Review
BibTex RIS Cite
Year 2020, Volume: 7 Issue: 3, 300 - 304, 06.12.2020
https://doi.org/10.30897/ijegeo.788272

Abstract

References

  • Alkan, N., Alkan, A., Demirak, A., & Bahloul, M. (2020). Metals/metalloid in Marine Sediments, Bioaccumulating in Macroalgae and a Mussel. Soil and Sediment Contamination: An International Journal, 29(5), 569-594. https://doi.org/10.1080/15320383.2020.1751061
  • Balcıoğlu, E. B. (2016). Potential effects of polycyclic aromatic hydrocarbons (PAHs) in marine foods on human health: a critical review. Toxin Reviews, 35(3-4), 98-105. https://doi.org/10.1080/15569543.2016.1201513
  • Berge, J. A., Bjerkeng, B., Pettersen, O., Schaanning, M. T., & Øxnevad, S. (2006). Effects of increased sea water concentrations of CO2 on growth of the bivalve Mytilus edulis L. Chemosphere, 62(4), 681-687. https://doi.org/10.1016/j.chemosphere.2005.04.111
  • Bibby, R., Widdicombe, S., Parry, H., Spicer, J., & Pipe, R. (2008). Effects of ocean acidification on the immune response of the blue mussel Mytilus edulis. Aquatic Biology, 2(1), 67-74. doi:10.3354/ab00037
  • Bitter, M., Kapsenberg, L., Gattuso, J.-P., & Pfister, C. (2019). Standing genetic variation fuels rapid adaptation to ocean acidification. Nature communications, 10(1), 1-10. https://doi.org/10.1038/s41467-019-13767-1
  • Borunda, A. (2019). National Geographic: ocean acidification, explained. Retrieved from https://www.nationalgeographic.com/environment/oceans/critical-issues-ocean-acidification/ 19/07/2020
  • Clarke, R. T., Wright, J. F., & Furse, M. T. (2003). RIVPACS models for predicting the expected macroinvertebrate fauna and assessing the ecological quality of rivers. Ecological modelling, 160(3), 219-233. https://doi.org/10.1016/S0304-3800(02)00255-7
  • Delahaut, V. (2012). Development of a challenge test for the blue mussel, Mytilus edulis. Bioscience Engineering, 103. Gruber, N., Clement, D., Carter, B. R., Feely, R. A., Van Heuven, S., Hoppema, M., . . . & Monaco, C. L. (2019). The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science, 363(6432), 1193-1199. https://doi.org/10.1126/science.aau5153
  • Holt, E. A. & Miller, S. W. (2010) Bioindicators: Using Organisms to Measure Environmental Impacts. Nature Education Knowledge 3(10):8
  • Honda, M., & Suzuki, N. (2020). Toxicities of Polycyclic Aromatic Hydrocarbons for Aquatic Animals. International Journal of Environmental Research and Public Health, 17(4), 1363. https://doi.org/10.3390/ijerph17041363
  • Li, J., Lusher, A. L., Rotchell, J. M., Deudero, S., Turra, A., Bråte, I., Sun, C., Shahadat Hossain, M., Li, Q., Kolandhasamy, P., & Shi, H. (2019). Using mussel as a global bioindicator of coastal microplastic pollution. Environmental pollution, 244, 522-533. https://doi.org/10.1016/j.envpol.2018.10.032
  • Mychek‐Londer, J. G., Balasingham, K. D., & Heath, D. D. (2020). Using environmental DNA metabarcoding to map invasive and native invertebrates in two Great Lakes tributaries. Environmental DNA(2), 283– 297. https://doi.org/10.1002/edn3.56
  • Necib, M., & Mzoughi, N. (2017). The distribution of organic and inorganic pollutants in marine environments. In T. N. Holloway (Ed.), Micropollutants: Sources, Ecotoxicological Effects and Control Strategies (pp. 129 ): Nova Science Pub Inc.
  • Ogbeibu, A., & Oribhabor, B. (2002). Ecological impact of river impoundment using benthic macro-invertebrates as indicators. Water Research, 36(10), 2427-2436. https://doi.org/10.1016/S0043-1354(01)00489-4
  • Oliveira, G. F. M., do Couto, M. C. M., de Freitas Lima, M., & do Bomfim, T. C. B. (2016). Mussels (Perna perna) as bioindicator of environmental contamination by Cryptosporidium species with zoonotic potential. International Journal for Parasitology: Parasites and Wildlife, 5(1), 28-33. https://doi.org/10.1016/j.ijppaw.2016.01.004
  • Pfister, C. A., Roy, K., Wootton, J. T., McCoy, S. J., Paine, R. T., Suchanek, T. H., & Sanford, E. (2016). Historical baselines and the future of shell calcification for a foundation species in a changing ocean. Proceedings of the Royal Society B: Biological Sciences, 283(1832), 20160392. https://doi.org/10.1098/rspb.2016.0392
  • Phillips, D. (1976). The common mussel Mytilus edulis as an indicator of pollution by zinc, cadmium, lead and copper. I. Effects of environmental variables on uptake of metals. Marine Biology, 38(1), 59-69. https://doi.org/10.1007/BF00391486
  • Phillips, D. (1977). The common mussel Mytilus edulis as an indicator of trace metals in Scandinavian waters. I. Zinc and cadmium. Marine Biology, 43(4), 283-291. https://doi.org/10.1007/BF00396922
  • Phillips, D. J. (1990). Use of macroalgae and invertebrates as monitors of metal levels in estuaries and coastal waters. Heavy metals in the marine environment, 81-99. https://doi.org/10.1201/9781351073158
  • Ponce-Vélez, G., Botello, A., & Díaz-González, G. (2006). Organic and inorganic pollutants in marine sediments from northern and southern continental shelf of the Gulf of Mexico. International Journal of Environment and Pollution, 26(1-3), 295-311. https://doi.org/10.1504/IJEP.2006.009113
  • Rafferty, J. P. (2020). Ocean acidification: Encyclopædia Britannica. Retrieved from https://www.britannica.com/science/ocean-acidification 20/07/2020
  • Talmage, S. C., & Gobler, C. J. (2009). The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (Mercenaria mercenaria), bay scallops (Argopecten irradians), and Eastern oysters (Crassostrea virginica). Limnology and Oceanography, 54(6), 2072-2080. https://doi.org/10.4319/lo.2009.54.6.2072
  • Viarengo, A., & Canesi, L. (1991). Mussels as biological indicators of pollution. Aquaculture, 94(2-3), 225-243. https://doi.org/10.1016/0044-8486(91)90120-V
  • Williamson, P., & Turley, C. (2012). Ocean acidification in a geoengineering context. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1974), 4317-4342. https://doi.org/10.1098/rsta.2012.0167

Mussel: a potential pollution indicator in the aquatic ecosystem and effect of climate change

Year 2020, Volume: 7 Issue: 3, 300 - 304, 06.12.2020
https://doi.org/10.30897/ijegeo.788272

Abstract

The study of ecological indicators, defining and establishing the means of measuring the health of the environment, is of great importance. The most important elements of ecosystems are the biological components, and environmental impact assessment of ecosystems will therefore require that these components are seriously laid out. It is, for example, not sufficient to assess the water quality by the use of physicochemical parameters, although their determination can be carried out much more rapidly. There exists, in general, a relation between species composition and water quality. It is well known that mussels are extensively utilized as a biological indicator of pollution of both marine and freshwater ecosystems. The reason is that the mussel is a sessile, filter-feeding, and able to accumulate within its tissues many of the contaminants. In addition, mussels show a wide geographical distribution as they permit the survey of extensive coastal and inland areas. The contaminants accumulated in the tissues of mussels may cause a “stress syndrome” with alteration to their physiology. On the other hand, global warming does affect the pH level, especially the marine water resulting increase in acidity. This can be the outcome of the existing genetic variation in natural populations of mussels. They because allow themselves to adapt to declining pH levels in the aquatic ecosystem caused by carbon emissions. We, therefore, focus on the factors that possibly effect the mussel biodiversity in aquatic ecosystems in relation to climate change as well as pollution concerned.

References

  • Alkan, N., Alkan, A., Demirak, A., & Bahloul, M. (2020). Metals/metalloid in Marine Sediments, Bioaccumulating in Macroalgae and a Mussel. Soil and Sediment Contamination: An International Journal, 29(5), 569-594. https://doi.org/10.1080/15320383.2020.1751061
  • Balcıoğlu, E. B. (2016). Potential effects of polycyclic aromatic hydrocarbons (PAHs) in marine foods on human health: a critical review. Toxin Reviews, 35(3-4), 98-105. https://doi.org/10.1080/15569543.2016.1201513
  • Berge, J. A., Bjerkeng, B., Pettersen, O., Schaanning, M. T., & Øxnevad, S. (2006). Effects of increased sea water concentrations of CO2 on growth of the bivalve Mytilus edulis L. Chemosphere, 62(4), 681-687. https://doi.org/10.1016/j.chemosphere.2005.04.111
  • Bibby, R., Widdicombe, S., Parry, H., Spicer, J., & Pipe, R. (2008). Effects of ocean acidification on the immune response of the blue mussel Mytilus edulis. Aquatic Biology, 2(1), 67-74. doi:10.3354/ab00037
  • Bitter, M., Kapsenberg, L., Gattuso, J.-P., & Pfister, C. (2019). Standing genetic variation fuels rapid adaptation to ocean acidification. Nature communications, 10(1), 1-10. https://doi.org/10.1038/s41467-019-13767-1
  • Borunda, A. (2019). National Geographic: ocean acidification, explained. Retrieved from https://www.nationalgeographic.com/environment/oceans/critical-issues-ocean-acidification/ 19/07/2020
  • Clarke, R. T., Wright, J. F., & Furse, M. T. (2003). RIVPACS models for predicting the expected macroinvertebrate fauna and assessing the ecological quality of rivers. Ecological modelling, 160(3), 219-233. https://doi.org/10.1016/S0304-3800(02)00255-7
  • Delahaut, V. (2012). Development of a challenge test for the blue mussel, Mytilus edulis. Bioscience Engineering, 103. Gruber, N., Clement, D., Carter, B. R., Feely, R. A., Van Heuven, S., Hoppema, M., . . . & Monaco, C. L. (2019). The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science, 363(6432), 1193-1199. https://doi.org/10.1126/science.aau5153
  • Holt, E. A. & Miller, S. W. (2010) Bioindicators: Using Organisms to Measure Environmental Impacts. Nature Education Knowledge 3(10):8
  • Honda, M., & Suzuki, N. (2020). Toxicities of Polycyclic Aromatic Hydrocarbons for Aquatic Animals. International Journal of Environmental Research and Public Health, 17(4), 1363. https://doi.org/10.3390/ijerph17041363
  • Li, J., Lusher, A. L., Rotchell, J. M., Deudero, S., Turra, A., Bråte, I., Sun, C., Shahadat Hossain, M., Li, Q., Kolandhasamy, P., & Shi, H. (2019). Using mussel as a global bioindicator of coastal microplastic pollution. Environmental pollution, 244, 522-533. https://doi.org/10.1016/j.envpol.2018.10.032
  • Mychek‐Londer, J. G., Balasingham, K. D., & Heath, D. D. (2020). Using environmental DNA metabarcoding to map invasive and native invertebrates in two Great Lakes tributaries. Environmental DNA(2), 283– 297. https://doi.org/10.1002/edn3.56
  • Necib, M., & Mzoughi, N. (2017). The distribution of organic and inorganic pollutants in marine environments. In T. N. Holloway (Ed.), Micropollutants: Sources, Ecotoxicological Effects and Control Strategies (pp. 129 ): Nova Science Pub Inc.
  • Ogbeibu, A., & Oribhabor, B. (2002). Ecological impact of river impoundment using benthic macro-invertebrates as indicators. Water Research, 36(10), 2427-2436. https://doi.org/10.1016/S0043-1354(01)00489-4
  • Oliveira, G. F. M., do Couto, M. C. M., de Freitas Lima, M., & do Bomfim, T. C. B. (2016). Mussels (Perna perna) as bioindicator of environmental contamination by Cryptosporidium species with zoonotic potential. International Journal for Parasitology: Parasites and Wildlife, 5(1), 28-33. https://doi.org/10.1016/j.ijppaw.2016.01.004
  • Pfister, C. A., Roy, K., Wootton, J. T., McCoy, S. J., Paine, R. T., Suchanek, T. H., & Sanford, E. (2016). Historical baselines and the future of shell calcification for a foundation species in a changing ocean. Proceedings of the Royal Society B: Biological Sciences, 283(1832), 20160392. https://doi.org/10.1098/rspb.2016.0392
  • Phillips, D. (1976). The common mussel Mytilus edulis as an indicator of pollution by zinc, cadmium, lead and copper. I. Effects of environmental variables on uptake of metals. Marine Biology, 38(1), 59-69. https://doi.org/10.1007/BF00391486
  • Phillips, D. (1977). The common mussel Mytilus edulis as an indicator of trace metals in Scandinavian waters. I. Zinc and cadmium. Marine Biology, 43(4), 283-291. https://doi.org/10.1007/BF00396922
  • Phillips, D. J. (1990). Use of macroalgae and invertebrates as monitors of metal levels in estuaries and coastal waters. Heavy metals in the marine environment, 81-99. https://doi.org/10.1201/9781351073158
  • Ponce-Vélez, G., Botello, A., & Díaz-González, G. (2006). Organic and inorganic pollutants in marine sediments from northern and southern continental shelf of the Gulf of Mexico. International Journal of Environment and Pollution, 26(1-3), 295-311. https://doi.org/10.1504/IJEP.2006.009113
  • Rafferty, J. P. (2020). Ocean acidification: Encyclopædia Britannica. Retrieved from https://www.britannica.com/science/ocean-acidification 20/07/2020
  • Talmage, S. C., & Gobler, C. J. (2009). The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (Mercenaria mercenaria), bay scallops (Argopecten irradians), and Eastern oysters (Crassostrea virginica). Limnology and Oceanography, 54(6), 2072-2080. https://doi.org/10.4319/lo.2009.54.6.2072
  • Viarengo, A., & Canesi, L. (1991). Mussels as biological indicators of pollution. Aquaculture, 94(2-3), 225-243. https://doi.org/10.1016/0044-8486(91)90120-V
  • Williamson, P., & Turley, C. (2012). Ocean acidification in a geoengineering context. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1974), 4317-4342. https://doi.org/10.1098/rsta.2012.0167
There are 24 citations in total.

Details

Primary Language English
Subjects Environmental Sciences
Journal Section Research Articles
Authors

Şebnem Atasaral 0000-0001-9382-7469

Umar Khan 0000-0003-1775-8662

Yahya Terzi 0000-0002-6367-5000

Kadir Seyhan 0000-0002-6015-7478

Publication Date December 6, 2020
Published in Issue Year 2020 Volume: 7 Issue: 3

Cite

APA Atasaral, Ş., Khan, U., Terzi, Y., Seyhan, K. (2020). Mussel: a potential pollution indicator in the aquatic ecosystem and effect of climate change. International Journal of Environment and Geoinformatics, 7(3), 300-304. https://doi.org/10.30897/ijegeo.788272