Research Article
BibTex RIS Cite
Year 2023, Volume: 7 Issue: 4, 117 - 128, 31.12.2023

Abstract

References

  • [1] K. Nimptsch and P. Tobias. “Body fatness, related biomarkers and cancer risk: an epidemiological perspective.” Hormone molecular biology and clinical investigation 22, no. 2, pp. 39-51, 2015.
  • [2] Prospective Studies Collaboration. “Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies.” The Lancet 373, no. 9669, pp. 1083-1096, 2009.
  • [3] L. Cominato, G.F. Di Biagio, D. Lellis, R.R. Franco, M.C. Mancini, and M.E. de Melo. “Obesity prevention: strategies and challenges in Latin America.” Current obesity reports 7, pp. 97-104, 2018.
  • [4] J.H. Friedman. “Data Mining and Statistics: What's the connection?.” Computing science and statistics, 29(1), pp. 3-9, 1998.
  • [5] F.E. Horita, J.P. de Albuquerque, V. Marchezini, and E.M. Mendiondo. “Bridging the gap between decision-making and emerging big data sources: An application of a model-based framework to disaster management in Brazil.” Decision Support Systems, 97, pp. 12-22, 2017.
  • [6] S.B. Kotsiantis, I. Zaharakis, and P. Pintelas. “Supervised machine learning: A review of classification techniques.” Emerging artificial intelligence applications in computer engineering, 160(1), pp. 3-24, 2007.
  • [7] J. Sun and C.K. Reddy. “Big data analytics for healthcare.” In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1525-1525, 2013..
  • [8] K. Srinivas, B.K Rani, and A. Govrdhan. “Applications of data mining techniques in healthcare and prediction of heart attacks.” International Journal on Computer Science and Engineering (IJCSE), 2(02), pp. 250-255, 2010.
  • [9] L.N. Borrell and L. Samuel. “Body mass index categories and mortality risk in us adults: the effect of overweight and obesity on advancing death.” Am. J. Public Health 104 (3), 2014.
  • [10] T.M. Dugan, S. Mukhopadhyay, A. Carroll, S. Downs. “Machine learning techniques for prediction of early childhood obesity.” Appl. Clin. Inform. 6 (3), 2015.
  • [11] K. Jindal, N. Baliyan, and P.S. Rana. “Obesity prediction using ensemble machine learning approaches.” In: Proceedings of the 5th ICACNI, 2, pp. 355–362, 2017.
  • [12] B. Singh and H. Tawfik. “Machine learning approach for the early prediction of the risk of overweight and obesity in young people.” In Computational Science–ICCS 2020: 20th International Conference, Amsterdam, The Netherlands, June 3–5, 2020, Proceedings, Part IV 20, pp. 523-535, Springer International Publishing, 2020.
  • [13] F. Ferdowsy, K.S.A Rahi, M.I. Jabiullah, and M.T. Habib. “A machine learning approach for obesity risk prediction.” Current Research in Behavioral Sciences, 2, 100053, 2021.
  • [14] A.M. Erturan, G. Karaduman, and H. Durmaz. “Machine learning-based approach for efficient prediction of toxicity of chemical gases using feature selection.” Journal of hazardous materials, 455, 131616, 2023.
  • [15] E. Frank, M.A. Hall, and I.H. Witten. “The WEKA Workbench. Online Appendix for "Data Mining: Practical Machine Learning Tools and Techniques".” 4th edn. Morgan Kaufmann, Burlington, 2016.
  • [16] S.R. Garner. “Weka: The waikato environment for knowledge analysis.” In Proceedings of the New Zealand computer science research students conference, pp. 57-64, 1995.
  • [17] M.Ç .Cengiz. “Obezite cerrahi geçiren bireylerde yağ dokusu kaybı ile demir ve D vitamini düzeyi arasındaki ilişki.” Master's thesis, Biruni Üniversitesi Sağlık Bilimleri Enstitüsü, 2019.
  • [18] K.G. Şişman and Ş.K. Anemisi. “Beslenme Örüntüsü ile Kronik İnflamasyon Belirteçleri ve Diyet Tedavisinin Etkinliğinin Belirlenmesi.” Doktora tezi. Ankara: Hacettepe Üniversitesi, 2013.
  • [19] I. Damoune, I. Khaldouni, L. Agerd and F. Ajdi. “Obésité: prévalence et profil métabolique chez une population de diabétique type 2.” In Annales d'Endocrinologie, Vol. 75, No. 5-6, pp. 457, Elsevier Masson, 2014.
  • [20] M. Valle, R. Martos, F. Gascon, R. Canete, M.A. Zafra and R. Morales. “Low-grade systemic inflammation, hypoadiponectinemia and a high concentration of leptin are present in very young obese children, and correlate with metabolic syndrome.” Diabetes & metabolism, 31(1), pp. 55-62, 2005.
  • [21] M. Valle, R. Martos, F. Gascon, R. Canete, M.A. Zafra, and R. Morales. “Low-grade systemic inflammation, hypoadiponectinemia and a high concentration of leptin are present in very young obese children, and correlate with metabolic syndrome.” Diabetes & metabolism, 31(1), pp. 55-62, 2005.
  • [22] H. Hüsna. “Santral obezite ve bel/kalça çevresinin dislipidemi ile ilişkisi.” Dünya Beslenme Dergisi , 1 (2), pp. 18-22, 2018.
  • [23] M.A. Burza, S. Romeo, A. Kotronen, P.A. Svensson, K. Sjöholm, J.S. Torgerson, and M. Peltonen. “Long-term effect of bariatric surgery on liver enzymes in the Swedish Obese Subjects (SOS) study.” PloS one, 8(3), e60495, 2013.
  • [24] J. A. Demirovic, A.B. Pai, and M.P. Pai. “Estimation of creatinine clearance in morbidly obese patients.” American Journal of Health-System Pharmacy, 66(7), pp. 642-648, 2009.
  • [25] J. J Rayner, M.A. Peterzan, W.D. Watson, W.T. Clarke, S. Neubauer, C.T. Rodgers, and O.J. Rider. “Myocardial energetics in obesity: enhanced ATP delivery through creatine kinase with blunted stress response.” Circulation, 141(14), pp. 1152-1163, 2020.
  • [26] B. Hansel, P.Giral, L.Gambotti, A.Lafourcade, G. Peres, C.Filipecki, D.Kadouch, A.Hartemann, J.M. Oppert, E. Bruckert, and M. Marre. “A fully automated web-based program improves lifestyle habits and HbA1c in patients with type 2 diabetes and abdominal obesity: randomized trial of patient e-coaching nutritional support (the ANODE study).” Journal of medical Internet research, 19(11), pp.e360, 2017.
  • [27] O. Pinhas-Hamiel, N. Doron-Panush, B. Reichman, D. Nitzan-Kaluski, S. Shalitin, and L. Geva-Lerner. “Obese children and adolescents: a risk group for low vitamin B12 concentration.” Archives of pediatrics & adolescent medicine, 1;160(9), pp. 933-6, 2006.
  • [28] A. Valea, M. Carsote, C. Moldovan, and C. Georgescu. “Chronic autoimmune thyroiditis and obesity.” Archives of the Balkan Medical Union, 53(1), pp. 64-69, 2018.
  • [29] A. SÜNER, O. BALAKAN, V. KIDIR. “Association of Thalassemia Minor and Lead Intoxication in a Patient who Applied with Hypochromic Microcytic Anemia.” International Journal of Hematology and Oncology, 32(1), pp. 133-136, 2006.
  • [30] N.H. Noğay and G. Köksal. “Çocuklarda metabolik sendromun tedavisinde beslenme yönetimi” Güncel Pediatri, 10(3), pp. 92-97, 2012.
  • [31] F. Kelleci Çelik and G. Karaduman. “In silico QSAR modeling to predict the safe use of antibiotics during pregnancy.” Drug and Chemical Toxicology. doi: 10.1080/01480545.2022.2113888, pp. 1-10, 2002.
  • [32] G. Karaduman and F. Kelleci Çeli. “2D-Quantitative structure-activity relationship modeling for risk assessment of pharmacotherapy applied during pregnancy.” Journal of Applied Toxicology: JAT, 10.1002/jat.4475. https://doi.org/10.1002/jat.4475, 2023.
  • [33] F. Kelleci Çelik and G. Karaduman. “Machine Learning-Based Prediction of Drug-Induced Hepatotoxicity: An OvA-QSTR Approach.” Journal of Chemical Information and Modeling, 63(15), pp. 4602-4614, 2023.
  • [34] M. Narasimha Murty, V. Susheela Devi, “Pattern Recognition: An Algorithmic Approach”, Springer Science & Business Media, May 25, 2011.
  • [35] K. Sridharan and G. Komarasamy. “Sentiment classification using harmony random forest and harmony gradient boosting machine.” Soft Computing, 24(10), pp. 7451-7458, 2020.
  • [36] Z. Wang, F. Chegdani, N. Yalamarti, B. Takabi, B. Tai, M. El Mansori, and S. Bukkapatnam. “Acoustic Emission Characterization of Natural Fiber Reinforced Plastic Composite Machining Using a Random Forest Machine Learning Model.” Journal of Manufacturing Science and Engineering, 142(3), 2020.
  • [37] N. Bhargava, G. Sharma, R. Bhargava, and M. Mathuria. “Decision tree analysis on j48 algorithm for data mining.” Proceedings of International Journal of Advanced Research in Computer Science and Software Engineering, 3(6), 2013.
  • [38] G. Fung and O. L. Mangasarian. “Incremental support vector machine classification.” In Proceedings of the 2002 SIAM International Conference on Data Mining pp. 247- 260, Society for Industrial and Applied Mathematics, 2002.
  • [39] S. Li, K. Zhang, Q. Chen, S. Wang, and S. Zhang. “Feature Selection for High Dimensional Data Using Weighted K-Nearest Neighbors and Genetic Algorithm.” IEEE Access, 2020.
  • [40] F. C. Pampel. “Logistic Regression: A Primer”, SAGE Publishers, pp. 35-39, May 26, 2000.
  • [41] P. Perner. “Machine Learning and Data Mining in Pattern Recognition”, 6th International Conference, MLDM 2009, Leipzig, Germany, July 23-25, 2009.
  • [42] A. Cutler and G. Zhao. “Pert-perfect random tree ensembles.” Computing Science and Statistics, 33, pp. 490-497, 2001.
  • [43] GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet Psychiatry, 9(2), pp. 137-150, 2022.
  • [44] R.S.C. Aman. “Disease predictive models for healthcare by using data mining techniques: state of the art.” SSRG Int. J. Eng. Trends Technol, 68, pp. 52-57, 2020.
  • [45] A. Muniasamy, V. Muniasamy, and R. Bhatnagar, “Predictive analytics for cardiovascular disease diagnosis using machine learning techniques,” in Advances in Intelligent Systems and Computing, vol. 114, pp. 493–502, 2021.
  • [46] J. Majali, R. Niranjan, V. Phatak, O. Tadakhe. “Data Mining Techniques for Diagnosis And Prognosis of Cancer”, Int. Journal of Advanced Research in Computer and Communication Engg., Vol. 4, Issue 3, pp. 613-614, 2015.
  • [47] A.P. Sinhaand and J.H. May. “Evaluating and tuning predictive data mining models using receiver operating characteristic curves.” Journal of Management Information Systems, 21(3), pp. 249-280, 2005.
  • [48] K. R. Lakshmi, M. Veera Krishna, S.Prem Kumar. “Performance Comparison of Data Mining Techniques for Prediction and Diagnosis of Breast Cancer Disease Survivability”, Asian Journal of Computer Science and Information Technology, Vol. 3, pp. 81 – 87, 2013.
  • [49] P. Apostolou and F. Fostira. “Hereditary Breast Cancer: The Era of New Susceptibility Genes”, BioMed Research International Vols. 2013. 1] K. Nimptsch and P. Tobias. “Body fatness, related biomarkers and cancer risk: an epidemiological perspective.” Hormone molecular biology and clinical investigation 22, no. 2, pp. 39-51, 2015.
  • [2] Prospective Studies Collaboration. “Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies.” The Lancet 373, no. 9669, pp. 1083-1096, 2009.
  • [3] L. Cominato, G.F. Di Biagio, D. Lellis, R.R. Franco, M.C. Mancini, and M.E. de Melo. “Obesity prevention: strategies and challenges in Latin America.” Current obesity reports 7, pp. 97-104, 2018.
  • [4] J.H. Friedman. “Data Mining and Statistics: What's the connection?.” Computing science and statistics, 29(1), pp. 3-9, 1998.
  • [5] F.E. Horita, J.P. de Albuquerque, V. Marchezini, and E.M. Mendiondo. “Bridging the gap between decision-making and emerging big data sources: An application of a model-based framework to disaster management in Brazil.” Decision Support Systems, 97, pp. 12-22, 2017.
  • [6] S.B. Kotsiantis, I. Zaharakis, and P. Pintelas. “Supervised machine learning: A review of classification techniques.” Emerging artificial intelligence applications in computer engineering, 160(1), pp. 3-24, 2007.
  • [7] J. Sun and C.K. Reddy. “Big data analytics for healthcare.” In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1525-1525, 2013..
  • [8] K. Srinivas, B.K Rani, and A. Govrdhan. “Applications of data mining techniques in healthcare and prediction of heart attacks.” International Journal on Computer Science and Engineering (IJCSE), 2(02), pp. 250-255, 2010.
  • [9] L.N. Borrell and L. Samuel. “Body mass index categories and mortality risk in us adults: the effect of overweight and obesity on advancing death.” Am. J. Public Health 104 (3), 2014.
  • [10] T.M. Dugan, S. Mukhopadhyay, A. Carroll, S. Downs. “Machine learning techniques for prediction of early childhood obesity.” Appl. Clin. Inform. 6 (3), 2015.
  • [11] K. Jindal, N. Baliyan, and P.S. Rana. “Obesity prediction using ensemble machine learning approaches.” In: Proceedings of the 5th ICACNI, 2, pp. 355–362, 2017.
  • [12] B. Singh and H. Tawfik. “Machine learning approach for the early prediction of the risk of overweight and obesity in young people.” In Computational Science–ICCS 2020: 20th International Conference, Amsterdam, The Netherlands, June 3–5, 2020, Proceedings, Part IV 20, pp. 523-535, Springer International Publishing, 2020.
  • [13] F. Ferdowsy, K.S.A Rahi, M.I. Jabiullah, and M.T. Habib. “A machine learning approach for obesity risk prediction.” Current Research in Behavioral Sciences, 2, 100053, 2021.
  • [14] A.M. Erturan, G. Karaduman, and H. Durmaz. “Machine learning-based approach for efficient prediction of toxicity of chemical gases using feature selection.” Journal of hazardous materials, 455, 131616, 2023.
  • [15] E. Frank, M.A. Hall, and I.H. Witten. “The WEKA Workbench. Online Appendix for "Data Mining: Practical Machine Learning Tools and Techniques".” 4th edn. Morgan Kaufmann, Burlington, 2016.
  • [16] S.R. Garner. “Weka: The waikato environment for knowledge analysis.” In Proceedings of the New Zealand computer science research students conference, pp. 57-64, 1995.
  • [17] M.Ç .Cengiz. “Obezite cerrahi geçiren bireylerde yağ dokusu kaybı ile demir ve D vitamini düzeyi arasındaki ilişki.” Master's thesis, Biruni Üniversitesi Sağlık Bilimleri Enstitüsü, 2019.
  • [18] K.G. Şişman and Ş.K. Anemisi. “Beslenme Örüntüsü ile Kronik İnflamasyon Belirteçleri ve Diyet Tedavisinin Etkinliğinin Belirlenmesi.” Doktora tezi. Ankara: Hacettepe Üniversitesi, 2013.
  • [19] I. Damoune, I. Khaldouni, L. Agerd and F. Ajdi. “Obésité: prévalence et profil métabolique chez une population de diabétique type 2.” In Annales d'Endocrinologie, Vol. 75, No. 5-6, pp. 457, Elsevier Masson, 2014.
  • [20] M. Valle, R. Martos, F. Gascon, R. Canete, M.A. Zafra and R. Morales. “Low-grade systemic inflammation, hypoadiponectinemia and a high concentration of leptin are present in very young obese children, and correlate with metabolic syndrome.” Diabetes & metabolism, 31(1), pp. 55-62, 2005.
  • [21] M. Valle, R. Martos, F. Gascon, R. Canete, M.A. Zafra, and R. Morales. “Low-grade systemic inflammation, hypoadiponectinemia and a high concentration of leptin are present in very young obese children, and correlate with metabolic syndrome.” Diabetes & metabolism, 31(1), pp. 55-62, 2005.
  • [22] H. Hüsna. “Santral obezite ve bel/kalça çevresinin dislipidemi ile ilişkisi.” Dünya Beslenme Dergisi , 1 (2), pp. 18-22, 2018.
  • [23] M.A. Burza, S. Romeo, A. Kotronen, P.A. Svensson, K. Sjöholm, J.S. Torgerson, and M. Peltonen. “Long-term effect of bariatric surgery on liver enzymes in the Swedish Obese Subjects (SOS) study.” PloS one, 8(3), e60495, 2013.
  • [24] J. A. Demirovic, A.B. Pai, and M.P. Pai. “Estimation of creatinine clearance in morbidly obese patients.” American Journal of Health-System Pharmacy, 66(7), pp. 642-648, 2009.
  • [25] J. J Rayner, M.A. Peterzan, W.D. Watson, W.T. Clarke, S. Neubauer, C.T. Rodgers, and O.J. Rider. “Myocardial energetics in obesity: enhanced ATP delivery through creatine kinase with blunted stress response.” Circulation, 141(14), pp. 1152-1163, 2020.
  • [26] B. Hansel, P.Giral, L.Gambotti, A.Lafourcade, G. Peres, C.Filipecki, D.Kadouch, A.Hartemann, J.M. Oppert, E. Bruckert, and M. Marre. “A fully automated web-based program improves lifestyle habits and HbA1c in patients with type 2 diabetes and abdominal obesity: randomized trial of patient e-coaching nutritional support (the ANODE study).” Journal of medical Internet research, 19(11), pp.e360, 2017.
  • [27] O. Pinhas-Hamiel, N. Doron-Panush, B. Reichman, D. Nitzan-Kaluski, S. Shalitin, and L. Geva-Lerner. “Obese children and adolescents: a risk group for low vitamin B12 concentration.” Archives of pediatrics & adolescent medicine, 1;160(9), pp. 933-6, 2006.
  • [28] A. Valea, M. Carsote, C. Moldovan, and C. Georgescu. “Chronic autoimmune thyroiditis and obesity.” Archives of the Balkan Medical Union, 53(1), pp. 64-69, 2018.
  • [29] A. SÜNER, O. BALAKAN, V. KIDIR. “Association of Thalassemia Minor and Lead Intoxication in a Patient who Applied with Hypochromic Microcytic Anemia.” International Journal of Hematology and Oncology, 32(1), pp. 133-136, 2006.
  • [30] N.H. Noğay and G. Köksal. “Çocuklarda metabolik sendromun tedavisinde beslenme yönetimi” Güncel Pediatri, 10(3), pp. 92-97, 2012.
  • [31] F. Kelleci Çelik and G. Karaduman. “In silico QSAR modeling to predict the safe use of antibiotics during pregnancy.” Drug and Chemical Toxicology. doi: 10.1080/01480545.2022.2113888, pp. 1-10, 2002.
  • [32] G. Karaduman and F. Kelleci Çeli. “2D-Quantitative structure-activity relationship modeling for risk assessment of pharmacotherapy applied during pregnancy.” Journal of Applied Toxicology: JAT, 10.1002/jat.4475. https://doi.org/10.1002/jat.4475, 2023.
  • [33] F. Kelleci Çelik and G. Karaduman. “Machine Learning-Based Prediction of Drug-Induced Hepatotoxicity: An OvA-QSTR Approach.” Journal of Chemical Information and Modeling, 63(15), pp. 4602-4614, 2023.
  • [34] M. Narasimha Murty, V. Susheela Devi, “Pattern Recognition: An Algorithmic Approach”, Springer Science & Business Media, May 25, 2011.
  • [35] K. Sridharan and G. Komarasamy. “Sentiment classification using harmony random forest and harmony gradient boosting machine.” Soft Computing, 24(10), pp. 7451-7458, 2020.
  • [36] Z. Wang, F. Chegdani, N. Yalamarti, B. Takabi, B. Tai, M. El Mansori, and S. Bukkapatnam. “Acoustic Emission Characterization of Natural Fiber Reinforced Plastic Composite Machining Using a Random Forest Machine Learning Model.” Journal of Manufacturing Science and Engineering, 142(3), 2020.
  • [37] N. Bhargava, G. Sharma, R. Bhargava, and M. Mathuria. “Decision tree analysis on j48 algorithm for data mining.” Proceedings of International Journal of Advanced Research in Computer Science and Software Engineering, 3(6), 2013.
  • [38] G. Fung and O. L. Mangasarian. “Incremental support vector machine classification.” In Proceedings of the 2002 SIAM International Conference on Data Mining pp. 247- 260, Society for Industrial and Applied Mathematics, 2002.
  • [39] S. Li, K. Zhang, Q. Chen, S. Wang, and S. Zhang. “Feature Selection for High Dimensional Data Using Weighted K-Nearest Neighbors and Genetic Algorithm.” IEEE Access, 2020.
  • [40] F. C. Pampel. “Logistic Regression: A Primer”, SAGE Publishers, pp. 35-39, May 26, 2000.
  • [41] P. Perner. “Machine Learning and Data Mining in Pattern Recognition”, 6th International Conference, MLDM 2009, Leipzig, Germany, July 23-25, 2009.
  • [42] A. Cutler and G. Zhao. “Pert-perfect random tree ensembles.” Computing Science and Statistics, 33, pp. 490-497, 2001.
  • [43] GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet Psychiatry, 9(2), pp. 137-150, 2022.
  • [44] R.S.C. Aman. “Disease predictive models for healthcare by using data mining techniques: state of the art.” SSRG Int. J. Eng. Trends Technol, 68, pp. 52-57, 2020.
  • [45] A. Muniasamy, V. Muniasamy, and R. Bhatnagar, “Predictive analytics for cardiovascular disease diagnosis using machine learning techniques,” in Advances in Intelligent Systems and Computing, vol. 114, pp. 493–502, 2021.
  • [46] J. Majali, R. Niranjan, V. Phatak, O. Tadakhe. “Data Mining Techniques for Diagnosis And Prognosis of Cancer”, Int. Journal of Advanced Research in Computer and Communication Engg., Vol. 4, Issue 3, pp. 613-614, 2015.
  • [47] A.P. Sinhaand and J.H. May. “Evaluating and tuning predictive data mining models using receiver operating characteristic curves.” Journal of Management Information Systems, 21(3), pp. 249-280, 2005.
  • [48] K. R. Lakshmi, M. Veera Krishna, S.Prem Kumar. “Performance Comparison of Data Mining Techniques for Prediction and Diagnosis of Breast Cancer Disease Survivability”, Asian Journal of Computer Science and Information Technology, Vol. 3, pp. 81 – 87, 2013.
  • [49] P. Apostolou and F. Fostira. “Hereditary Breast Cancer: The Era of New Susceptibility Genes”, BioMed Research International Vols. 2013.

Performance Analysis Of Machine Learning-Based Models For Early Diagnosis Of Obesity Using Blood Test Parameters

Year 2023, Volume: 7 Issue: 4, 117 - 128, 31.12.2023

Abstract

Obesity is a global health issue that continues to grow, with projections indicating further increases in obesity rates. The World Health Organization defines overweight and obesity as the abnormal or excessive accumulation of fat, posing risks to overall health. Obesity is not only a significant condition itself but is also directly linked to various diseases such as type 2 diabetes, coronary heart disease, hypertension, and certain types of cancer. The rising prevalence of obesity presents significant health complications and risks for individuals of all ages, particularly children and adolescents. Obese or overweight children face an increased likelihood of developing severe health problems in adulthood, potentially enduring the same physical condition throughout their lives. Urgent action is necessary to mitigate this global health concern. In this study, we aimed to predict obesity risk through the use of machine learning algorithms. Our research gathered 367 data from individuals of different age groups, classified as either obese or non-obese, based on their blood test results. We employed nine machine learning algorithms, including BayesNet, Naïve Bayes, SMO, Simple Logistic, IBk, Kstar, J48, Random Forest, and Random Tree algorithms. Our analysis successfully determined the obesity status of individuals based on internal results, the Simple Logistic algorithm achieved the highest accuracy rate at 98.6395. On the other hand, the Simple Logistic and Kstar algorithm demonstrated the highest accuracy rate of 100% for the extenal set. Our model provides valuable insights for further research and interventions for analyzing the blood test values associated with obesity.

References

  • [1] K. Nimptsch and P. Tobias. “Body fatness, related biomarkers and cancer risk: an epidemiological perspective.” Hormone molecular biology and clinical investigation 22, no. 2, pp. 39-51, 2015.
  • [2] Prospective Studies Collaboration. “Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies.” The Lancet 373, no. 9669, pp. 1083-1096, 2009.
  • [3] L. Cominato, G.F. Di Biagio, D. Lellis, R.R. Franco, M.C. Mancini, and M.E. de Melo. “Obesity prevention: strategies and challenges in Latin America.” Current obesity reports 7, pp. 97-104, 2018.
  • [4] J.H. Friedman. “Data Mining and Statistics: What's the connection?.” Computing science and statistics, 29(1), pp. 3-9, 1998.
  • [5] F.E. Horita, J.P. de Albuquerque, V. Marchezini, and E.M. Mendiondo. “Bridging the gap between decision-making and emerging big data sources: An application of a model-based framework to disaster management in Brazil.” Decision Support Systems, 97, pp. 12-22, 2017.
  • [6] S.B. Kotsiantis, I. Zaharakis, and P. Pintelas. “Supervised machine learning: A review of classification techniques.” Emerging artificial intelligence applications in computer engineering, 160(1), pp. 3-24, 2007.
  • [7] J. Sun and C.K. Reddy. “Big data analytics for healthcare.” In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1525-1525, 2013..
  • [8] K. Srinivas, B.K Rani, and A. Govrdhan. “Applications of data mining techniques in healthcare and prediction of heart attacks.” International Journal on Computer Science and Engineering (IJCSE), 2(02), pp. 250-255, 2010.
  • [9] L.N. Borrell and L. Samuel. “Body mass index categories and mortality risk in us adults: the effect of overweight and obesity on advancing death.” Am. J. Public Health 104 (3), 2014.
  • [10] T.M. Dugan, S. Mukhopadhyay, A. Carroll, S. Downs. “Machine learning techniques for prediction of early childhood obesity.” Appl. Clin. Inform. 6 (3), 2015.
  • [11] K. Jindal, N. Baliyan, and P.S. Rana. “Obesity prediction using ensemble machine learning approaches.” In: Proceedings of the 5th ICACNI, 2, pp. 355–362, 2017.
  • [12] B. Singh and H. Tawfik. “Machine learning approach for the early prediction of the risk of overweight and obesity in young people.” In Computational Science–ICCS 2020: 20th International Conference, Amsterdam, The Netherlands, June 3–5, 2020, Proceedings, Part IV 20, pp. 523-535, Springer International Publishing, 2020.
  • [13] F. Ferdowsy, K.S.A Rahi, M.I. Jabiullah, and M.T. Habib. “A machine learning approach for obesity risk prediction.” Current Research in Behavioral Sciences, 2, 100053, 2021.
  • [14] A.M. Erturan, G. Karaduman, and H. Durmaz. “Machine learning-based approach for efficient prediction of toxicity of chemical gases using feature selection.” Journal of hazardous materials, 455, 131616, 2023.
  • [15] E. Frank, M.A. Hall, and I.H. Witten. “The WEKA Workbench. Online Appendix for "Data Mining: Practical Machine Learning Tools and Techniques".” 4th edn. Morgan Kaufmann, Burlington, 2016.
  • [16] S.R. Garner. “Weka: The waikato environment for knowledge analysis.” In Proceedings of the New Zealand computer science research students conference, pp. 57-64, 1995.
  • [17] M.Ç .Cengiz. “Obezite cerrahi geçiren bireylerde yağ dokusu kaybı ile demir ve D vitamini düzeyi arasındaki ilişki.” Master's thesis, Biruni Üniversitesi Sağlık Bilimleri Enstitüsü, 2019.
  • [18] K.G. Şişman and Ş.K. Anemisi. “Beslenme Örüntüsü ile Kronik İnflamasyon Belirteçleri ve Diyet Tedavisinin Etkinliğinin Belirlenmesi.” Doktora tezi. Ankara: Hacettepe Üniversitesi, 2013.
  • [19] I. Damoune, I. Khaldouni, L. Agerd and F. Ajdi. “Obésité: prévalence et profil métabolique chez une population de diabétique type 2.” In Annales d'Endocrinologie, Vol. 75, No. 5-6, pp. 457, Elsevier Masson, 2014.
  • [20] M. Valle, R. Martos, F. Gascon, R. Canete, M.A. Zafra and R. Morales. “Low-grade systemic inflammation, hypoadiponectinemia and a high concentration of leptin are present in very young obese children, and correlate with metabolic syndrome.” Diabetes & metabolism, 31(1), pp. 55-62, 2005.
  • [21] M. Valle, R. Martos, F. Gascon, R. Canete, M.A. Zafra, and R. Morales. “Low-grade systemic inflammation, hypoadiponectinemia and a high concentration of leptin are present in very young obese children, and correlate with metabolic syndrome.” Diabetes & metabolism, 31(1), pp. 55-62, 2005.
  • [22] H. Hüsna. “Santral obezite ve bel/kalça çevresinin dislipidemi ile ilişkisi.” Dünya Beslenme Dergisi , 1 (2), pp. 18-22, 2018.
  • [23] M.A. Burza, S. Romeo, A. Kotronen, P.A. Svensson, K. Sjöholm, J.S. Torgerson, and M. Peltonen. “Long-term effect of bariatric surgery on liver enzymes in the Swedish Obese Subjects (SOS) study.” PloS one, 8(3), e60495, 2013.
  • [24] J. A. Demirovic, A.B. Pai, and M.P. Pai. “Estimation of creatinine clearance in morbidly obese patients.” American Journal of Health-System Pharmacy, 66(7), pp. 642-648, 2009.
  • [25] J. J Rayner, M.A. Peterzan, W.D. Watson, W.T. Clarke, S. Neubauer, C.T. Rodgers, and O.J. Rider. “Myocardial energetics in obesity: enhanced ATP delivery through creatine kinase with blunted stress response.” Circulation, 141(14), pp. 1152-1163, 2020.
  • [26] B. Hansel, P.Giral, L.Gambotti, A.Lafourcade, G. Peres, C.Filipecki, D.Kadouch, A.Hartemann, J.M. Oppert, E. Bruckert, and M. Marre. “A fully automated web-based program improves lifestyle habits and HbA1c in patients with type 2 diabetes and abdominal obesity: randomized trial of patient e-coaching nutritional support (the ANODE study).” Journal of medical Internet research, 19(11), pp.e360, 2017.
  • [27] O. Pinhas-Hamiel, N. Doron-Panush, B. Reichman, D. Nitzan-Kaluski, S. Shalitin, and L. Geva-Lerner. “Obese children and adolescents: a risk group for low vitamin B12 concentration.” Archives of pediatrics & adolescent medicine, 1;160(9), pp. 933-6, 2006.
  • [28] A. Valea, M. Carsote, C. Moldovan, and C. Georgescu. “Chronic autoimmune thyroiditis and obesity.” Archives of the Balkan Medical Union, 53(1), pp. 64-69, 2018.
  • [29] A. SÜNER, O. BALAKAN, V. KIDIR. “Association of Thalassemia Minor and Lead Intoxication in a Patient who Applied with Hypochromic Microcytic Anemia.” International Journal of Hematology and Oncology, 32(1), pp. 133-136, 2006.
  • [30] N.H. Noğay and G. Köksal. “Çocuklarda metabolik sendromun tedavisinde beslenme yönetimi” Güncel Pediatri, 10(3), pp. 92-97, 2012.
  • [31] F. Kelleci Çelik and G. Karaduman. “In silico QSAR modeling to predict the safe use of antibiotics during pregnancy.” Drug and Chemical Toxicology. doi: 10.1080/01480545.2022.2113888, pp. 1-10, 2002.
  • [32] G. Karaduman and F. Kelleci Çeli. “2D-Quantitative structure-activity relationship modeling for risk assessment of pharmacotherapy applied during pregnancy.” Journal of Applied Toxicology: JAT, 10.1002/jat.4475. https://doi.org/10.1002/jat.4475, 2023.
  • [33] F. Kelleci Çelik and G. Karaduman. “Machine Learning-Based Prediction of Drug-Induced Hepatotoxicity: An OvA-QSTR Approach.” Journal of Chemical Information and Modeling, 63(15), pp. 4602-4614, 2023.
  • [34] M. Narasimha Murty, V. Susheela Devi, “Pattern Recognition: An Algorithmic Approach”, Springer Science & Business Media, May 25, 2011.
  • [35] K. Sridharan and G. Komarasamy. “Sentiment classification using harmony random forest and harmony gradient boosting machine.” Soft Computing, 24(10), pp. 7451-7458, 2020.
  • [36] Z. Wang, F. Chegdani, N. Yalamarti, B. Takabi, B. Tai, M. El Mansori, and S. Bukkapatnam. “Acoustic Emission Characterization of Natural Fiber Reinforced Plastic Composite Machining Using a Random Forest Machine Learning Model.” Journal of Manufacturing Science and Engineering, 142(3), 2020.
  • [37] N. Bhargava, G. Sharma, R. Bhargava, and M. Mathuria. “Decision tree analysis on j48 algorithm for data mining.” Proceedings of International Journal of Advanced Research in Computer Science and Software Engineering, 3(6), 2013.
  • [38] G. Fung and O. L. Mangasarian. “Incremental support vector machine classification.” In Proceedings of the 2002 SIAM International Conference on Data Mining pp. 247- 260, Society for Industrial and Applied Mathematics, 2002.
  • [39] S. Li, K. Zhang, Q. Chen, S. Wang, and S. Zhang. “Feature Selection for High Dimensional Data Using Weighted K-Nearest Neighbors and Genetic Algorithm.” IEEE Access, 2020.
  • [40] F. C. Pampel. “Logistic Regression: A Primer”, SAGE Publishers, pp. 35-39, May 26, 2000.
  • [41] P. Perner. “Machine Learning and Data Mining in Pattern Recognition”, 6th International Conference, MLDM 2009, Leipzig, Germany, July 23-25, 2009.
  • [42] A. Cutler and G. Zhao. “Pert-perfect random tree ensembles.” Computing Science and Statistics, 33, pp. 490-497, 2001.
  • [43] GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet Psychiatry, 9(2), pp. 137-150, 2022.
  • [44] R.S.C. Aman. “Disease predictive models for healthcare by using data mining techniques: state of the art.” SSRG Int. J. Eng. Trends Technol, 68, pp. 52-57, 2020.
  • [45] A. Muniasamy, V. Muniasamy, and R. Bhatnagar, “Predictive analytics for cardiovascular disease diagnosis using machine learning techniques,” in Advances in Intelligent Systems and Computing, vol. 114, pp. 493–502, 2021.
  • [46] J. Majali, R. Niranjan, V. Phatak, O. Tadakhe. “Data Mining Techniques for Diagnosis And Prognosis of Cancer”, Int. Journal of Advanced Research in Computer and Communication Engg., Vol. 4, Issue 3, pp. 613-614, 2015.
  • [47] A.P. Sinhaand and J.H. May. “Evaluating and tuning predictive data mining models using receiver operating characteristic curves.” Journal of Management Information Systems, 21(3), pp. 249-280, 2005.
  • [48] K. R. Lakshmi, M. Veera Krishna, S.Prem Kumar. “Performance Comparison of Data Mining Techniques for Prediction and Diagnosis of Breast Cancer Disease Survivability”, Asian Journal of Computer Science and Information Technology, Vol. 3, pp. 81 – 87, 2013.
  • [49] P. Apostolou and F. Fostira. “Hereditary Breast Cancer: The Era of New Susceptibility Genes”, BioMed Research International Vols. 2013. 1] K. Nimptsch and P. Tobias. “Body fatness, related biomarkers and cancer risk: an epidemiological perspective.” Hormone molecular biology and clinical investigation 22, no. 2, pp. 39-51, 2015.
  • [2] Prospective Studies Collaboration. “Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies.” The Lancet 373, no. 9669, pp. 1083-1096, 2009.
  • [3] L. Cominato, G.F. Di Biagio, D. Lellis, R.R. Franco, M.C. Mancini, and M.E. de Melo. “Obesity prevention: strategies and challenges in Latin America.” Current obesity reports 7, pp. 97-104, 2018.
  • [4] J.H. Friedman. “Data Mining and Statistics: What's the connection?.” Computing science and statistics, 29(1), pp. 3-9, 1998.
  • [5] F.E. Horita, J.P. de Albuquerque, V. Marchezini, and E.M. Mendiondo. “Bridging the gap between decision-making and emerging big data sources: An application of a model-based framework to disaster management in Brazil.” Decision Support Systems, 97, pp. 12-22, 2017.
  • [6] S.B. Kotsiantis, I. Zaharakis, and P. Pintelas. “Supervised machine learning: A review of classification techniques.” Emerging artificial intelligence applications in computer engineering, 160(1), pp. 3-24, 2007.
  • [7] J. Sun and C.K. Reddy. “Big data analytics for healthcare.” In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1525-1525, 2013..
  • [8] K. Srinivas, B.K Rani, and A. Govrdhan. “Applications of data mining techniques in healthcare and prediction of heart attacks.” International Journal on Computer Science and Engineering (IJCSE), 2(02), pp. 250-255, 2010.
  • [9] L.N. Borrell and L. Samuel. “Body mass index categories and mortality risk in us adults: the effect of overweight and obesity on advancing death.” Am. J. Public Health 104 (3), 2014.
  • [10] T.M. Dugan, S. Mukhopadhyay, A. Carroll, S. Downs. “Machine learning techniques for prediction of early childhood obesity.” Appl. Clin. Inform. 6 (3), 2015.
  • [11] K. Jindal, N. Baliyan, and P.S. Rana. “Obesity prediction using ensemble machine learning approaches.” In: Proceedings of the 5th ICACNI, 2, pp. 355–362, 2017.
  • [12] B. Singh and H. Tawfik. “Machine learning approach for the early prediction of the risk of overweight and obesity in young people.” In Computational Science–ICCS 2020: 20th International Conference, Amsterdam, The Netherlands, June 3–5, 2020, Proceedings, Part IV 20, pp. 523-535, Springer International Publishing, 2020.
  • [13] F. Ferdowsy, K.S.A Rahi, M.I. Jabiullah, and M.T. Habib. “A machine learning approach for obesity risk prediction.” Current Research in Behavioral Sciences, 2, 100053, 2021.
  • [14] A.M. Erturan, G. Karaduman, and H. Durmaz. “Machine learning-based approach for efficient prediction of toxicity of chemical gases using feature selection.” Journal of hazardous materials, 455, 131616, 2023.
  • [15] E. Frank, M.A. Hall, and I.H. Witten. “The WEKA Workbench. Online Appendix for "Data Mining: Practical Machine Learning Tools and Techniques".” 4th edn. Morgan Kaufmann, Burlington, 2016.
  • [16] S.R. Garner. “Weka: The waikato environment for knowledge analysis.” In Proceedings of the New Zealand computer science research students conference, pp. 57-64, 1995.
  • [17] M.Ç .Cengiz. “Obezite cerrahi geçiren bireylerde yağ dokusu kaybı ile demir ve D vitamini düzeyi arasındaki ilişki.” Master's thesis, Biruni Üniversitesi Sağlık Bilimleri Enstitüsü, 2019.
  • [18] K.G. Şişman and Ş.K. Anemisi. “Beslenme Örüntüsü ile Kronik İnflamasyon Belirteçleri ve Diyet Tedavisinin Etkinliğinin Belirlenmesi.” Doktora tezi. Ankara: Hacettepe Üniversitesi, 2013.
  • [19] I. Damoune, I. Khaldouni, L. Agerd and F. Ajdi. “Obésité: prévalence et profil métabolique chez une population de diabétique type 2.” In Annales d'Endocrinologie, Vol. 75, No. 5-6, pp. 457, Elsevier Masson, 2014.
  • [20] M. Valle, R. Martos, F. Gascon, R. Canete, M.A. Zafra and R. Morales. “Low-grade systemic inflammation, hypoadiponectinemia and a high concentration of leptin are present in very young obese children, and correlate with metabolic syndrome.” Diabetes & metabolism, 31(1), pp. 55-62, 2005.
  • [21] M. Valle, R. Martos, F. Gascon, R. Canete, M.A. Zafra, and R. Morales. “Low-grade systemic inflammation, hypoadiponectinemia and a high concentration of leptin are present in very young obese children, and correlate with metabolic syndrome.” Diabetes & metabolism, 31(1), pp. 55-62, 2005.
  • [22] H. Hüsna. “Santral obezite ve bel/kalça çevresinin dislipidemi ile ilişkisi.” Dünya Beslenme Dergisi , 1 (2), pp. 18-22, 2018.
  • [23] M.A. Burza, S. Romeo, A. Kotronen, P.A. Svensson, K. Sjöholm, J.S. Torgerson, and M. Peltonen. “Long-term effect of bariatric surgery on liver enzymes in the Swedish Obese Subjects (SOS) study.” PloS one, 8(3), e60495, 2013.
  • [24] J. A. Demirovic, A.B. Pai, and M.P. Pai. “Estimation of creatinine clearance in morbidly obese patients.” American Journal of Health-System Pharmacy, 66(7), pp. 642-648, 2009.
  • [25] J. J Rayner, M.A. Peterzan, W.D. Watson, W.T. Clarke, S. Neubauer, C.T. Rodgers, and O.J. Rider. “Myocardial energetics in obesity: enhanced ATP delivery through creatine kinase with blunted stress response.” Circulation, 141(14), pp. 1152-1163, 2020.
  • [26] B. Hansel, P.Giral, L.Gambotti, A.Lafourcade, G. Peres, C.Filipecki, D.Kadouch, A.Hartemann, J.M. Oppert, E. Bruckert, and M. Marre. “A fully automated web-based program improves lifestyle habits and HbA1c in patients with type 2 diabetes and abdominal obesity: randomized trial of patient e-coaching nutritional support (the ANODE study).” Journal of medical Internet research, 19(11), pp.e360, 2017.
  • [27] O. Pinhas-Hamiel, N. Doron-Panush, B. Reichman, D. Nitzan-Kaluski, S. Shalitin, and L. Geva-Lerner. “Obese children and adolescents: a risk group for low vitamin B12 concentration.” Archives of pediatrics & adolescent medicine, 1;160(9), pp. 933-6, 2006.
  • [28] A. Valea, M. Carsote, C. Moldovan, and C. Georgescu. “Chronic autoimmune thyroiditis and obesity.” Archives of the Balkan Medical Union, 53(1), pp. 64-69, 2018.
  • [29] A. SÜNER, O. BALAKAN, V. KIDIR. “Association of Thalassemia Minor and Lead Intoxication in a Patient who Applied with Hypochromic Microcytic Anemia.” International Journal of Hematology and Oncology, 32(1), pp. 133-136, 2006.
  • [30] N.H. Noğay and G. Köksal. “Çocuklarda metabolik sendromun tedavisinde beslenme yönetimi” Güncel Pediatri, 10(3), pp. 92-97, 2012.
  • [31] F. Kelleci Çelik and G. Karaduman. “In silico QSAR modeling to predict the safe use of antibiotics during pregnancy.” Drug and Chemical Toxicology. doi: 10.1080/01480545.2022.2113888, pp. 1-10, 2002.
  • [32] G. Karaduman and F. Kelleci Çeli. “2D-Quantitative structure-activity relationship modeling for risk assessment of pharmacotherapy applied during pregnancy.” Journal of Applied Toxicology: JAT, 10.1002/jat.4475. https://doi.org/10.1002/jat.4475, 2023.
  • [33] F. Kelleci Çelik and G. Karaduman. “Machine Learning-Based Prediction of Drug-Induced Hepatotoxicity: An OvA-QSTR Approach.” Journal of Chemical Information and Modeling, 63(15), pp. 4602-4614, 2023.
  • [34] M. Narasimha Murty, V. Susheela Devi, “Pattern Recognition: An Algorithmic Approach”, Springer Science & Business Media, May 25, 2011.
  • [35] K. Sridharan and G. Komarasamy. “Sentiment classification using harmony random forest and harmony gradient boosting machine.” Soft Computing, 24(10), pp. 7451-7458, 2020.
  • [36] Z. Wang, F. Chegdani, N. Yalamarti, B. Takabi, B. Tai, M. El Mansori, and S. Bukkapatnam. “Acoustic Emission Characterization of Natural Fiber Reinforced Plastic Composite Machining Using a Random Forest Machine Learning Model.” Journal of Manufacturing Science and Engineering, 142(3), 2020.
  • [37] N. Bhargava, G. Sharma, R. Bhargava, and M. Mathuria. “Decision tree analysis on j48 algorithm for data mining.” Proceedings of International Journal of Advanced Research in Computer Science and Software Engineering, 3(6), 2013.
  • [38] G. Fung and O. L. Mangasarian. “Incremental support vector machine classification.” In Proceedings of the 2002 SIAM International Conference on Data Mining pp. 247- 260, Society for Industrial and Applied Mathematics, 2002.
  • [39] S. Li, K. Zhang, Q. Chen, S. Wang, and S. Zhang. “Feature Selection for High Dimensional Data Using Weighted K-Nearest Neighbors and Genetic Algorithm.” IEEE Access, 2020.
  • [40] F. C. Pampel. “Logistic Regression: A Primer”, SAGE Publishers, pp. 35-39, May 26, 2000.
  • [41] P. Perner. “Machine Learning and Data Mining in Pattern Recognition”, 6th International Conference, MLDM 2009, Leipzig, Germany, July 23-25, 2009.
  • [42] A. Cutler and G. Zhao. “Pert-perfect random tree ensembles.” Computing Science and Statistics, 33, pp. 490-497, 2001.
  • [43] GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet Psychiatry, 9(2), pp. 137-150, 2022.
  • [44] R.S.C. Aman. “Disease predictive models for healthcare by using data mining techniques: state of the art.” SSRG Int. J. Eng. Trends Technol, 68, pp. 52-57, 2020.
  • [45] A. Muniasamy, V. Muniasamy, and R. Bhatnagar, “Predictive analytics for cardiovascular disease diagnosis using machine learning techniques,” in Advances in Intelligent Systems and Computing, vol. 114, pp. 493–502, 2021.
  • [46] J. Majali, R. Niranjan, V. Phatak, O. Tadakhe. “Data Mining Techniques for Diagnosis And Prognosis of Cancer”, Int. Journal of Advanced Research in Computer and Communication Engg., Vol. 4, Issue 3, pp. 613-614, 2015.
  • [47] A.P. Sinhaand and J.H. May. “Evaluating and tuning predictive data mining models using receiver operating characteristic curves.” Journal of Management Information Systems, 21(3), pp. 249-280, 2005.
  • [48] K. R. Lakshmi, M. Veera Krishna, S.Prem Kumar. “Performance Comparison of Data Mining Techniques for Prediction and Diagnosis of Breast Cancer Disease Survivability”, Asian Journal of Computer Science and Information Technology, Vol. 3, pp. 81 – 87, 2013.
  • [49] P. Apostolou and F. Fostira. “Hereditary Breast Cancer: The Era of New Susceptibility Genes”, BioMed Research International Vols. 2013.
There are 97 citations in total.

Details

Primary Language English
Subjects Artificial Intelligence (Other)
Journal Section Articles
Authors

Sare Nur Cuhadar 0000-0003-4461-877X

Gül Karaduman 0000-0002-2776-759X

Ahmet Uyanik 0000-0001-5037-1019

Habibe Durmaz 0000-0002-5929-861X

Publication Date December 31, 2023
Submission Date October 24, 2023
Acceptance Date December 27, 2023
Published in Issue Year 2023 Volume: 7 Issue: 4

Cite

IEEE S. N. Cuhadar, G. Karaduman, A. Uyanik, and H. Durmaz, “Performance Analysis Of Machine Learning-Based Models For Early Diagnosis Of Obesity Using Blood Test Parameters”, IJESA, vol. 7, no. 4, pp. 117–128, 2023.

ISSN 2548-1185
e-ISSN 2587-2176
Period: Quarterly
Founded: 2016
Publisher: Nisantasi University
e-mail:ilhcol@gmail.com