Research Article
BibTex RIS Cite

2030 YILI ISPARTA İLİ ELEKTRİK SİSTEMİNDE YENİLENEBİLİR ENERJİ SENARYOSU

Year 2022, Volume: 4 Issue: 3, 163 - 177, 01.10.2022
https://doi.org/10.47933/ijeir.1144163

Abstract

Son yıllarda küresel olarak iklim değişikliği, enerji arz güvenliği ve hava kirliliği gibi birçok zorluk ortaya çıkmıştır. Bu sorunların en büyük nedeni artan enerji talebi ve enerji için fosil yakıtlara olan bağımlılıktır. Fosil yakıtların olumsuz etkilerine ilişkin artan endişeler, elektrik üretimi için yenilenebilir enerji kaynaklarına yapılan yatırımların artmasına neden olmuştur. %100 yenilenebilir enerji sistemlerine geçiş sürerken, sürdürülebilirlik, maliyet ve depolama alanları konusunda da endişeler var. Bu çalışmada, EnergyPLAN programı kullanılarak Isparta ili için 2030 yılı enerji planlaması yapılmıştır. 2030 enerji senaryosunda, enerji dengesi kabul edilerek sürdürülebilirliği sağlamak için biyokütle kullanılmıştır. 2030 yılında %100 yenilenebilir enerji sistemlerinin teknik ve ekonomik modellemesi için bir metodoloji sunuldu. Sonuçlar, 2020 yılında 0,231 Mt olan CO2 emisyon miktarının 2030 yılına kadar 0,096 Mt'a düştüğünü gösterdi. Yenilenebilir enerji sistemlerinin kullanımının artması ile fosil yakıtların olumsuz etkilerinin giderilebileceği görülmüştür. Çalışma sonucunda Isparta ilinde 2030 yılı için %100 yenilenebilir enerji sistemlerine geçişin teorik olarak gerçekleştirilebileceği gösterilmiştir.

Supporting Institution

YOK

Thanks

Ahmet Buğrahan BAYRAM 100/2000 YÖK Doktora Bursu programı kapsamında desteklenmiştir.

References

  • [1] Dincer, I., Acar, C., (2017). Smart energy systems for a sustainable future, Applied Energy, 194, 225–235.
  • [2] Xu, Y., Yan, C., Liu, H., Wang, J., Yang, Z., Jiang, Y., (2020). Smart energy systems: A critical review on design and operation optimization,” Sustainable Cities and Society, 62, 102369.
  • [3] Schweiger, G., Eckerstorfer, L., V., Hafner, I., Fleischhacker, A., Radl, J., Glock, B., (2020). Active consumer participation in smart energy systems, Energy and Buildings, 227, 110359.
  • [4] Klemm, C., Vennemann, P., (2021). Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches, Renewable and Sustainable Energy Reviews, 135, 110206.
  • [5] Cabrera, P, Lund, H, Carta, J., A., (2018). Smart renewable energy penetration strategies on islands: The case of Gran Canaria, Energy, 162, 421–443.
  • [6] Kiwan, S., Al-Gharibeh, E., (2020). Jordan toward a 100% renewable electricity system, Renewable Energy, 147, 423–436.
  • [7] Hu, G., Ma, X., Ji, J., (2019). Scenarios and policies for sustainable urban energy development based on LEAP model – A case study of a postindustrial city: Shenzhen China, Applied Energy, 238, 876–886.
  • [8] Sancar, M., R., Altınkaynak, M., (2022). Isparta ili için farklı çatı tiplerinde tasarlanan fotovoltaik sistemlerin karşılaştırılması, European Journal of Science and Technology, 32, 1024–1028.
  • [9] Lund, H., Mathiesen, B., V., (2019). Energy system analysis of 100% renewable energy systems-The case of Denmark in years 2030 and 2050, Energy, 34, 524–531.
  • [10] Connolly, D., Lund, H., Mathiesen, B., V., Leahy, M., (2011). The first step towards a 100% renewable energy-system for Ireland, Applied Energy, 88, 502–507.
  • [11] Leblebicioğlu, E., Sulukan, E., Uyar, S., T., (2021). An Energy System Simulation Of Terkey With A 50% Renewable Energy Scenario", Journal of Naval Sciences and Engineering, 17(1), 1-25.
  • [12] Menapace, A., Thellufsen, J.,Z., Pernigotto, G., Roberti, F., Gasparella, A., Righetti, M., (2020). The design of 100 % renewable smart urb an energy systems: The case of Bozen-Bolzano, Energy, 207, 118198.
  • [13] Icaza, D., Borge-Diez, D., Galindo, S., P., (2021). Proposal of 100% renewable energy production for the City of Cuenca- Ecuador by 2050, Renewable Energy, 170, 1324–1341.
  • [14] Ćosić, B., Krajačić, G., Duić, N., (2012). A 100% renewable energy system in the year 2050: The case of Macedonia, Energy, 48, 80–87.
  • [15] Reyseliani, N., Purwanto, WW., (2021). Pathway towards 100% renewable energy in Indonesia power system by 2050, Renewable Energy, 176, 305–321.
  • [16] Özcan, H., H., (2009). Rüzgar Enerjisi Yatırımları Ve Isparta İlinde Kurulabilecek Rüzgar Enerjisi Santrallerinin Ekonomik Analizi, Süleyman Demirel Üniversitesi, Sosyal Bilimler Enstitüsü, İşletme Anabilim Dalı, Yüksek Lisans Tezi, 89 s, Isparta.
  • [17] Özcan, İ., Şahin, A., Ş., Dikmen, E., Bayram, G., (2013). Isparta İlinde Rüzgâr Hızı Değerlerinin Belirlenmesi", Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 17(1), 109-112.
  • [18] Özsoy, K., Acar, E., (2017). Isparta-Senirkent İlçesinde Güneş Enerjisi Potansiyeli Üzerine Bir Araştırma, Süleyman Demirel Üniversitesi Teknik Bilimler Dergisi, 7(1), 29-37.
  • [19] Kabul, A., Duran F., (2014). Isparta İli̇nde Fotovoltai̇k/Termal (PV/T) Hi̇bri̇t Si̇stemi̇n Performans Anali̇zi̇. Uluslararası Teknolojik Bilimler Dergisi, 6(1), 31–43.
  • [20] Şahin, M., Güven, Y., Oğuz, Y., Şahin, E., (2016). Importance of Hydroelectric Power Plants In Terms of Environmental Policy, El-Cezeri Journal of Science and Engineering, 3(1), 521–532.
  • [21] Akyürek, Z., (2019). Energy Recovery and Greenhouse Gas Emission Reduction Potential of Bio-Waste in the Mediterranean Region of Turkey. El-Cezeri Journal of Science and Engineering, 6(3), 482–490.
  • [22] Kanca, M., Qader, I., N., Qadır, M., Kök, M., (2021). Recent improvements in various renewable energies and their effects on the environment and economy: A review article, El-Cezeri Journal of Science and Engineering, 8(2), 909–930.
  • [23] Emeksiz, C., Fındık, M., M., (2021). Sürdürülebilir Kalkınma İçin Yenilenebilir Enerji Kaynaklarının Türkiye Ölçeğinde Değerlendirilmesi, European Journal of Science and Technology, 26, 155–164.
  • [24] Republic of Turkey Ministry of Energy and Natural Resources General Directorate of Energy Affairs. (2020). Turkey Wind Energy Potential Isparta Data. https://repa.enerji.gov.tr/REPA/iller/ISPARTA-REPA.pdf. [Access Date: 30.02.2022].
  • [25] Republic of Turkey Ministry of Energy and Natural Resources General Directorate of Energy Affairs. (2020). Turkey Solar Energy Potential Isparta Data. https://gepa.enerji.gov.tr/MyCalculator/pages/32.aspx [Access Date: 28.02.2020].
  • [26] Republic of Turkey Energy Market Regulatory Authority. (2021). Electricity Market Sector Report. https://www.epdk.gov.tr/Detay/Icerik/3-0-24/ Perakendeyillik-sektor-raporu [Access Date:26.02.2022].
  • [27] TEIAS, Turkish Electricity Transmission Corporation. (2020) . 10-Year Demand Forecasts Report (2021-2030). https://www.teias.gov.tr/tr-TR/ilgili-raporlar [Access Date: 15.02.2022].
  • [28] Lund, H., Thellufsen, J., Z., Østergaard, P., A., Sorknæs, P., Skov, I., R., Mathiesen, B., V., (2021). EnergyPLAN – Advanced analysis of smart energy systems, Smart Energy, 1, 100007.
  • [29] EPIAS, Electricity Market Operation Joint Stock Company. (2020). Real Time Production Data. https://seffaflik.epias.com.tr/transparency/uretim/gerceklesen-uretim/gercek-zamanli-uretim.xhtml [Access Date: 27.02.2022].
  • [30] IRENA, International Renewable Energy Agency. (2018). Renewable Power Generations Costs in 2018. https://www.irena.org/publications/2019/May/Renewable-power-generation-costs-in-2018 [Access Date: 20.02.2022].
  • [31] IRENA, International Renewable Energy Agency. (2020). “Renewable Power Generations Costs in 2020”. https://www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020 [Access Date: 20.02.2022].

RENEWABLE ENERGY SCENARIO IN ELECTRICITY SYSTEM FOR ISPARTA PROVINCE THE YEAR 2030

Year 2022, Volume: 4 Issue: 3, 163 - 177, 01.10.2022
https://doi.org/10.47933/ijeir.1144163

Abstract

In recent years, many challenges have emerged globally, such as climate change, energy supply security, and air pollution. The biggest reason for these problems is increased energy demand and the dependence on fossil fuels for energy. Increasing concerns about the adverse effects of fossil fuels have led to increased investments in renewable energy sources for electricity generation. While the transition to 100% renewable energy systems continues, there are also concerns about sustainability, cost and storage areas. In this study, energy planning for 2030 for the province of Isparta was carried out using the EnergyPLAN program. In the energy scenario of 2030, biomass was used to ensure sustainability by accepting the energy balance. A methodology for technical and economic modeling of 100% renewable energy systems in 2030 was presented. The results showed that the CO2 emission amount, 0.231 Mt in 2020, decreased to 0.096 Mt by 2030 year. It has been seen that the adverse effects of fossil fuels can be eliminated with the increase in the use of renewable energy systems. As a result of the study, it has been shown that the transition to 100% renewable energy systems for the year 2030 in Isparta province can be realized theoretically.

References

  • [1] Dincer, I., Acar, C., (2017). Smart energy systems for a sustainable future, Applied Energy, 194, 225–235.
  • [2] Xu, Y., Yan, C., Liu, H., Wang, J., Yang, Z., Jiang, Y., (2020). Smart energy systems: A critical review on design and operation optimization,” Sustainable Cities and Society, 62, 102369.
  • [3] Schweiger, G., Eckerstorfer, L., V., Hafner, I., Fleischhacker, A., Radl, J., Glock, B., (2020). Active consumer participation in smart energy systems, Energy and Buildings, 227, 110359.
  • [4] Klemm, C., Vennemann, P., (2021). Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches, Renewable and Sustainable Energy Reviews, 135, 110206.
  • [5] Cabrera, P, Lund, H, Carta, J., A., (2018). Smart renewable energy penetration strategies on islands: The case of Gran Canaria, Energy, 162, 421–443.
  • [6] Kiwan, S., Al-Gharibeh, E., (2020). Jordan toward a 100% renewable electricity system, Renewable Energy, 147, 423–436.
  • [7] Hu, G., Ma, X., Ji, J., (2019). Scenarios and policies for sustainable urban energy development based on LEAP model – A case study of a postindustrial city: Shenzhen China, Applied Energy, 238, 876–886.
  • [8] Sancar, M., R., Altınkaynak, M., (2022). Isparta ili için farklı çatı tiplerinde tasarlanan fotovoltaik sistemlerin karşılaştırılması, European Journal of Science and Technology, 32, 1024–1028.
  • [9] Lund, H., Mathiesen, B., V., (2019). Energy system analysis of 100% renewable energy systems-The case of Denmark in years 2030 and 2050, Energy, 34, 524–531.
  • [10] Connolly, D., Lund, H., Mathiesen, B., V., Leahy, M., (2011). The first step towards a 100% renewable energy-system for Ireland, Applied Energy, 88, 502–507.
  • [11] Leblebicioğlu, E., Sulukan, E., Uyar, S., T., (2021). An Energy System Simulation Of Terkey With A 50% Renewable Energy Scenario", Journal of Naval Sciences and Engineering, 17(1), 1-25.
  • [12] Menapace, A., Thellufsen, J.,Z., Pernigotto, G., Roberti, F., Gasparella, A., Righetti, M., (2020). The design of 100 % renewable smart urb an energy systems: The case of Bozen-Bolzano, Energy, 207, 118198.
  • [13] Icaza, D., Borge-Diez, D., Galindo, S., P., (2021). Proposal of 100% renewable energy production for the City of Cuenca- Ecuador by 2050, Renewable Energy, 170, 1324–1341.
  • [14] Ćosić, B., Krajačić, G., Duić, N., (2012). A 100% renewable energy system in the year 2050: The case of Macedonia, Energy, 48, 80–87.
  • [15] Reyseliani, N., Purwanto, WW., (2021). Pathway towards 100% renewable energy in Indonesia power system by 2050, Renewable Energy, 176, 305–321.
  • [16] Özcan, H., H., (2009). Rüzgar Enerjisi Yatırımları Ve Isparta İlinde Kurulabilecek Rüzgar Enerjisi Santrallerinin Ekonomik Analizi, Süleyman Demirel Üniversitesi, Sosyal Bilimler Enstitüsü, İşletme Anabilim Dalı, Yüksek Lisans Tezi, 89 s, Isparta.
  • [17] Özcan, İ., Şahin, A., Ş., Dikmen, E., Bayram, G., (2013). Isparta İlinde Rüzgâr Hızı Değerlerinin Belirlenmesi", Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 17(1), 109-112.
  • [18] Özsoy, K., Acar, E., (2017). Isparta-Senirkent İlçesinde Güneş Enerjisi Potansiyeli Üzerine Bir Araştırma, Süleyman Demirel Üniversitesi Teknik Bilimler Dergisi, 7(1), 29-37.
  • [19] Kabul, A., Duran F., (2014). Isparta İli̇nde Fotovoltai̇k/Termal (PV/T) Hi̇bri̇t Si̇stemi̇n Performans Anali̇zi̇. Uluslararası Teknolojik Bilimler Dergisi, 6(1), 31–43.
  • [20] Şahin, M., Güven, Y., Oğuz, Y., Şahin, E., (2016). Importance of Hydroelectric Power Plants In Terms of Environmental Policy, El-Cezeri Journal of Science and Engineering, 3(1), 521–532.
  • [21] Akyürek, Z., (2019). Energy Recovery and Greenhouse Gas Emission Reduction Potential of Bio-Waste in the Mediterranean Region of Turkey. El-Cezeri Journal of Science and Engineering, 6(3), 482–490.
  • [22] Kanca, M., Qader, I., N., Qadır, M., Kök, M., (2021). Recent improvements in various renewable energies and their effects on the environment and economy: A review article, El-Cezeri Journal of Science and Engineering, 8(2), 909–930.
  • [23] Emeksiz, C., Fındık, M., M., (2021). Sürdürülebilir Kalkınma İçin Yenilenebilir Enerji Kaynaklarının Türkiye Ölçeğinde Değerlendirilmesi, European Journal of Science and Technology, 26, 155–164.
  • [24] Republic of Turkey Ministry of Energy and Natural Resources General Directorate of Energy Affairs. (2020). Turkey Wind Energy Potential Isparta Data. https://repa.enerji.gov.tr/REPA/iller/ISPARTA-REPA.pdf. [Access Date: 30.02.2022].
  • [25] Republic of Turkey Ministry of Energy and Natural Resources General Directorate of Energy Affairs. (2020). Turkey Solar Energy Potential Isparta Data. https://gepa.enerji.gov.tr/MyCalculator/pages/32.aspx [Access Date: 28.02.2020].
  • [26] Republic of Turkey Energy Market Regulatory Authority. (2021). Electricity Market Sector Report. https://www.epdk.gov.tr/Detay/Icerik/3-0-24/ Perakendeyillik-sektor-raporu [Access Date:26.02.2022].
  • [27] TEIAS, Turkish Electricity Transmission Corporation. (2020) . 10-Year Demand Forecasts Report (2021-2030). https://www.teias.gov.tr/tr-TR/ilgili-raporlar [Access Date: 15.02.2022].
  • [28] Lund, H., Thellufsen, J., Z., Østergaard, P., A., Sorknæs, P., Skov, I., R., Mathiesen, B., V., (2021). EnergyPLAN – Advanced analysis of smart energy systems, Smart Energy, 1, 100007.
  • [29] EPIAS, Electricity Market Operation Joint Stock Company. (2020). Real Time Production Data. https://seffaflik.epias.com.tr/transparency/uretim/gerceklesen-uretim/gercek-zamanli-uretim.xhtml [Access Date: 27.02.2022].
  • [30] IRENA, International Renewable Energy Agency. (2018). Renewable Power Generations Costs in 2018. https://www.irena.org/publications/2019/May/Renewable-power-generation-costs-in-2018 [Access Date: 20.02.2022].
  • [31] IRENA, International Renewable Energy Agency. (2020). “Renewable Power Generations Costs in 2020”. https://www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020 [Access Date: 20.02.2022].
There are 31 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Ahmet Buğrahan Bayram 0000-0002-7364-8559

Kemal Yakut 0000-0002-5156-9892

Early Pub Date October 1, 2022
Publication Date October 1, 2022
Acceptance Date August 5, 2022
Published in Issue Year 2022 Volume: 4 Issue: 3

Cite

APA Bayram, A. B., & Yakut, K. (2022). RENEWABLE ENERGY SCENARIO IN ELECTRICITY SYSTEM FOR ISPARTA PROVINCE THE YEAR 2030. International Journal of Engineering and Innovative Research, 4(3), 163-177. https://doi.org/10.47933/ijeir.1144163

Cited By

88x31.png

This work is licensed under a Creative Commons Attribution 4.0 International License