NUMERICAL INVESTIGATION OF THE MIXING MECHANISM OF PASSIVE MICROMIXER WITH TESLA STRUCTURE
Year 2023,
Volume: 7 Issue: 3, 56 - 63, 28.09.2023
Esra Ağel
,
Batı Altındağ
,
Osman Ergin
,
Zeynep Kunt
,
Ali Bahadır Olcay
Abstract
Passive micromixers using Tesla structures are commonly used in microfluidic systems for efficient fluid mixing. To understand the mixing mechanism of such micromixers, numerical investigations can be performed using computational fluid dynamics (CFD) simulations. In this study, we aimed to improve the mixing mechanism in microfluidic applications using the Tesla valve, which is a static valve that allows the flow of liquids in only one direction. The study analyzed the effect of fluid inlet velocity and surface roughness on the mixing performance of a numerical model. The model was used to test a mixture of water and blood at four flow velocities: 0.15, 0.35, 0.5, and 1.0 m/s. Additionally, the study evaluates the effect of surface roughness on mixing performance by assigning a uniform roughness value of 12 µm to all surfaces in the model. The results showed that fluid mixing primarily occurred in the curved portions of the model, while fluid streams remained separate in the straight segments. There was no backflow, indicating successful fluid transmission without the need for additional valves or switches. The study also includes three cross-sections designated as cross-sections #1, #2, and #3, each at a vertical distance of 0.55 mm, 1.00 mm, and 1.75 mm from the inlet, respectively, to visualize the impact of surface roughness on mixing quantitatively. Overall, the study demonstrated that two Tesla structures can efficiently mix different fluid types, and the Tesla valve is scalable, durable, and easy to fabricate in various materials for microfluidic applications.
Supporting Institution
TUBITAK (The Scientific and Technological Research Council of Turkey)
Project Number
20AG004 (1004 Project)
Thanks
This research was supported by TUBITAK (The Scientific and Technological Research Council of Turkey) under Project 1004 Integrated, Scalable, Functional Nanostructures and Systems 20AG004, entitled "Development of a portable system using nanoparticle technologies for on-site diagnosis of infectious agents that can be transmitted through blood (LAB-A-LAMP)."
References
- [1] R. Gorkin, J. Park, J. Siegrist, M. Amasia, B. S. Lee, J. M. Park, J. Kim, H. Kim, M. Madou, Y. K. Cho, “Centrifugal microfluidics for biomedical applications”, Lab on a Chip, DOI:10.1039/b924109d, Vol. 10, No. 14, pp. 1758-73, 2010.
- [2] C. K. Dixit, A. Kaushik, Microfluidics for biologists: Fundamentals and applications, Microfluid Biol Fundam Appl.,DOI:10.1007/978-3-319-40036-5,Springer International Publishing, pp.1–252.
- [3] J. F. C. Loo, H. C. Kwok, C. C. H. Leung, S. Y. Wu, I. L. G. Law, Y. K. Cheung, Y. Y. Cheung, M. L. Chin, P. Kwan, M. Hui, S. K. Kong, and H. P. Ho, “Sample-to-answer on molecular diagnosis of bacterial infection using integrated lab--on--a--disc.”, Biosensors & bioelectronics, 93, 212–219, 2017. DOI:10.1016/j.bios.2016.09.001.
- [4] M. Bayareh, M. N. Ashani, A. Usefian, ''Active and passive micromixers: A comprehensive review'', Chem Eng Process - Process Intensif 2020;147:107771. DOI: 10.1016/j.cep.2019.107771, Vol.147, pp.1-42.
[5] C. C. Hong, J. W. Choi, C. H. Ahn, “A novel in-plane passive microfluidic mixer with modified Tesla structures”, Lab Chip, DOI:10.1039/b305892a, Vol.4, pp. 109-113.
- [6] C. T. Wang, Y. M. Chen, P. A. Hong, Y. T. Wang, ''Tesla valves in Micromixers'', Int J Chem React Eng., DOI:/10.1515/ijcre-2013-0106, Vol. 12, pp. 397-403.
- [7] A. A. Yontar, D. Sofuoğlu, H. Değirmenci, Ş. Biçer, T. Ayaz, “Investigation of Flow Characteristics for a Multi- Stage Tesla Valve At Laminar and Turbulent Flow Conditions”, Journal of Scientific Reports-A, Vol.47, pp. 47–67.
- [8] C. C. Hong, J. Choi, C. H. Ahn, “A Novel In-Plane Passive Micromixer Using Coanda Effect”, Micro Total Analysis Systems, pp. 31-33.
- [9] N. Tesla. Valvular conduit (U.S. Patent No. 1, 329,559) 1920.
- [10] S. Ranković, B. Bojović, “An example of passive micromixer design, simulation and optimization”, 2015 4th Mediterranean Conference on Embedded Computing (MECO), DOI:10.1109/MECO.2015.7181953, IEEE
publishing, pp. 395-398, 2015.
- [11] I. Stanciu, “Uncertainty analysis of mixing efficiency variation in passive micromixers due to geometric
Tolerances”, Model Simul Eng., DOI:10.1155/2015/343087, Vol. 2015, pp.1-8.
- [12] O. Mutlu, A. B. Olcay, C. Bilgin, B. Hakyemez, ''Evaluating the Effect of the Number of Wire of Flow Diverter Stents on the Nonstagnated Region Formation in an Aneurysm Sac Using Lagrangian Coherent Structure and Hyperbolic Time Analysis'', World Neurosurg DOI:10.1016/j.wneu.2019.09.116, 133:e666–82.
- [13] X. Wang, L. Yang, F. Sun., ''CFD analysis and RSM optimization of obstacle layout in Tesla micromixer'', Int J Chem React Eng,, DOI: 10.1515/ijcre-2021-0087, pp. 1-11.
- [14] M. Madou, J. Zoval, G. Jia, H. Kido, J. Kim, N. Kim, ''Lab on a CD'', Annu Rev Biomed Eng, DOI: 10.1146/annurev.bioeng.8.061505.095758, Vol. 8, pp. 601-628.
- [15] A. Butler, X. Wu, ''Non-Parallel-Flow Effects on Stationary Crossflow Vortices at Their Genesis'', Procedia IUTAM, DOI: 10.1016/j.piutam.2015.03.055, Vol.14, pp. 311-320.
- [16] A. Purwidyantri, B. A. Prabowo, ''Tesla Valve Microfluidics: The Rise of Forgotten Technology'', Chemosensors, DOI: 10.3390/chemosensors11040256, Vol.11, pp.1-22.
- [17] T. Q. Truong, N. T. Nguyen, ''Simulation and optimization of Tesla valves'', 2003 Nanotechnol Conf Trade Show - Nanotech, Vol.1, pp. 178–181, 2003.
- [18] F. Schönfeld, V. Hessel, C. Hofmann, ''An optimised split-and-recombine micro-mixer with uniform chaotic mixing'', Lab Chip, DOI:10.1039/b310802c.,Vol.4, pp. 65–69.
- [19] M. Itoh, Y. Yamada, S. Imao, M. Gonda, ''Experiments on turbulent flow due to an enclosed rotating disk'', Exp Therm Fluid Sci, DOI:10.1016/0894-1777(92)90081-F, Vol. 5, pp. 359-368.
- [20] X. Chen, Z. Zhao, ''Numerical investigation on layout optimization of obstacles in a three-dimensional passive micromixer'', Anal Chim Acta, DOI:10.1016/j.aca.2017.01.066, Vol.964, pp. 142-149.
- [21] M. B. Habhab, T. Ismail, J. F. Lo, ''A laminar flow- based microfluidic tesla pump via lithography enabled 3D printing'', Sensors, DOI:10.3390/s16111970, Vo. 16, pp. 1-10.
- [22] L. Guo, H. Xu, L. Gong, ''Influence of wall roughness models on fluid flow and heat transfer in microchannels'', Appl Therm Eng, DOI: 10.1016/j.applthermaleng. 2015.04.001, Vol.84, pp.399–408.
- [23] M. A. Faruque, R. Balachandar, ''Seepage effects on turbulence characteristics in an open channel flow'', Can J Civ Eng, DOI:10.1139/L11-041, Vol. 38, pp. 785–799.
- [24] J. Yang, N. Francois, H. Punzmann, M. Shats, H. Xia, ''Diffusion of ellipsoids in laboratory two-dimensional turbulent flow'', Phys Fluids, DOI: 10.1063/1.5113734, Vol.31, pp.1-8.
Year 2023,
Volume: 7 Issue: 3, 56 - 63, 28.09.2023
Esra Ağel
,
Batı Altındağ
,
Osman Ergin
,
Zeynep Kunt
,
Ali Bahadır Olcay
Project Number
20AG004 (1004 Project)
References
- [1] R. Gorkin, J. Park, J. Siegrist, M. Amasia, B. S. Lee, J. M. Park, J. Kim, H. Kim, M. Madou, Y. K. Cho, “Centrifugal microfluidics for biomedical applications”, Lab on a Chip, DOI:10.1039/b924109d, Vol. 10, No. 14, pp. 1758-73, 2010.
- [2] C. K. Dixit, A. Kaushik, Microfluidics for biologists: Fundamentals and applications, Microfluid Biol Fundam Appl.,DOI:10.1007/978-3-319-40036-5,Springer International Publishing, pp.1–252.
- [3] J. F. C. Loo, H. C. Kwok, C. C. H. Leung, S. Y. Wu, I. L. G. Law, Y. K. Cheung, Y. Y. Cheung, M. L. Chin, P. Kwan, M. Hui, S. K. Kong, and H. P. Ho, “Sample-to-answer on molecular diagnosis of bacterial infection using integrated lab--on--a--disc.”, Biosensors & bioelectronics, 93, 212–219, 2017. DOI:10.1016/j.bios.2016.09.001.
- [4] M. Bayareh, M. N. Ashani, A. Usefian, ''Active and passive micromixers: A comprehensive review'', Chem Eng Process - Process Intensif 2020;147:107771. DOI: 10.1016/j.cep.2019.107771, Vol.147, pp.1-42.
[5] C. C. Hong, J. W. Choi, C. H. Ahn, “A novel in-plane passive microfluidic mixer with modified Tesla structures”, Lab Chip, DOI:10.1039/b305892a, Vol.4, pp. 109-113.
- [6] C. T. Wang, Y. M. Chen, P. A. Hong, Y. T. Wang, ''Tesla valves in Micromixers'', Int J Chem React Eng., DOI:/10.1515/ijcre-2013-0106, Vol. 12, pp. 397-403.
- [7] A. A. Yontar, D. Sofuoğlu, H. Değirmenci, Ş. Biçer, T. Ayaz, “Investigation of Flow Characteristics for a Multi- Stage Tesla Valve At Laminar and Turbulent Flow Conditions”, Journal of Scientific Reports-A, Vol.47, pp. 47–67.
- [8] C. C. Hong, J. Choi, C. H. Ahn, “A Novel In-Plane Passive Micromixer Using Coanda Effect”, Micro Total Analysis Systems, pp. 31-33.
- [9] N. Tesla. Valvular conduit (U.S. Patent No. 1, 329,559) 1920.
- [10] S. Ranković, B. Bojović, “An example of passive micromixer design, simulation and optimization”, 2015 4th Mediterranean Conference on Embedded Computing (MECO), DOI:10.1109/MECO.2015.7181953, IEEE
publishing, pp. 395-398, 2015.
- [11] I. Stanciu, “Uncertainty analysis of mixing efficiency variation in passive micromixers due to geometric
Tolerances”, Model Simul Eng., DOI:10.1155/2015/343087, Vol. 2015, pp.1-8.
- [12] O. Mutlu, A. B. Olcay, C. Bilgin, B. Hakyemez, ''Evaluating the Effect of the Number of Wire of Flow Diverter Stents on the Nonstagnated Region Formation in an Aneurysm Sac Using Lagrangian Coherent Structure and Hyperbolic Time Analysis'', World Neurosurg DOI:10.1016/j.wneu.2019.09.116, 133:e666–82.
- [13] X. Wang, L. Yang, F. Sun., ''CFD analysis and RSM optimization of obstacle layout in Tesla micromixer'', Int J Chem React Eng,, DOI: 10.1515/ijcre-2021-0087, pp. 1-11.
- [14] M. Madou, J. Zoval, G. Jia, H. Kido, J. Kim, N. Kim, ''Lab on a CD'', Annu Rev Biomed Eng, DOI: 10.1146/annurev.bioeng.8.061505.095758, Vol. 8, pp. 601-628.
- [15] A. Butler, X. Wu, ''Non-Parallel-Flow Effects on Stationary Crossflow Vortices at Their Genesis'', Procedia IUTAM, DOI: 10.1016/j.piutam.2015.03.055, Vol.14, pp. 311-320.
- [16] A. Purwidyantri, B. A. Prabowo, ''Tesla Valve Microfluidics: The Rise of Forgotten Technology'', Chemosensors, DOI: 10.3390/chemosensors11040256, Vol.11, pp.1-22.
- [17] T. Q. Truong, N. T. Nguyen, ''Simulation and optimization of Tesla valves'', 2003 Nanotechnol Conf Trade Show - Nanotech, Vol.1, pp. 178–181, 2003.
- [18] F. Schönfeld, V. Hessel, C. Hofmann, ''An optimised split-and-recombine micro-mixer with uniform chaotic mixing'', Lab Chip, DOI:10.1039/b310802c.,Vol.4, pp. 65–69.
- [19] M. Itoh, Y. Yamada, S. Imao, M. Gonda, ''Experiments on turbulent flow due to an enclosed rotating disk'', Exp Therm Fluid Sci, DOI:10.1016/0894-1777(92)90081-F, Vol. 5, pp. 359-368.
- [20] X. Chen, Z. Zhao, ''Numerical investigation on layout optimization of obstacles in a three-dimensional passive micromixer'', Anal Chim Acta, DOI:10.1016/j.aca.2017.01.066, Vol.964, pp. 142-149.
- [21] M. B. Habhab, T. Ismail, J. F. Lo, ''A laminar flow- based microfluidic tesla pump via lithography enabled 3D printing'', Sensors, DOI:10.3390/s16111970, Vo. 16, pp. 1-10.
- [22] L. Guo, H. Xu, L. Gong, ''Influence of wall roughness models on fluid flow and heat transfer in microchannels'', Appl Therm Eng, DOI: 10.1016/j.applthermaleng. 2015.04.001, Vol.84, pp.399–408.
- [23] M. A. Faruque, R. Balachandar, ''Seepage effects on turbulence characteristics in an open channel flow'', Can J Civ Eng, DOI:10.1139/L11-041, Vol. 38, pp. 785–799.
- [24] J. Yang, N. Francois, H. Punzmann, M. Shats, H. Xia, ''Diffusion of ellipsoids in laboratory two-dimensional turbulent flow'', Phys Fluids, DOI: 10.1063/1.5113734, Vol.31, pp.1-8.