Pradhan, B., Al-Kathery, M., et al. (2015). Assessment of rockfall hazard at Al-Noor Mountain, Makkah city (Saudi Arabia). using spatio-temporal remote sensing data and field investigation. J African Earth Sci, 101:309–321. https://doi.org/10.1016/j.jafrearsci.2014.09.021.
  • Yusoff, A.R., Darwin, N., Majid, Z., et al (2018). Comprehensive analysis of flying altitude for high resolution slope mapping using UAV technology. Int Arch Photogramm Remote Sens Spat Inf Sci, Vol XLII-3/W4, 2018 XLII:18–21.
  • Zeybek, M. Şanlıoğlu. (2014). Accurate determination of he Taşkent (Konya, Turkey). landslide using a long-range terrestrial laser scanner. Bull Eng Geol Environ, 74:61–76. https://doi.org/10.1007/s10064-014-0592-x.
  • Zorlu, K., Tunusluoglu, M.C., Gorum, T., et al. (2011). Landform effect on rockfall and hazard mapping in appadocia (Turkey).. Environ Earth Sci, 62:1685–1693. https://doi.org/10.1007/s12665-010-0653-9.
  • Zorlu, K., Türer, D., Tunusluoglu, M.C., et al. (2008). Bir yerleşim yerinin (Yaprakhisar, Kapadokya). iki boyutlu kaya düşmesi analizleri ile kaya düşmesi riski açısından değerlendirilmesi. In: IX. Bölgesel Kaya Mekaniği Sempozyumu. İzmir, pp 361–372.
  • Zreda, M., Çiner, A., Sarikaya, M.A., et al. (2011). Remarkably extensive glaciation and fast deglaciation and climate change in Turkey near the Pleistocene-Holocene boundary. Geol Soc Am, 39:1051–1054. https://doi.org/10.1130/G32097.1
  • Vo, D.T. (2015). RAMMS::Rockfall versus Rockyfor3D in rockfall trajectory simulations at the Community of Vik, Norway. Master Thesis in Geosciences Discipline: Environmental geology and geohazards, Department of Geosciences Faculty of Mathematics and Natural Sciences.
There are 78 citations in total.

Details

Primary Language English
Subjects Human Geography, Photogrammetry and Remote Sensing
Journal Section Research Articles
Authors

Mustafa Utlu 0000-0002-7508-4478

Muhammed Zeynel Öztürk 0000-0002-9834-7680

Mesut Şimşek 0000-0002-4678-4336

Publication Date December 6, 2020
Published in Issue Year 2020 Volume: 7 Issue: 3

Cite

APA Utlu, M., Öztürk, M. Z., & Şimşek, M. (2020). Rockfall Analysis Based on UAV Technology in Kazıklıali Gorge, Aladağlar (Taurus Mountains, Turkey). International Journal of Environment and Geoinformatics, 7(3), 239-251. https://doi.org/10.30897/ijegeo.740963