Research Article
BibTex RIS Cite

Geochemical Assessment Methods of Outcropped Metasedimentary/ Metamorphic and Deeply Buried Sedimentary Oil and Gas Source Rocks by Hydrocarbon-Rich Waters and Soils: A Novel Graphical Approach and Case Studies

Year 2022, Volume: 4 Issue: 2, 189 - 225, 04.07.2022

Abstract

This study presents the applied methods used for geochemical evaluation of metasedimentary/metamorphic (depleted/exhausted/spent source rocks) and deeply buried sedimentary source rocks from hydrocarbon-rich waters and soils. Someone can determine all parameters used in geochemical assessments of source rocks by conducting Total Petroleum Hydrocarbons (TPH) analysis in both water and soil. It is considered that our knowledge about the metamorphosed source rocks will increase as the applications of methods discussed in the study increase. Within the study's scope, the Pr/n-C17 versus Ph/n-C18 plot used to evaluate the source, depositional environment, redox conditions of the depositional environment, thermal maturity, and hydrocarbon generation potential of source rocks in petroleum geochemistry is also comprehensively revised. In the revised plot, the ranges for API gravity, specific gravity (SG), sulfur content (S), biodegradation parameter (BP), vitrinite reflectance (Ro%), and maximum temperature (Tmax) values are defined. Thus, a new approach is developed to estimate American Petroleum Institute API gravities and S of petroleum fluids that might be discovered within reservoirs in any specified prospective area from surface geochemical surveys. Furthermore, humic and sapropelic coal ranges are separated. In this way, the plots' functionality and efficiency are developed, making petroleum geochemical assessments possible in only one diagram instead of using several graphs or charts.

References

  • Abboud, M., Philp, R.P., Allen, J., 2005. Geochemical correlation of oils and source rocks from central and NE Syria. Journal of Petroleum Geology 28 (2), 203-216.
  • Abdullah, W.A., 1999. Organic facies variations in the Triassic shallow marine and deep marine shales of central Spitsbergen, Svalbard. Marine and Petroleum Geology 16, 467-481.
  • Adepojua, A., Adekolaa, S.A., Omotoyea, S., 2018. Light hydrocarbon geochemistry of crude oils from Eastern Niger Delta. Petroleum Science and Technology 36 (19), 1573-1581.
  • Ader, M., Cartigny, P., Boudou, J., 2006. Nitrogen isotopic evolution of carbonaceous matter during metamorphism: Methodology and preliminary results. Chemical Geology 232, 152-169.
  • Ahmed, W., Alam, S., Jahandad, S., 2004. Techniques and methods of organic geochemistry as applied to petroleum exploration. Pakistan Journal of Hydrocarbon Research 14, 69-77.
  • Aldahik, A., 2010. Crude Oil Families in the Euphrates Graben Petroleum System. PhD Thesis, Berlin Institute of Technology, Berlin, Germany. Alexander, R., Kagi, R., Woodhouse, G.W., 1981. Geochemical correlation of Windalia oil and extracts of Winning Group (Cretaceous) potential source rocks, Barrow Subbasin, Western Australia. AAPG Bulletin 65, 235-250.
  • Alexander, G., Hazai, I., 1981. Chromatographic fingerprinting of coal extracts. Journal of Chromatography 217, 19-38.
  • Amijaya, D.H., 2005. Paleoenvironmental, paleoecological and thermal metamorphism implications on the organic petrography and organic geochemistry of Tertiary Tanjung Enim coal, South Sumatra Basin, PhD Thesis, Aachen University, Indonesia.
  • Anyigba, L.K., 2021. Prediction of API Gravity (Oil Quality) Using Some Geochemical Parameters with Ensemble Boosted Trees and Smoothing Spline Correlation Models. MSc Thesis, Istanbul Technical University
  • Asif, M., Grice, K., Fazeelat, T., 2009. Assessment of petroleum biodegradation using stable hydrogen isotopes of individual saturated hydrocarbon and polycyclic aromatic hydrocarbon distributions in oils from the Upper Indus Basin, Pakistan. Organic Geochemistry 40, 301-311.
  • Azhar, H.M., 2012. Petroleum Geochemistry of the So-Called “Dry Wells” Off Mid-Norway. MSc Thesis, University of Oslo, Norway.
  • Azmy, K., Kendall, B., Creaser, R.A., 2008. Global correlation of the Vazante Group, São Francisco Basin, Brazil: Re-Os and U-Pb radiometric age constraints. Precamb Res 164, 160-172.
  • Baioumy, H.M., Eglinton, L.B., Peucker-Ehrenbrink, B., 2011. Rhenium–osmium isotope and platinum group element systematics of marine vs. non-marine organic-rich sediments and coals from Egypt. Chemical Geology 285, 70-81.
  • Barker, C., 1979. Organic Geochemistry in Petroleum Explo-ration. AAPG Continuing Education Course Note Series 10, p 159.
  • Bechtel, A., Gruber, W., Sachsenhofer, R.F., 2001. Organic geochemical and stable isotopic investigation of coals formed in low-lying and raised mires within the Eastern Alps (Austria). Organic Geochemistry 32, 1289-1310.
  • Beyer, J., Jonsson, G., Porte, C., 2010. Analytical methods for determining metabolites of polycyclic aromatic hydrocarbon (PAH) pollutants in fish bile: a review. Environ Toxicol Pharmacol 30 (3), 224-244.
  • Bostick, N.H., 1979. Microscopic measurement of the level of catagenesis of solid organic matter in sedimentary rocks to aid exploration for petroleum and to determine former burial temperatures - A review. Society of Economic paleontologists and Mineralogists Special Publication 26, 17-43.
  • Böcker, J., Littke, R., Forster, A., 2017. An overview on source rocks and the petroleum system of the central Upper Rhine Graben. International Journal of Earth Science 106, 707-742.
  • Bray, E.E., Evans, E.D., 1961. Distribution of n-paraffins as a clue to recognition of source rocks. Geochim Cosmochim Acta 22, 2-15.
  • Chaffee, A., Hoover, D., Johns, R., Schweighardt, F.K., 1986. Biological markers extractable from coal. In: John R (ed) Biological Markers in the Sedimentary Record, Elsevier, p 311-345.
  • Chakhmakhchev, A., Suzuki, M., Takayama, K., 1997. Distribution of alkylated dibenzothiophenes in petroleum as a tool for maturity assessments. Organic Geochemistry 26 (7-8), 483-489.
  • Chandra, K., Mishra, C.S., Samanta, U., Gupta, A., Mehrotra, K.L., 1994. Correlation of different maturity parameters in the Ahmedabad - Mehsana block of the Cambay basin. Organic Geochemistry 21, 313-321.
  • Chang, X., Wang, T., Li, Q., Cheng, B., Zhang, L., 2012. Maturity assessment of severely biodegraded marine oils from the Halahatang Depression in Tarim Basin. Energy Exploration and Exploitation 30 (3), 331-350.
  • Cohen, A.S., Coe, A.L., Bartlett, J.M., Hawkesworth, C.J., 1999. Precise Re-Os ages of organic-rich mudrocks and the Os isotope composition of Jurassic seawater. Earth Planet Sciences Letter 167, 159-173.
  • Cohen, A.S., 2004. The rhenium-osmium isotope system: applications to geochronological and palaeoenvironmental problems. Journal of the Geological Society London 161, 729-734.
  • Connan, J., 1981. Biological markers in crude oils. In: Mason JF (ed) Petroleum Geology in China, Penn Well, Tulsa, OK, p 48-70.
  • Connan, J., 1984. Biodegradation of crude oils in reservoirs. In: Brooks J, Welte DH (eds.) Advances in Petroleum Geochemistry, vol. 1. Academic Press, London, p 299-335.
  • Connan, J., Cassou, A.M., 1980. Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels. Geochim Cosmochim Acta 44 (1), 1-23.
  • Creaser, R.A., Sannigrahi, P., Chacko, T., Selby, D., 2002. Further evaluation of the ReOs geochronometer in organic-rich sedimentary rocks: a test of hydrocarbon maturation effects in the Exshaw Formation Western Canada Sedimentary Basin. Geochim Cosmochim Acta 66, 3441-3452.
  • Cumming, V.M., Selby, D., Lillis, P.G., 2012. Re-Os geochronology of the lacustrine Green River Formation: Insights into direct depositional dating of lacustrine successions, Re-Os systematics and paleocontinental weathering. Earth and Planetary Science Letters 359-360, 194-205.
  • Cumming, V.M., 2013. Rhenium-osmium geochronology and geochemistry of ancient lacustrine sedimentary and petroleum systems. Durham theses, Durham University. Available at Durham E-Thesis Oline: http://ethesis.dur.ac.uk/6945.
  • Cumming, V.M., Selby, D., Lillis, P.G., Lewan, M., 2014. Re-Os geochronology and Os isotope fingerprinting of petroleum sourced from a Type I lacustrine kerogen: Insights from the natural Green River petroleum system in the Uinta Basin and hydrous pyrolysis experiments. Geochim Cosmochim Acta 138, 32-56.
  • de Abreu, C.R., de Souza, E.S., Martins, L.L., Cordeiro, T.C., Carrasquilla, A.A.G., Guimarães, A.O., 2020. Application of the electron spin resonance technique in the characterization of Brazilian oils: Correlation with their biodegradation level and polar composition. Energy & Fuels 34 (11), 13837-13848. https://dx.doi.org/10.1021/acs.energyfuels.0c02624.
  • Didyk, B.M., Simoneit, B.R.T., Brassel, S.C., Eglinton, G., 1978. Organic geochemical indicators of paleoenvironmental conditions of sedimentation. Nature 272, 216-222.
  • Dow, W.G., 1977. Petroleum Source Beds on Continental Slopes and Rises. AAPG Continuing Education Course Notes Series 5, p D1-D37.
  • Dzou, L.I.P., Hughes, W.B., 1993. Geochemistry of oils and condensates, K Field, offshore Taiwan: a case study in migration fractionation. Organic Geochemistry 20, 427-462.
  • Dultsev, F.F., Chernykh, A.V., 2020. Geochemistry of water-dissolved gases of oil-and-gas bearing deposits in Northern and Arctic Regions of Western Siberia. IOP Conf. Series: Earth and Environmental Science 459, 042024. https://doi.org/10.1088/1755-1315/459/4/042024.
  • Dumitru, M., Vladimirescu, A., 2017. Loads limits values of soils with petroleum hydrocarbons. Geophysical Research Abstracts 19, EGU2017-12351.
  • El Diasty, W.S., El Beialy, S.Y., Peters, K.E., Batten, D.J., Al-Beyati, F.M., Mahdi, A.Q., Haseeb, M.T., 2018. Organic geochemistry of the Middle-Upper Jurassic Naokelekan Formation in the Ajil and Balad oil fields, northern Iraq. Journal of Petroleum Science and Engineering 2018, 350-362.
  • El Diasty, W., Sh, El Beialy, S.Y., Mahdi, A.Q., 2016. Geochemical characterization of source rocks and oils from northern Iraq: Insights from biomarker and stable carbon isotope investigations. Marine and Petroleum Geology 77, 1140-1162.
  • Erstad, K., Hvidsten, I.V., Askvik, K.M., Barth, T., 2009. Changes in crude oil composition during laboratory biodegradation: Acids and oil-water, oil-hydrate interfacial properties. Energy & Fuel 23, 4068-4076.
  • Eymold, W.K., Swana, K., Moore, M.T., Whyte, C.J., Harkness, J.S., Talma, S., Murray, R., Moortgat, J.B., Miller, J., Vengosh, A., Darrah, T.H., 2018. Hydrocarbon-rich groundwater above shale-gas formations: A Karoo basin case study. Groundwater 56 (2), 204-224.
  • Finlay, A.J., Selby, D., Gröckea, D.R., 2010. Tracking the Hirnantian glaciation using Os isotopes. Earth Planet Sciences Letters 293, 339-348. Finlay, A.J., Selby, D., Osborne, M.J., 2011. Re-Os geochronology and fingerprinting of United Kingdom Atlantic margin oil: Temporal implications for regional petroleum systems. Geology 39, 475-478.
  • Fu, J., Guoying, S., Xu, J., Eglinton, G., Gowar, A.P., Rongfen, J., Shanfa, F., Pingan, P.,1990. Application of biological markers in the assessment of paleoenvironments of Chinese non-marine sediments. Organic Geochemistry 16, 769-779.
  • Georgiev, S., Stein, H.J., Hannah, J.L., Bingen, B., Weiss, H.M., Piasecki, S., 2011. Hot acidic Late Permian seas stifle life in record time. Earth Planet Sciences Letters 310, 389-400.
  • Georgiev, S., Stein, H.J., Hannah, J.L., Weiss, H.M., Bingen, B., Xu, G., Rein, E., Hatlø, V., Løseth, H., Nali,M., Piasecki, S.,2012. Chemical signals for oxidative weathering predict Re‐Os isochroneity in black shales. East Greenland. Chemical Geology 324‐325, 108‐121.
  • Ghasemlounia, R., Ozdemir, A., Palabiyik, Y., Karatas, A., Sahinoglu, A., 2020. Investigation of Hydrocarbon Contamination of Surface and Subsurface Waters in the West-Northwest Konya Province with TPH (Total Petroleum Hydrocarbons) in Water Analysis. İstanbul Gedik University, Scientific Research Project ID: GDK202006-03 (Ongoing project).
  • Gomez, K.J., 2016. Application of Biomarker Data in Oil Characterization. MSc Thesis, Technical University of Crete.
  • Goossens, H., de Leeuw, J.W., Schenck, P.A., et al 1984. Tocopherols as likely precursors of pristane in ancient sediments and crude oils. Nature 312, 440-442.
  • Hakimi, H.M., Alaug, A., Afify, W.E., El Nady, M.M., et al 2019. Investigating gas resource potentiality from Late Jurassic Madbi Formation in the NW -Say’un-Masila Basin, Eastern Yemen. Petroleum Science and Technology 37 (12), 1355-1362.
  • Hakimi, H.M., El Nady, M.M., Mohyaldin, I., et al 2018a. Thermal modeling and hydrocarbon generation of the Late Jurassic-Early Cretaceous Chia Gara Formation in Iraqi Kurdistan region, northern Zagros Fold Belt. Egyptian Journal of Petroleum 27 (4), 701-413.
  • Hakimi, H.M., Alaug, A., Ahmed, A.F., et al 2018b. Simulation the timing of petroleum generation and expulsion from deltaic source rocks: Implications for Late Cretaceous petroleum system in the offshore Jiza-Qama, Eastern Yemen. Journal of Petroleum Science and Engineering 170, 620-642,
  • Hannah J.L., Stein H.J., Xu G., et al 2014. Age and composition of source rocks: new steps toward tracking hydrocarbon migration. Paper presented at International Petroleum Technology Conference (IPTC), Doha, Qatar, 20‐22 January 2014.
  • Hartkopf-Fröder, C., Kloppisch, M., Mann, U., Mahlkau, P.N., Schaeffer, R.G., Wilkes, H., 2007. The end-Frasnian mass extinction in the Eifel Mountains, Germany: New insights from organic matter composition and preservation. Geological Society London Special Public 278, 173-196.
  • Harris, N.B., Mnich, C.A., Selby, D., Korn, D., 2013. Minor and trace element and Re-Os chemistry of the Upper Devonian Woodford Shale, Permian Basin, west Texas: Insights into metal abundance and basin processes. Chemical Geology 356, 76-93.
  • Havelcová, M., Sy´korová, I., Trejtnarová, H., Sulc, A., 2012. Identification of organic matter in lignite samples from basins in the Czech Republic: Geochemical and petrographic properties in relation to lithotype. Fuel 99, 129-142.
  • Head, I.M., Jones, D..M, Larter, S.R., 2003. Biological activity in the deep subsurface and the origin of heavy oil. Nature 426, 344-352.
  • Heroux, Y., Chagnon, A.G., Bertrand, R., 1979. Compilation and correlation of major thermal maturation indicators. AAPG Bulletin 63, 2128-2144.
  • Hu, J., Zhang, X., Yu, Q., Huang, Z., Xiao, Q., Zhao, H., 2014. Viscosity prediction of heavy oil from the Liaohe Basin using biomarker parameters. Petroleum Science and Technology 32, 1028-1037.
  • Hu, S., Evans, K., Craw, D., Rempel, K., Bourdet, J., Dick, J., Grice, K., 2015. Raman characterization of carbonaceous material in the Macraes orogenic gold deposit and metasedimentary host rocks, New Zealand. Ore Geology Reviews 70, 80-95.
  • Hughes, W.B., Holba, A.G., Dzou, L.I.P., 1995. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochim Cosmochim Acta 59 (17), 3581-3598.
  • Hunt, J.M., 1979. Petroleum Geochemistry and Geology. In: Gilluly J (ed) WH Freeman and Company, San Francisco.
  • Hunt, J.M., 1996. Petroleum Geochemistry and Geology. Second edn. WH Freeman, New York.
  • Ishiwatari, R., Ishiwatari, R.M., 2004. Insights on the origin of pristane and phytane in sediments and oils from laboratory heating experiments. In: Isaac R, Kaplan RJ, Hill J et al (eds.) Geochemical Investigations in Earth and Space Science: A Tribute. The Geochemical Society 9, 85-96.
  • Ishiwatari, R., Ishiwatari, M., Rohrback, G.B., Kaplan, I.R., 1977. Thermal alteration experiments on organic matter from recent marine sediments in relation to petroleum genesis. Geochim Cosmochim Acta 41, 815-828.
  • ISO 5667-3, 2018. Water quality - Sampling - Part 3: Preservation and handling of water samples.
  • ISO 9377-2, 2000. Water quality - Determination of hydrocarbon oil index - Part 2: Method using solvent extraction and gas chromatography.
  • ISO 16703, 2011. Soil quality - Determination of content of hydrocarbon in the range C10 to C40 by gas chromatography.
  • ISO 14039, 2005. Characterization of waste - Determination of content of hydrocarbon in the range C10 to C40 by gas chromatography.
  • ISO 10381-1, 2002. Soil quality - Sampling - Part 1: Guidance on the design of sampling programmes.
  • ISO 10381-2, 2002. Soil quality - Sampling - Part 2: Guidance on sampling techniques.
  • ISO 18400, 2018. Soil quality – Sampling.
  • Judik, K., Rantitsch, G., Rainer, T.M., Arkai, P., Tomljenovic, B., 2008. Alpine Metamorphism of organic matter in metasedimentary rocks from Mt. Medvednica (Croatia). Swiss Journal Geosciences 101 (3), 605-616. https://doi.org./10.1007/s00015-008-1303-z.
  • Kara-Gülbay, R., Yaylalı-Abanuz, G., Korkmaz, S., Erdogan, M.S., Cebi, F.H., Cevik, S., Agirman-Akturk, E., 2019. Organic matter type, maturity, depositional environmental characteristics, and liquid hydrocarbon potential of Late Carboniferous Kozlu Bituminous Coal and Coaly Shale Beds (Zonguldak-Amasra Basin, NW Anatolia, Turkey): An application of biomarker geochemistry. Energy & Fuels 33, 9491-9509.
  • Kato, S., Waseda, A., Nishita, H., 2006. Geochemical characteristics of crude oils from the Sagara oil field, Shizuoka Prefecture, Japan. Island Arc 15, 304-312.
  • Kayukova, G.P., Mikhailova, A.N., Kosachev, A.N.I., Emelyanov, D.A., Varfolomeev, M.A., Uspensky, B.V., Vakhin, A.V., 2020. The oil-bearing strata of Permian deposits of the Ashal’cha Oil Field depending on the content, composition, and thermal effects of organic matter oxidation in the rocks. Geofluids Article ID 6304547. https://doi.org/10.1155/2020/6304547.
  • Kendall, B., Creaser, R.A., Selby, D., 2009. 187Re/188Os geochronology of Precambrian organic-rich sedimentary rocks. Geol Soc London Special Public 326, 85-107.
  • Kendall, B.S., Creaser, R.A., Ross, G.M., david, S., 2004. Constraints on the timing of Marinoan 681 ‘Snowball Earth’ glaciation by 187Re/188Os dating of a Neoproterozoic post-glacial black shale in western Canada. Earth Planet Sciences Letters 222, 729-740.
  • Kendall, B.S., Creaser, R.A., Selby, D., 2006. Re-Os geochronology of the post-glacial black shales in Australia: Constraints on the timing of “Sturtian” glaciation. Geology 34, 729-732.
  • Kerr, A.C., 2005. Oceanic LIPs: The kiss of death. Elements 1:289-292.
  • Klemme, H.D., Ulmishek, G.F., 1990. Effective petroleum source rocks of the word: Stratigraphic distribution and controlling depositional factors. AAPG Bulletin 75 (12), 1809-1851.
  • Ko, T., 2010. Characterization of gas generated by sequential hydrous pyrolysis of potential gas-prone source rocks for tight-gas reservoirs in the Rocky Mountain Area. MSc Thesis, Colorado School of Mines.
  • Koopmans, M.P., Rijpstr,a W.I.C., Klapwijk, M.M. de Leeuw, J.W., Lewan, M.D., Damsté, J.S.S., 1999. A thermal and chemical degradation approach to decipher pristane and phytane precursors in sedimentary organic matter. Organic Geochemistry 30, 1089-1104.
  • Koopmans, M.P., Larter, S.R., Zhang, C., Mei, B., Wu, T., Chen, Y., 2002. Biodegradation and mixing of crude oils in Eocene Es3 reservoirs of the Liaohe basin, northeastern china. AAPG Bulletin 86, 1833-1843.
  • Kreuzer, R.L., Darrah, T.H., Grove, B.S. Moore, M.T., Warner, N.R., Eymold, W.K., Whyte, C.J., Mitra, G., Jackson, R.B., Vengosh, A., Poreda, R.J., 2018. Structural and hydrogeological controls on hydrocarbon and brine migration into drinking water aquifers in Southern New York. Groundwater 56 (2), 225-244.
  • Kribek B., Sykorova I., Machovic V. Laufek, F., 2008. Graphitization of organic matter and fluid-deposited graphite in Palaeoproterozoic (Birimian) black shales of the Kaya-Goren greenstone belt (Burkina Faso, West Africa). Journal of Metamorphic Geology 26, 937-958.
  • Large D.J., Christy A.G., Fallick A.E. 1994. Poorly crystalline carbonaceous matter in high grade metasediments: implications for graphitisation and metamorphic fluid compositions. Contrib Mineral Petrol 116, 108-116.
  • Larter, S., Wilhelms, A., Head, I., Koopmans, M., Aplin, A., Primio, R.D., Zwach, C., Erdmann, M., Telnaes, N., 2003. The controls on the composition of biodegraded oils in the deep subsurface - part 1: Biodegradation rates in petroleum reservoirs. Organic Geochemistry 34 (4), 601-613.
  • Law, C.A., 1999. Evaluating source rocks. In: AAPG Special Volumes. Volume Treatise of Petroleum Geology/Handbook of Petroleum Geology: Exploring for Oil and Gas Traps, 3.1-3.34.
  • Lillis, P.G., Selby, D., 2013. Evaluation of the rhenium-osmium geochronometer in the Phosphoria petroleum system, Bighorn Basin of Wyoming and Montana, USA. Geochim Cosmochim Acta 118, 312-330.
  • Lijmbach, G.W.M., 1975. On the origin of petroleum. Proceedings of the Ninth World Petroleum Congress. Geology 2, 357-369.
  • Littke, R., Lückge, A., Wilkes, H., 1998. Organic matter in Neogene sediments of the Southern Canary Channel, Canary Island (Sites 955 and 956). In: Weaver PPE, Schminke H-U, Firth, JV, et al (eds), Proceedings of the ODP Scientific Results 157, 361-372.
  • Liu, J., 2017. Re-Os Systematics of Crude Oil and Re-Os Petroleum System Geochronology. Durham Thesis, Durham University.
  • Liu, S, Qi, S, Luo, Z, Liu, F., Ding, Y., Huang, H., Chen, Z., Cheng, S., 2018a. The origin of high hydrocarbon groundwater in shallow Triassic aquifer in Northwest Guizhou, China. Environmental Geochemistry and Health 40 (1), 415-433.
  • Liu, J., Selby, D., Obermajer, M., Mort, A., 2018b. Rhenium-osmium geochronology and oil-source correlation of the Duvernay petroleum system, Western Canada sedimentary basin: Implications for the application of the rhenium-osmium geochronometer to petroleum systems. AAPG Bulletin 102 (8), 1627-1657.
  • Liu S, Qi S, Luo Z., Mapoma, H.W.T., Chen, Z., Cheng, S., 2019. The origin of high hydrocarbon groundwater in shallow aquifer: Experimental evidences from water-rock interaction. Environmental Science and Pollution Research 26, 32574-32588. https://doi.org/10.1007/s11356-019-06578-w.
  • Ma, J.J., 2016. Geochemical Characterization of the Second White Speckled Shale Formation, Western Canada Sedimentary Basin and the Mass Fraction Maturity Defining Thermal Maturity Level. MSc Thesis, University of Calgary.
  • Machel, H.G., 1998. Gas souring by thermochemical sulfate reduction at 140°C: Discussion. AAPG Bulletin 82 (10), 1870-1873.
  • Manzano, B.K., Fowler, M.G., Machel, H.G., 1997. The influence of thermochemical sulphate reduction on hydrocarbon composition in Nisku reservoirs, Brazeau river area, Alberta, Canada. Organic Geochemistry 27 (7/8), 507-521.
  • Marques, J.C., 2012. Overview on the Re-Os isotopic method and its application on ore deposits and organic-rich rocks. Geochimica Brasiliensis Ouro Preto 26 (1), 49-66.
  • Marzi, R., Torkelson, B.E., Olson, R.K., 1993. A revised carbon preference index. Organic Geochemistry 20 (8), 1303-1306.
  • Massoud, S., Al-Abdali, F., Al-Ghadban, A.N., Al-Sarawi, M., 1996. Bottom sediments of the Arabian Gulf II: TPH and TOC contents as indicators of oil pollution and implications for the effect and fate of the Kuwait oil slick. Environmental Pollution 93 (27), 1-284.
  • Matuszewska, A., 2002. Geochemıcal interpretatıon and comparison of biomarker composition of bitumens obtained from coals and surrounding rocks. Proceedings of the IV European Coal Conference, Polish Geological Institute Special Papers 7, 169-180.
  • McArthur, J.M., Algeo, T.J., van de Schootbrugge, B., L., Q., Howarth, R.J., 2008. Basinal restriction, black shales, Re-Os dating, and the Early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography 23 (4), PA4217.
  • Merchán-Rivera, P., 2017. Assessment of contamination by petroleum hydrocarbons from oil exploration and production activities in Aguarico, Ecuador. Study Project, Technical University of Munich, p 48.
  • Mille, G., Asia, L., Guiliano, M., Malleret R., Doumenq, P., 2007. Hydrocarbons in coastal sediments from the Mediterranean Sea (Gulf of Fos area, France). Marine Pollution Bulletin 54, 566-575.
  • Ministry of Agriculture and Forestry of Turkey 2004a. Surface Water Quality Regulation of Turkey (in Turkish). Retrieved 02 June 2020. http://www.resmigazete.gov.tr/eskiler/2016/08/20160810-9.htm.
  • Ministry of Agriculture and Forestry of Turkey, 2004b. Water Pollution Control Regulation of Turkey (in Turkish). Retrieved 02 June 2020. http://www.mevzuat.gov.tr/Metin.Aspx?MevzuatKod=7.5.7221&MevzuatIliski=0&sourceXmlSearch=
  • Müller, G., 1979. Schwermetalle in den Sedimenten des RheinsVeãderung seit. Umschav 79, 133-149. Murchison, D.G., 1987. Recent advances in organic petrology and organic geochemistry: in overview with some references to “oil from coal”. In: Scott, A.C. (Ed.), Coal and Coal-bearing Strata: Recent Advances Geol Soc Special Publication 32, 257-302.
  • Nasir, S., Fazeelat, T., 2013. Diamondoid hydrocarbons as maturity indicators for condensates from Southern Indus Basin, Pakistan. Journal of Chemistry Article ID 636845. http://dx.doi.org/10.1155/2013/636845.
  • Nwadinigwe, C.A., Alumona, T.N., 2018. Assessment of n-alkanes and acyclic isoprenoids (geochemical markers) in crudes: A case study of Iraq and Niger delta, Nigeria. Egyptian Journal of Petroleum 27 (1), 111-116.
  • Oforka, N.C., Osuji, L.C., Onojake, M.C., 2012. Petroleum hydrocarbon fingerprinting of crude oils from Umutu/Bomu Oilfields in Niger Delta, Nigeria. Archives of Applied Science Research 4 (1), 246-253.
  • Onojake, M.C., Osuji, L.C., Abrakasa, S., 2015. Source, depositional environment and maturity levels of some crude oils in southwest Niger Delta, Nigeria. Chin J Geochem 34 (2), 224-232.
  • Orr, W.L., 1974. Changes in sulfur content and isotopic ratios of sulphur during petroleum maturation: Study of Big Horn Basin Paleozoic oils. Part 1. AAPG Bulletin 58, 2295-2318.
  • Ozdemir, A., 2018. Usage of the Total Petroleum Hydrocarbons (TPH) in water analysis for oil and gas exploration: First important results from Turkey. Journal of Engineering Sciences and Design of Suleyman Demirel University 6 (4), 615-635 (in Turkish with English abstract).
  • Ozdemir, A., 2019a. Organic hydrogeochemical evidence of Hasanoğlan (Ankara) petroleum system. Pamukkale University Journal of Engineering Sciences 25 (6), 748-763 (in Turkish with English abstract).
  • Ozdemir, A., 2019b. Mature hydrocarbons-rich waters as geochemical evidence of working petroleum system of Mamak (Ankara) and potential trap area in the region. European Journal of Science and Technology 17, 244-260 (in Turkish with English abstract).
  • Ozdemir, A., 2019c. Organic hydrogeochemical evidence of pre-Neogene petroleum system of the Buyuk Menderes graben and potential traps (Western Turkey). European Journal of Science and Technology 16, 325-354 (in Turkish with English abstract).
  • Ozdemir A., Palabiyik Y. 2019a. A new approach to petroleum source rock occurrence: The relationships between petroleum source rock, ophiolites, mantle plume and mass extinction. Paper presented at the IV. International scientific and vocational studies congress - engineering sciences (BILMES EN), Ankara, Turkey, 07 - 10 November 2019
  • Ozdemir, A., Palabiyik, Y., 2019b. A shallow and reliable indicator for deep oil and gas accumulations in the subsurface: Metallic ore deposits. Paper presented at the IV. International Scientific and Vocational Studies Congress - Engineering Sciences (BILMES EN), Ankara, Turkey, 07 - 10 November 2019.
  • Ozdemir, A., Palabiyik, Y., 2019c. Significance of relationships between hydrocarbons and metallic ore deposits in oil and gas exploration: Part I. Gold deposits. Paper presented at BİLTEK International Symposium on Recent Developments in Science, Technology and Social Studies, Ankara, Turkey, 21-22 December 2019.
  • Ozdemir, A., Palabiyik, Y., 2019d. Significance of relationships between hydrocarbons and metallic ore deposits in oil and gas exploration: Part II. Copper deposits. Paper presented at BİLTEK International Symposium on Recent Developments in Science, Technology and Social Studies, Ankara, Turkey, 21-22 December 2019.
  • Ozdemir, A., Palabiyik, Y., 2019e. Significance of relationships between hydrocarbons and metallic ore deposits in oil and gas exploration: Part III. Lead and zinc deposits. Paper presented at BİLTEK International Symposium on Recent Developments in Science, Technology and Social Studies, Ankara, Turkey, 21-22 December 2019.
  • Ozdemir, A., Palabiyik, Y., 2019f. Use of Rhenium-Osmium (Re-Os) isotope for direct dating of organic-rich rocks and hydrocarbons/oils in petroleum geology: A review. Paper presented at ISPEC 4th International Conference on Engineering & Natural Sciences, Ankara, Turkey, 18-20 October 2019.
  • Ozdemir, A., Palabiyik, Y., 2019g. A review of Paleozoic - Miocene petroleum source rocks of Turkey by paleogeographic and paleotectonic data: New interpretations and major outcomes. Paper presented at the 7th International Symposium on Academic Studies in Science, Engineering and Architecture Sciences, Ankara, Turkey, 15-17 November 2019.
  • Ozdemir, A., Palabiyik, Y., 2020. Findings for Hydrocarbon Occurrence and Generation Associated with Possible Jurassic-Cretaceous Riftings in Eastern Pontides. Paper presented at the 4. International Academic Studies Conference, 28-30 September 2020 (in Turkish with English abstract).
  • Ozdemir, A., Palabiyik, Y., 2022. A new method for geochemical prediction of the existence of petroleum reservoirs in magmatic and metamorphic rocks. In: Lin J. (eds) Proceedings of the 2021 International Petroleum and Petrochemical Technology Conference, IPPTC 2021, Springer, https://doi.org/10.1007/978-981-16-9427-1_64.
  • Ozdemir, A., Karataş, A., Palabiyik, Y., Yasar, E., Sahinoglu, A., 2020a. Oil and gas exploration in Seferihisar Uplift (Western Turkey) containing an operable-size gold deposit: Geochemical evidence for the presence of a working petroleum system. Geomechanics and Geophysics for Geo-Energy and Geo-Resources 6 (30), 1-22. https://doi.org/10.1007/s40948-020-00152-2.
  • Ozdemir, A., Palabiyik, Y., Karataş, A., Sahinoglu, A., 2020b. Organic geochemical evidence of the working petroleum system in Beypazarı Neogene Basin and potential traps (Northwest Central Anatolia, Turkey). Turkish Journal of Geosciences 1 (2), 35-52.
  • Ozdemir, A., Karataş, A., Palabiyik, Y., Sahinoglu, A., 2020c. Reservoir-targeted oil and gas exploration in the Karaburun Peninsula (Western Turkey). International Journal of Energy and Engineering Sciences 5 (2) 115-145.
  • Ozdemir, A., Sahinoglu, A., Palabiyik, Y., Karatas, A., 2021. Reservoir-targeted oil and gas exploration in metamorphic and magmatic rocks of the Niğde Massif (Central Anatolia, Turkey). Journal of Scientific Reports-A 47, 1-26.
  • Ozdemir, A, Palabiyik, Y, Karataş, A, Sahinoglu, A., 2022. Mature petroleum hydrocarbons contamination in surface and subsurface waters of Kızılırmak Graben (Central Anatolia, Turkey): Geochemical evidence for a working petroleum system associated with a possible salt diapir. Turkish Journal of Engineering 6 (1), 01-15.
  • Palabiyik, Y., Ozdemir, A., Sahinoglu, A., Karatas, A., 2020a. Evaluation of oil and gas potential of Uludağ Massif (Northwestern Anatolia) by a new geochemical method. Trakya University Journal of Engineering Sciences 21 (1), 45-66 (in Turkish with English abstract).
  • Palabiyik, Y., Ozdemir, A., Karatas, A., Ozyagcı, M., 2020b. Identification of Oil and Gas Potential of Kastamonu and Sinop Provinces and their Surroundings (Central Pontides) by Using Total Petroleum Hydrocarbons (TPH) in Water Analysis, İstanbul Technical University, Scientific Research Project ID: MAB-2019-42217 (Ongoing project).
  • Palabiyik, Y., Ozdemir, A., 2019. Oil and gas seeps in Turkey: A review. Paper presented at the 7th International Symposium on Academic Studies in Science, Engineering and Architecture Sciences, Ankara, Turkey, 15-17 November 2019.
  • Palabiyik, Y., Ozdemir, A., 2020. Use of TPH (Total Petroleum Hydrocarbons) in water analysis for oil and gas exploration in Turkey: The case studies from Western, Northwestern, and Central Anatolia regions and major outcomes. Turkey IV Scientific and Technical Petroleum Congress, November 18-20, Ankara, Turkey (in press) (in Turkish).
  • Palacas, J.G., Ander,s D.E., King, J.D., 1984. South Florida Basin- A prime example of carbonate source rocks in petroleum, in J. G. Palacas, ed., Geochemistry and Source Rock Potential of Carbonate Rocks. AAPG Studies in Geology 18, 71-96.
  • Paul, M., Reisberg, L., Vigier, N., 2009. A new method for analysis of osmium isotopes and concentrations in surface and subsurface water samples. Chemical Geology 258, 136-144.
  • Peters, K.E., 2000. Petroleum tricyclic terpanes: predicted physicochemical behavior from molecular mechanics calculations. Organic Geochemistry 31, 497-507.
  • Peters, K.E., Cassa, M.R., 1994. Applied Source Rock Geochemistry. In: Magoon, LB, Dow WG (eds) The Petroleum System - from Source to Trap. AAPG Memoir 60, p 93-120.
  • Peters, K.E., Fraser, T.H., Amris, W., Rustanto, B., Hermanto, E., 1999. Geochemistry of crude oils from eastern Indonesia. AAPG Bulletin 83, 1927-1942.
  • Peters, K.E., Fowler, M.G., 2002. Applications of petroleum geochemistry to exploration and reservoir management. Organic Geochemistry 33, 5-36.
  • Peters, K.E., Walters, C.C., Moldowan, J.M., 2005. The Biomarker Guide: Biomarkers and Isotopes in Petroleum Exploration and Earth History. Second Edn. Cambridge University Press, p 1155.
  • Peters, K.E., Moldowan, J.M., 1993. The Biomarker Guide, Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Englewood Cliffs, Jersey, Prentice Hall, p 339-363
  • Petersen, H.I., Hertle, M., Juhasz, A., Krabbe, H., 2016. Oil family typing, biodegradation and source rock affinity of liquid petroleum in the Danish North Sea. Journal of Petroleum Geology 39 (3), 247-268.
  • Pletsch, T., Appel, J., Botor, D., Clayton, C., Duin, E., Faber, E., Gorecki, W., Kombrink, H., Kosakowski, P., Kuper, G., Kus, J., Lutz, R., Mathiesen, A., Ostertag-Henning, C., Papiemik, B., van Bergen, F., 2010. Petroleum generation and migration. In: Doornenbal JC, Stevenson AG (eds.) Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v. (Houten), p 225-253.
  • Pierson-Wickmann, A.C., Reisberg, L., France-Lanord, C., 2002. Behavior of Re and Os during low-temperature alteration: Results from Himalayan soils and altered black shales. Geochim Cosmochim Acta 66 (9), 1539-1548.
  • Potter, II R.W., Harrington, P.A., Silliman, A.H., 1996. Significance of geochemical anomalies in hydrocarbon exploration. In: Schumacher D, Abrams MA (eds.) Hydrocarbon migration and its near-surface expression. AAPG Memoir 66, p 431-439.
  • Poturay, V.A., Kompanichenko, V.N., 2019. Composition and distribution of saturated hydrocarbons in the thermal waters and vapor-water mixture of the Mutnovskii Geothermal Field and Uzon Caldera, Kamchatka. Geochemistry International 57 (1), 74-82.
  • Prosser, S.A., Kornacki, A.S., Laughland, M., McCaffrey, M.A., Edmonds, V.J., 2020. Identification and characterization of oil groups in the Midland Basin using geochemical source and maturity parameters measured on > 1,600 oils and condensates from 692 wells. Paper presented at Unconventional Resources Technology Conference, Austin, Texas, USA, 20-22 July 2020.
  • Rantitsch, G., Judik, K., 2009. Alpine metamorphism in the central segment of the Western Greywacke Zone (Eastern Alps). Geologica Carpathica 60 (4), 319-329.
  • Rantitsch, G., Grogger, W., Teichert C., Ebner, F., Hofer, C., Maurer, E-M., Schaffer, B., Toth, M., 2004. Conversion of carbonaceous material to graphite within the Greywacke Zone of the Eastern Alps. International Journal of Earth Sciences 93, 959-973.
  • Ravizza, G., Turekian, K.K., 1989. Application of the 187Re-187Os system to black shale geochronometry. Geochim Cosmochim Acta 53, 3257-3262.
  • Ravizza, G., Turekian, K.K., Hay, B.J., 1991. The geochemistry of rhenium and osmium in recent sediment from the Black Sea. Geochim Cosmochim Acta 55, 3741-3752.
  • Rice, D., 1993. Composition and Origins of Coalbed Gas. In: Law BE, Rice D (eds.) Hydrocarbons from Coal. AAPG Studies in Geology 38, p 159-184.
  • Roadifer, R.E., 1987. Size distributions of the world’s largest known oil and tar accumulations. In: Meyer RF (ed) Exploration for Heavy Crude Oil and Natural Bitumen. American Association of Petroleum Geologists, Tulsa, AAPG Studies in Geology 25, p 3-23.
  • Rooney, A.D., Selby, D., Houzay, J-P., renne, P.R., 2010. Re-Os geochronology of a Mesoproterozoic sedimentary succession, Taoudeni basin, Mauritania: Implications for basin-wide correlations and Re-Os organic-rich sediments systematic. Earth Planet Sciences Letters 289, 486-496.
  • Sahinoglu, A., Ozdemir, A., Palabiyik., Y., 2020a. Investigation of Oil and Gas Potential of Northern Ankara (Central Turkey) by Total Petroleum Hydrocarbons (TPH) in Water and Soil Analyses. İstanbul Esenyurt University, Scientific Research Project ID: BAP2019-02 (Ongoing project).
  • Sahinoglu, A., Ozdemir, A., Palabiyik, Y., 2020b. Investigation of Oil and Gas Potential of Ulukışla Basin (Central Turkey) by Total Petroleum Hydrocarbons (TPH) in Water and Soil Analyses. İstanbul Esenyurt University, Scientific Research Project ID: BAP2020-07 (Ongoing project)
  • Sainbayar, A., Vosmerikov, A.V., Nordov, E., Golovko, A.K., 2005. Study of individual hydrocarbons’ composition of gasoline fraction of Tamsagbulag oil, Mongolia. Journal of Petroleum Science and Engineering 46 (4), 233-242.
  • Samoilenko, V.K., Shadrina, E.S., Goncharov, I.V., Oblasov, N.V., Veklich, M.A., Zherdeva, A.V., 2019. The origin of hydrocarbon fluids and features of the formation of oil and gas fields in the Gydan Peninsula. Paper presented at the 29th International Meeting on Organic Geochemistry (IMOG). Gothenburg, Sweden, 1-6 September 2019.
  • Sari, G.L., Trihadiningrum, Y., Ni’matuzahroh, N., 2018. Petroleum hydrocarbon pollution in soil and surface water by public oil fields in Wonocolo Sub-district, Indonesia. Journal of Ecological Engineering 19 (2), 184-193.
  • Sawicka, N., Janeczek, J., Fabiañska, M., Bahranowski, K., Krzykawski, T., Matuszewska, A., 2018. Mineralogy and organic geochemistry of phyllite from the Dewon–Pokrzywna deposit, the Opava Mountains (SW Poland). Geological Quarterly 62 (4), 817-828. Selby, D., Creaser, R.A., 2003. Re-Os geochronology of organic rich sediments: an evaluation of organic matter analysis methods. Chemical Geology 200, 225-240.
  • Selby, D., Creaser, R.A., 2005. Direct radiometric dating of the Devonian-Carboniferous timescale boundary using the Re-Os black shale geochronometer. Geology 33, 545-548.
  • Selby, D., Mutterlose, J., Condon, D.J., 2009. U-Pb and Re-Os Geochronology of the Aptian/Albian and Cenomanian/ Turonian stage boundaries: Implications for timescale calibration, osmium isotope seawater composition and Re-Os systematics in organic-rich sediments. Chemical Geology 265, 394-409.
  • Shanmugam, G., 1985. Significance of coniferous rain forests and related oil. Gippsland Basin, Australia. AAPG Bulletin 69, 1241-1254.
  • Stein, H.J., Hannah, J.L., 2014. The emerging potential of Re‐Os isotope geochemistry for source rocks and maturation‐migration histories. Paper presented at International Petroleum Technology Conference (IPTC), Doha, Qatar, 20‐22 January 2014.
  • Stein, H.J., Hannah, J.L., Yang, G., Galimberti, R., Nali, M., 2014. Ordovician source rocks and Devonian oil expulsion on bolide impact at Siljan, Sweden - the Re‐Os story. Paper presented at International Petroleum Technology Conference (IPTC), Doha, Qatar, 20‐22 January 2014.
  • Suárez-Ruiz, I., Flores, D., Filho, J.G.M., Hackley, P.C., 2012. Review and update of the applications of organic petrology: Part 1, geological applications. International Journal of Coal Geology 99, 54-112.
  • Suchý, V., Sandler, A., Slobodník, M., Sýkorová, I., Filip, J., Melka, K., Zeman, A., 2015. Diagenesis to very low-grade metamorphism in lower Palaeozoic sediments: A case study from deep borehole Tobolka 1, the Barrandian Basin, Czech Republic. International Journal of Coal Geology 140, 41-62.
  • Suchý, V., Sykorova, I., Melka, K., Filip, J., Machovič, V., 2007. Illite ‘crystallinity’, maturation of organic matter and microstructural development associated with lowest-grade metamorphism of Neoproterozoic sediments in the Tepla´-Barrandian unit, Czech Republic. Clay Minerals 42, 503-526.
  • Sun, Y.Z., Wang, J.X., Liu, L.F., Chen, J., 2005. Maturity parameters of source rocks from the Baise Basin, South China. Energy Exploration and Exploitation 23 (4), 257-266.
  • Sun, Y.Z., Liu, C.Y., Lin, M.Y., Li, Y., Qin, P., 2009. Geochemical evidences of natural gas migration and releasing in the Ordos Basin, China. Energy Exploration and Exploitation 27 (1), 1-13.
  • Sun, Y.Z., Qin, S.J., Zhao, C.L., Kalkreuth, W., 2010. Experimental study of early formation processes of macerals and sulfides. Energy and Fuels 24, 1124-1128.
  • ten Haven, H.L., Baas, M., Kroot, M., de Leeuw, J.W., Schenck, P.A., Ebbing, J., 1987. Late Quaternary Mediterranean sapropels. III: assessment of source of input and palaeotemperature as derived from biological markers. Geochim Cosmochim Acta 51, 803-810.
  • Tissot, B., Califet-Debyser, Y., Deroo, G., Oudin, J.L., 1971. Origin and evolution of hydrocarbons in early Toarcian shales, Paris Basin, France. AAPG Bulletin 55, 2177-93.
  • Tissot, B.P., Welte, D.H., 1984. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration. Springer-Verlag, p 699.
  • Tran, K.L., Philippe, B., 1993. Oil and rock extract analysis. In: Bordenave ML (eds.) Applied Petroleum Geochemistry, p. 373-394
  • Tripathy, G.R., Hannah, J.L., Stein, H.J., Yang, G., 2014. Re‐Os age and depositional environment for black shales from the Cambrian‐Ordovician boundary, Green Point, western Newfoundland. Geochemistry, Geophysics, Geosystems 15, 1021‐1037.
  • Thompson, J.G., 1982. Hydrocarbon source rock analyses of Pakawau Group and Kapuni Formation sediments, northwest Nelson and offshore South Taranaki, New Zealand. New Zealand Journal of Geology and Geophysics 25 (2), 141-148.
  • Ulmishek, G.F., Klemme, H.D., 1991. Depositional controls, distribution and effectiveness of world’s petroleum source rocks. US Geological Survey, p 59.
  • US-EPA, 2009. US Environmental Protection Agency, Soil Hazard Categorization and Management. Industrial Waste Resource Guidelines (IWRG621). https://www.epa.vic.gov.au/about-epa/publications/iwrg621.
  • Volk, H., 2020. Source Rocks, Bitumens and Petroleum Inclusions from the Prague Basin (Barrandian, Czech Republic) Constraints for Petroleum Generation and Migration from Petrology, Organic Geochemistry and Basin Modelling. PhD Thesis, RWTH Aachen University.
  • Volkman, J.K., Alexander, R., Kagi, R.I., Woodhouse, G.W., 1983. Demethylated hopanes in crude oils and their applications in petroleum geochemistry. Geochim Cosmochim Acta 47 (4), 785-794.
  • Volkman, J.K., Maxwell, J.R., 1986. Acyclic isoprenoids as biological markers. In: Johns RB (ed) Biological Markers in the Sedimentary Record, Elsevier, New York, p 1-42.
  • Waples, D.A., Curiale, J.A., 1999. Oil-Oil and Oil-Source Rock Correlations. In: Edward A, Foster D (eds.) Exploration for Oil and Gas Traps. AAPG, Chapter 8.
  • Waples, D.W., 1985. Geochemistry in Petroleum Exploration. International Human Resources Development Corp. p 232.
  • Wardlaw, G.D., Nelson, R.K., Reddy, C.M., Laventine, D.L., 2011. Biodegradation preference for isomers of alkylated naphthalenes and benzothiophenes in marine sediment contaminated with crude oil. Organic Geochemistry 42, 630-639.
  • Wenger, L.M., Davis, C.L., Isaksen, G.H., 2001. Multiple controls on petroleum biodegradation and impact on oil quality. SPE Reservoir Evaluation & Engineering 5, 375-383.
  • Winters, J.C., Williams, J.A., 1969. Microbiological alteration of crude oil. I: The reservoir. Preprints. American Chemical Society Division of Fuel Chemistry, Paper PETR 86, p. E22–E31.
  • Worden, R.H., Smalley, P.C., Oxtoby, N.H., 1995. Gas souring by thermochemical sulfate reduction at 140 °C. AAPG Bulletin 79 (6), 854-863. Wright, S.C., 2015. Applications of the Rhenium-Osmium Isotopic System, and Platinum and Iridium Abundances in Organic-Rich Mud Rocks: A Geochronology, Geochemistry, and Redox Study. PhD Thesis, University of Houston.
  • Xia, L., Cao, L., Wang, M., Mi, J-L., Wang, T-T., 2019. A review of carbonates as hydrocarbon source rocks: basic geochemistry and oil-gas generation. Petroleum Science 16, 713-728.
  • Xu, G., Hannah, J.L., Stein, H.J., Mork, A., Vigran, J.O., Bingen, B., Schutt, D.L., Lundschien, B.A., 2014. Cause of Upper Triassic climate crisis revealed by Re‐Os geochemistry of Boreal black shales. Palaeogeography, Palaeoclimatology, Palaeoecology 395, 222‐232.
  • Xu, G., Hannah, J.L., Stein, H.J., Bingen, B., Yang, G., Zimmerman, A., Weitschat, W., Mork, A., Weiss, H.M., 2009. Re-Os geochronology of Arctic black shales to evaluate the Anisian-Ladinian boundary and global faunal correlations. Earth and Planetary Science Letters 288, 581‐587.
  • Xu, G., Hannah, J.L., Stein, H.J., Gorgiev, S.V., 2013. Application of Re‐Os geochemistry to sedimentary basins: stratigraphic correlation oil-source correlation and paleo‐environmental condition. First joint GSC‐GSA Meeting, Chengdu, Acta Geologica Sinica (English Edition) 87, 602‐604.
  • Yang, Z.H., Lien, P.J., Huang, W.S., Surampalli, R.Y., Kao, C.M., 2015. Development of the risk assessment and management strategies for TPH-contaminated sites using TPH fraction methods. Journal of Hazardous, Toxic and Radioactive Waste 21 (1), D4015003.
  • Zamansani, N., Rajabzadeh, M.A., Littke, R., Zieger, L., Baniasad, A., 2019. Organic petrology and geochemistry of Triassic and Jurassic coals of the Tabas Basin, Northeastern/Central Iran. International Journal of Coal Science & Technology 6 (3), 354-371.
  • Zdravkov, A., Bechtel, A., Sachsenhofer, R.F., Kortenski, J., Gratzer, R., 2011. Vegetation differences and diagenetic changes between two Bulgarian lignite deposits - Insights from coal petrology and biomarker composition. Organic Geochemistry 42, 237-254.
  • Zemo, D.A., Foote, G.R., 2003. The technical case eliminating the use of the TPH analysis in assessing and regulating dissolved petroleum hydrocarbons in groundwater. Groundwater Monitoring & Remediation 23 (3), 95-104.
  • Zhou, X., Jiao, W., Han, J., Zhang, J., Yu, H., Wu, L., 2010. Tracing hydrocarbons migration pathway in carbonate rock in Lunnan-Tahe oilfield. Energy Exploration & Exploitation 28 (4), 259-278.
Year 2022, Volume: 4 Issue: 2, 189 - 225, 04.07.2022

Abstract

References

  • Abboud, M., Philp, R.P., Allen, J., 2005. Geochemical correlation of oils and source rocks from central and NE Syria. Journal of Petroleum Geology 28 (2), 203-216.
  • Abdullah, W.A., 1999. Organic facies variations in the Triassic shallow marine and deep marine shales of central Spitsbergen, Svalbard. Marine and Petroleum Geology 16, 467-481.
  • Adepojua, A., Adekolaa, S.A., Omotoyea, S., 2018. Light hydrocarbon geochemistry of crude oils from Eastern Niger Delta. Petroleum Science and Technology 36 (19), 1573-1581.
  • Ader, M., Cartigny, P., Boudou, J., 2006. Nitrogen isotopic evolution of carbonaceous matter during metamorphism: Methodology and preliminary results. Chemical Geology 232, 152-169.
  • Ahmed, W., Alam, S., Jahandad, S., 2004. Techniques and methods of organic geochemistry as applied to petroleum exploration. Pakistan Journal of Hydrocarbon Research 14, 69-77.
  • Aldahik, A., 2010. Crude Oil Families in the Euphrates Graben Petroleum System. PhD Thesis, Berlin Institute of Technology, Berlin, Germany. Alexander, R., Kagi, R., Woodhouse, G.W., 1981. Geochemical correlation of Windalia oil and extracts of Winning Group (Cretaceous) potential source rocks, Barrow Subbasin, Western Australia. AAPG Bulletin 65, 235-250.
  • Alexander, G., Hazai, I., 1981. Chromatographic fingerprinting of coal extracts. Journal of Chromatography 217, 19-38.
  • Amijaya, D.H., 2005. Paleoenvironmental, paleoecological and thermal metamorphism implications on the organic petrography and organic geochemistry of Tertiary Tanjung Enim coal, South Sumatra Basin, PhD Thesis, Aachen University, Indonesia.
  • Anyigba, L.K., 2021. Prediction of API Gravity (Oil Quality) Using Some Geochemical Parameters with Ensemble Boosted Trees and Smoothing Spline Correlation Models. MSc Thesis, Istanbul Technical University
  • Asif, M., Grice, K., Fazeelat, T., 2009. Assessment of petroleum biodegradation using stable hydrogen isotopes of individual saturated hydrocarbon and polycyclic aromatic hydrocarbon distributions in oils from the Upper Indus Basin, Pakistan. Organic Geochemistry 40, 301-311.
  • Azhar, H.M., 2012. Petroleum Geochemistry of the So-Called “Dry Wells” Off Mid-Norway. MSc Thesis, University of Oslo, Norway.
  • Azmy, K., Kendall, B., Creaser, R.A., 2008. Global correlation of the Vazante Group, São Francisco Basin, Brazil: Re-Os and U-Pb radiometric age constraints. Precamb Res 164, 160-172.
  • Baioumy, H.M., Eglinton, L.B., Peucker-Ehrenbrink, B., 2011. Rhenium–osmium isotope and platinum group element systematics of marine vs. non-marine organic-rich sediments and coals from Egypt. Chemical Geology 285, 70-81.
  • Barker, C., 1979. Organic Geochemistry in Petroleum Explo-ration. AAPG Continuing Education Course Note Series 10, p 159.
  • Bechtel, A., Gruber, W., Sachsenhofer, R.F., 2001. Organic geochemical and stable isotopic investigation of coals formed in low-lying and raised mires within the Eastern Alps (Austria). Organic Geochemistry 32, 1289-1310.
  • Beyer, J., Jonsson, G., Porte, C., 2010. Analytical methods for determining metabolites of polycyclic aromatic hydrocarbon (PAH) pollutants in fish bile: a review. Environ Toxicol Pharmacol 30 (3), 224-244.
  • Bostick, N.H., 1979. Microscopic measurement of the level of catagenesis of solid organic matter in sedimentary rocks to aid exploration for petroleum and to determine former burial temperatures - A review. Society of Economic paleontologists and Mineralogists Special Publication 26, 17-43.
  • Böcker, J., Littke, R., Forster, A., 2017. An overview on source rocks and the petroleum system of the central Upper Rhine Graben. International Journal of Earth Science 106, 707-742.
  • Bray, E.E., Evans, E.D., 1961. Distribution of n-paraffins as a clue to recognition of source rocks. Geochim Cosmochim Acta 22, 2-15.
  • Chaffee, A., Hoover, D., Johns, R., Schweighardt, F.K., 1986. Biological markers extractable from coal. In: John R (ed) Biological Markers in the Sedimentary Record, Elsevier, p 311-345.
  • Chakhmakhchev, A., Suzuki, M., Takayama, K., 1997. Distribution of alkylated dibenzothiophenes in petroleum as a tool for maturity assessments. Organic Geochemistry 26 (7-8), 483-489.
  • Chandra, K., Mishra, C.S., Samanta, U., Gupta, A., Mehrotra, K.L., 1994. Correlation of different maturity parameters in the Ahmedabad - Mehsana block of the Cambay basin. Organic Geochemistry 21, 313-321.
  • Chang, X., Wang, T., Li, Q., Cheng, B., Zhang, L., 2012. Maturity assessment of severely biodegraded marine oils from the Halahatang Depression in Tarim Basin. Energy Exploration and Exploitation 30 (3), 331-350.
  • Cohen, A.S., Coe, A.L., Bartlett, J.M., Hawkesworth, C.J., 1999. Precise Re-Os ages of organic-rich mudrocks and the Os isotope composition of Jurassic seawater. Earth Planet Sciences Letter 167, 159-173.
  • Cohen, A.S., 2004. The rhenium-osmium isotope system: applications to geochronological and palaeoenvironmental problems. Journal of the Geological Society London 161, 729-734.
  • Connan, J., 1981. Biological markers in crude oils. In: Mason JF (ed) Petroleum Geology in China, Penn Well, Tulsa, OK, p 48-70.
  • Connan, J., 1984. Biodegradation of crude oils in reservoirs. In: Brooks J, Welte DH (eds.) Advances in Petroleum Geochemistry, vol. 1. Academic Press, London, p 299-335.
  • Connan, J., Cassou, A.M., 1980. Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels. Geochim Cosmochim Acta 44 (1), 1-23.
  • Creaser, R.A., Sannigrahi, P., Chacko, T., Selby, D., 2002. Further evaluation of the ReOs geochronometer in organic-rich sedimentary rocks: a test of hydrocarbon maturation effects in the Exshaw Formation Western Canada Sedimentary Basin. Geochim Cosmochim Acta 66, 3441-3452.
  • Cumming, V.M., Selby, D., Lillis, P.G., 2012. Re-Os geochronology of the lacustrine Green River Formation: Insights into direct depositional dating of lacustrine successions, Re-Os systematics and paleocontinental weathering. Earth and Planetary Science Letters 359-360, 194-205.
  • Cumming, V.M., 2013. Rhenium-osmium geochronology and geochemistry of ancient lacustrine sedimentary and petroleum systems. Durham theses, Durham University. Available at Durham E-Thesis Oline: http://ethesis.dur.ac.uk/6945.
  • Cumming, V.M., Selby, D., Lillis, P.G., Lewan, M., 2014. Re-Os geochronology and Os isotope fingerprinting of petroleum sourced from a Type I lacustrine kerogen: Insights from the natural Green River petroleum system in the Uinta Basin and hydrous pyrolysis experiments. Geochim Cosmochim Acta 138, 32-56.
  • de Abreu, C.R., de Souza, E.S., Martins, L.L., Cordeiro, T.C., Carrasquilla, A.A.G., Guimarães, A.O., 2020. Application of the electron spin resonance technique in the characterization of Brazilian oils: Correlation with their biodegradation level and polar composition. Energy & Fuels 34 (11), 13837-13848. https://dx.doi.org/10.1021/acs.energyfuels.0c02624.
  • Didyk, B.M., Simoneit, B.R.T., Brassel, S.C., Eglinton, G., 1978. Organic geochemical indicators of paleoenvironmental conditions of sedimentation. Nature 272, 216-222.
  • Dow, W.G., 1977. Petroleum Source Beds on Continental Slopes and Rises. AAPG Continuing Education Course Notes Series 5, p D1-D37.
  • Dzou, L.I.P., Hughes, W.B., 1993. Geochemistry of oils and condensates, K Field, offshore Taiwan: a case study in migration fractionation. Organic Geochemistry 20, 427-462.
  • Dultsev, F.F., Chernykh, A.V., 2020. Geochemistry of water-dissolved gases of oil-and-gas bearing deposits in Northern and Arctic Regions of Western Siberia. IOP Conf. Series: Earth and Environmental Science 459, 042024. https://doi.org/10.1088/1755-1315/459/4/042024.
  • Dumitru, M., Vladimirescu, A., 2017. Loads limits values of soils with petroleum hydrocarbons. Geophysical Research Abstracts 19, EGU2017-12351.
  • El Diasty, W.S., El Beialy, S.Y., Peters, K.E., Batten, D.J., Al-Beyati, F.M., Mahdi, A.Q., Haseeb, M.T., 2018. Organic geochemistry of the Middle-Upper Jurassic Naokelekan Formation in the Ajil and Balad oil fields, northern Iraq. Journal of Petroleum Science and Engineering 2018, 350-362.
  • El Diasty, W., Sh, El Beialy, S.Y., Mahdi, A.Q., 2016. Geochemical characterization of source rocks and oils from northern Iraq: Insights from biomarker and stable carbon isotope investigations. Marine and Petroleum Geology 77, 1140-1162.
  • Erstad, K., Hvidsten, I.V., Askvik, K.M., Barth, T., 2009. Changes in crude oil composition during laboratory biodegradation: Acids and oil-water, oil-hydrate interfacial properties. Energy & Fuel 23, 4068-4076.
  • Eymold, W.K., Swana, K., Moore, M.T., Whyte, C.J., Harkness, J.S., Talma, S., Murray, R., Moortgat, J.B., Miller, J., Vengosh, A., Darrah, T.H., 2018. Hydrocarbon-rich groundwater above shale-gas formations: A Karoo basin case study. Groundwater 56 (2), 204-224.
  • Finlay, A.J., Selby, D., Gröckea, D.R., 2010. Tracking the Hirnantian glaciation using Os isotopes. Earth Planet Sciences Letters 293, 339-348. Finlay, A.J., Selby, D., Osborne, M.J., 2011. Re-Os geochronology and fingerprinting of United Kingdom Atlantic margin oil: Temporal implications for regional petroleum systems. Geology 39, 475-478.
  • Fu, J., Guoying, S., Xu, J., Eglinton, G., Gowar, A.P., Rongfen, J., Shanfa, F., Pingan, P.,1990. Application of biological markers in the assessment of paleoenvironments of Chinese non-marine sediments. Organic Geochemistry 16, 769-779.
  • Georgiev, S., Stein, H.J., Hannah, J.L., Bingen, B., Weiss, H.M., Piasecki, S., 2011. Hot acidic Late Permian seas stifle life in record time. Earth Planet Sciences Letters 310, 389-400.
  • Georgiev, S., Stein, H.J., Hannah, J.L., Weiss, H.M., Bingen, B., Xu, G., Rein, E., Hatlø, V., Løseth, H., Nali,M., Piasecki, S.,2012. Chemical signals for oxidative weathering predict Re‐Os isochroneity in black shales. East Greenland. Chemical Geology 324‐325, 108‐121.
  • Ghasemlounia, R., Ozdemir, A., Palabiyik, Y., Karatas, A., Sahinoglu, A., 2020. Investigation of Hydrocarbon Contamination of Surface and Subsurface Waters in the West-Northwest Konya Province with TPH (Total Petroleum Hydrocarbons) in Water Analysis. İstanbul Gedik University, Scientific Research Project ID: GDK202006-03 (Ongoing project).
  • Gomez, K.J., 2016. Application of Biomarker Data in Oil Characterization. MSc Thesis, Technical University of Crete.
  • Goossens, H., de Leeuw, J.W., Schenck, P.A., et al 1984. Tocopherols as likely precursors of pristane in ancient sediments and crude oils. Nature 312, 440-442.
  • Hakimi, H.M., Alaug, A., Afify, W.E., El Nady, M.M., et al 2019. Investigating gas resource potentiality from Late Jurassic Madbi Formation in the NW -Say’un-Masila Basin, Eastern Yemen. Petroleum Science and Technology 37 (12), 1355-1362.
  • Hakimi, H.M., El Nady, M.M., Mohyaldin, I., et al 2018a. Thermal modeling and hydrocarbon generation of the Late Jurassic-Early Cretaceous Chia Gara Formation in Iraqi Kurdistan region, northern Zagros Fold Belt. Egyptian Journal of Petroleum 27 (4), 701-413.
  • Hakimi, H.M., Alaug, A., Ahmed, A.F., et al 2018b. Simulation the timing of petroleum generation and expulsion from deltaic source rocks: Implications for Late Cretaceous petroleum system in the offshore Jiza-Qama, Eastern Yemen. Journal of Petroleum Science and Engineering 170, 620-642,
  • Hannah J.L., Stein H.J., Xu G., et al 2014. Age and composition of source rocks: new steps toward tracking hydrocarbon migration. Paper presented at International Petroleum Technology Conference (IPTC), Doha, Qatar, 20‐22 January 2014.
  • Hartkopf-Fröder, C., Kloppisch, M., Mann, U., Mahlkau, P.N., Schaeffer, R.G., Wilkes, H., 2007. The end-Frasnian mass extinction in the Eifel Mountains, Germany: New insights from organic matter composition and preservation. Geological Society London Special Public 278, 173-196.
  • Harris, N.B., Mnich, C.A., Selby, D., Korn, D., 2013. Minor and trace element and Re-Os chemistry of the Upper Devonian Woodford Shale, Permian Basin, west Texas: Insights into metal abundance and basin processes. Chemical Geology 356, 76-93.
  • Havelcová, M., Sy´korová, I., Trejtnarová, H., Sulc, A., 2012. Identification of organic matter in lignite samples from basins in the Czech Republic: Geochemical and petrographic properties in relation to lithotype. Fuel 99, 129-142.
  • Head, I.M., Jones, D..M, Larter, S.R., 2003. Biological activity in the deep subsurface and the origin of heavy oil. Nature 426, 344-352.
  • Heroux, Y., Chagnon, A.G., Bertrand, R., 1979. Compilation and correlation of major thermal maturation indicators. AAPG Bulletin 63, 2128-2144.
  • Hu, J., Zhang, X., Yu, Q., Huang, Z., Xiao, Q., Zhao, H., 2014. Viscosity prediction of heavy oil from the Liaohe Basin using biomarker parameters. Petroleum Science and Technology 32, 1028-1037.
  • Hu, S., Evans, K., Craw, D., Rempel, K., Bourdet, J., Dick, J., Grice, K., 2015. Raman characterization of carbonaceous material in the Macraes orogenic gold deposit and metasedimentary host rocks, New Zealand. Ore Geology Reviews 70, 80-95.
  • Hughes, W.B., Holba, A.G., Dzou, L.I.P., 1995. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochim Cosmochim Acta 59 (17), 3581-3598.
  • Hunt, J.M., 1979. Petroleum Geochemistry and Geology. In: Gilluly J (ed) WH Freeman and Company, San Francisco.
  • Hunt, J.M., 1996. Petroleum Geochemistry and Geology. Second edn. WH Freeman, New York.
  • Ishiwatari, R., Ishiwatari, R.M., 2004. Insights on the origin of pristane and phytane in sediments and oils from laboratory heating experiments. In: Isaac R, Kaplan RJ, Hill J et al (eds.) Geochemical Investigations in Earth and Space Science: A Tribute. The Geochemical Society 9, 85-96.
  • Ishiwatari, R., Ishiwatari, M., Rohrback, G.B., Kaplan, I.R., 1977. Thermal alteration experiments on organic matter from recent marine sediments in relation to petroleum genesis. Geochim Cosmochim Acta 41, 815-828.
  • ISO 5667-3, 2018. Water quality - Sampling - Part 3: Preservation and handling of water samples.
  • ISO 9377-2, 2000. Water quality - Determination of hydrocarbon oil index - Part 2: Method using solvent extraction and gas chromatography.
  • ISO 16703, 2011. Soil quality - Determination of content of hydrocarbon in the range C10 to C40 by gas chromatography.
  • ISO 14039, 2005. Characterization of waste - Determination of content of hydrocarbon in the range C10 to C40 by gas chromatography.
  • ISO 10381-1, 2002. Soil quality - Sampling - Part 1: Guidance on the design of sampling programmes.
  • ISO 10381-2, 2002. Soil quality - Sampling - Part 2: Guidance on sampling techniques.
  • ISO 18400, 2018. Soil quality – Sampling.
  • Judik, K., Rantitsch, G., Rainer, T.M., Arkai, P., Tomljenovic, B., 2008. Alpine Metamorphism of organic matter in metasedimentary rocks from Mt. Medvednica (Croatia). Swiss Journal Geosciences 101 (3), 605-616. https://doi.org./10.1007/s00015-008-1303-z.
  • Kara-Gülbay, R., Yaylalı-Abanuz, G., Korkmaz, S., Erdogan, M.S., Cebi, F.H., Cevik, S., Agirman-Akturk, E., 2019. Organic matter type, maturity, depositional environmental characteristics, and liquid hydrocarbon potential of Late Carboniferous Kozlu Bituminous Coal and Coaly Shale Beds (Zonguldak-Amasra Basin, NW Anatolia, Turkey): An application of biomarker geochemistry. Energy & Fuels 33, 9491-9509.
  • Kato, S., Waseda, A., Nishita, H., 2006. Geochemical characteristics of crude oils from the Sagara oil field, Shizuoka Prefecture, Japan. Island Arc 15, 304-312.
  • Kayukova, G.P., Mikhailova, A.N., Kosachev, A.N.I., Emelyanov, D.A., Varfolomeev, M.A., Uspensky, B.V., Vakhin, A.V., 2020. The oil-bearing strata of Permian deposits of the Ashal’cha Oil Field depending on the content, composition, and thermal effects of organic matter oxidation in the rocks. Geofluids Article ID 6304547. https://doi.org/10.1155/2020/6304547.
  • Kendall, B., Creaser, R.A., Selby, D., 2009. 187Re/188Os geochronology of Precambrian organic-rich sedimentary rocks. Geol Soc London Special Public 326, 85-107.
  • Kendall, B.S., Creaser, R.A., Ross, G.M., david, S., 2004. Constraints on the timing of Marinoan 681 ‘Snowball Earth’ glaciation by 187Re/188Os dating of a Neoproterozoic post-glacial black shale in western Canada. Earth Planet Sciences Letters 222, 729-740.
  • Kendall, B.S., Creaser, R.A., Selby, D., 2006. Re-Os geochronology of the post-glacial black shales in Australia: Constraints on the timing of “Sturtian” glaciation. Geology 34, 729-732.
  • Kerr, A.C., 2005. Oceanic LIPs: The kiss of death. Elements 1:289-292.
  • Klemme, H.D., Ulmishek, G.F., 1990. Effective petroleum source rocks of the word: Stratigraphic distribution and controlling depositional factors. AAPG Bulletin 75 (12), 1809-1851.
  • Ko, T., 2010. Characterization of gas generated by sequential hydrous pyrolysis of potential gas-prone source rocks for tight-gas reservoirs in the Rocky Mountain Area. MSc Thesis, Colorado School of Mines.
  • Koopmans, M.P., Rijpstr,a W.I.C., Klapwijk, M.M. de Leeuw, J.W., Lewan, M.D., Damsté, J.S.S., 1999. A thermal and chemical degradation approach to decipher pristane and phytane precursors in sedimentary organic matter. Organic Geochemistry 30, 1089-1104.
  • Koopmans, M.P., Larter, S.R., Zhang, C., Mei, B., Wu, T., Chen, Y., 2002. Biodegradation and mixing of crude oils in Eocene Es3 reservoirs of the Liaohe basin, northeastern china. AAPG Bulletin 86, 1833-1843.
  • Kreuzer, R.L., Darrah, T.H., Grove, B.S. Moore, M.T., Warner, N.R., Eymold, W.K., Whyte, C.J., Mitra, G., Jackson, R.B., Vengosh, A., Poreda, R.J., 2018. Structural and hydrogeological controls on hydrocarbon and brine migration into drinking water aquifers in Southern New York. Groundwater 56 (2), 225-244.
  • Kribek B., Sykorova I., Machovic V. Laufek, F., 2008. Graphitization of organic matter and fluid-deposited graphite in Palaeoproterozoic (Birimian) black shales of the Kaya-Goren greenstone belt (Burkina Faso, West Africa). Journal of Metamorphic Geology 26, 937-958.
  • Large D.J., Christy A.G., Fallick A.E. 1994. Poorly crystalline carbonaceous matter in high grade metasediments: implications for graphitisation and metamorphic fluid compositions. Contrib Mineral Petrol 116, 108-116.
  • Larter, S., Wilhelms, A., Head, I., Koopmans, M., Aplin, A., Primio, R.D., Zwach, C., Erdmann, M., Telnaes, N., 2003. The controls on the composition of biodegraded oils in the deep subsurface - part 1: Biodegradation rates in petroleum reservoirs. Organic Geochemistry 34 (4), 601-613.
  • Law, C.A., 1999. Evaluating source rocks. In: AAPG Special Volumes. Volume Treatise of Petroleum Geology/Handbook of Petroleum Geology: Exploring for Oil and Gas Traps, 3.1-3.34.
  • Lillis, P.G., Selby, D., 2013. Evaluation of the rhenium-osmium geochronometer in the Phosphoria petroleum system, Bighorn Basin of Wyoming and Montana, USA. Geochim Cosmochim Acta 118, 312-330.
  • Lijmbach, G.W.M., 1975. On the origin of petroleum. Proceedings of the Ninth World Petroleum Congress. Geology 2, 357-369.
  • Littke, R., Lückge, A., Wilkes, H., 1998. Organic matter in Neogene sediments of the Southern Canary Channel, Canary Island (Sites 955 and 956). In: Weaver PPE, Schminke H-U, Firth, JV, et al (eds), Proceedings of the ODP Scientific Results 157, 361-372.
  • Liu, J., 2017. Re-Os Systematics of Crude Oil and Re-Os Petroleum System Geochronology. Durham Thesis, Durham University.
  • Liu, S, Qi, S, Luo, Z, Liu, F., Ding, Y., Huang, H., Chen, Z., Cheng, S., 2018a. The origin of high hydrocarbon groundwater in shallow Triassic aquifer in Northwest Guizhou, China. Environmental Geochemistry and Health 40 (1), 415-433.
  • Liu, J., Selby, D., Obermajer, M., Mort, A., 2018b. Rhenium-osmium geochronology and oil-source correlation of the Duvernay petroleum system, Western Canada sedimentary basin: Implications for the application of the rhenium-osmium geochronometer to petroleum systems. AAPG Bulletin 102 (8), 1627-1657.
  • Liu S, Qi S, Luo Z., Mapoma, H.W.T., Chen, Z., Cheng, S., 2019. The origin of high hydrocarbon groundwater in shallow aquifer: Experimental evidences from water-rock interaction. Environmental Science and Pollution Research 26, 32574-32588. https://doi.org/10.1007/s11356-019-06578-w.
  • Ma, J.J., 2016. Geochemical Characterization of the Second White Speckled Shale Formation, Western Canada Sedimentary Basin and the Mass Fraction Maturity Defining Thermal Maturity Level. MSc Thesis, University of Calgary.
  • Machel, H.G., 1998. Gas souring by thermochemical sulfate reduction at 140°C: Discussion. AAPG Bulletin 82 (10), 1870-1873.
  • Manzano, B.K., Fowler, M.G., Machel, H.G., 1997. The influence of thermochemical sulphate reduction on hydrocarbon composition in Nisku reservoirs, Brazeau river area, Alberta, Canada. Organic Geochemistry 27 (7/8), 507-521.
  • Marques, J.C., 2012. Overview on the Re-Os isotopic method and its application on ore deposits and organic-rich rocks. Geochimica Brasiliensis Ouro Preto 26 (1), 49-66.
  • Marzi, R., Torkelson, B.E., Olson, R.K., 1993. A revised carbon preference index. Organic Geochemistry 20 (8), 1303-1306.
  • Massoud, S., Al-Abdali, F., Al-Ghadban, A.N., Al-Sarawi, M., 1996. Bottom sediments of the Arabian Gulf II: TPH and TOC contents as indicators of oil pollution and implications for the effect and fate of the Kuwait oil slick. Environmental Pollution 93 (27), 1-284.
  • Matuszewska, A., 2002. Geochemıcal interpretatıon and comparison of biomarker composition of bitumens obtained from coals and surrounding rocks. Proceedings of the IV European Coal Conference, Polish Geological Institute Special Papers 7, 169-180.
  • McArthur, J.M., Algeo, T.J., van de Schootbrugge, B., L., Q., Howarth, R.J., 2008. Basinal restriction, black shales, Re-Os dating, and the Early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography 23 (4), PA4217.
  • Merchán-Rivera, P., 2017. Assessment of contamination by petroleum hydrocarbons from oil exploration and production activities in Aguarico, Ecuador. Study Project, Technical University of Munich, p 48.
  • Mille, G., Asia, L., Guiliano, M., Malleret R., Doumenq, P., 2007. Hydrocarbons in coastal sediments from the Mediterranean Sea (Gulf of Fos area, France). Marine Pollution Bulletin 54, 566-575.
  • Ministry of Agriculture and Forestry of Turkey 2004a. Surface Water Quality Regulation of Turkey (in Turkish). Retrieved 02 June 2020. http://www.resmigazete.gov.tr/eskiler/2016/08/20160810-9.htm.
  • Ministry of Agriculture and Forestry of Turkey, 2004b. Water Pollution Control Regulation of Turkey (in Turkish). Retrieved 02 June 2020. http://www.mevzuat.gov.tr/Metin.Aspx?MevzuatKod=7.5.7221&MevzuatIliski=0&sourceXmlSearch=
  • Müller, G., 1979. Schwermetalle in den Sedimenten des RheinsVeãderung seit. Umschav 79, 133-149. Murchison, D.G., 1987. Recent advances in organic petrology and organic geochemistry: in overview with some references to “oil from coal”. In: Scott, A.C. (Ed.), Coal and Coal-bearing Strata: Recent Advances Geol Soc Special Publication 32, 257-302.
  • Nasir, S., Fazeelat, T., 2013. Diamondoid hydrocarbons as maturity indicators for condensates from Southern Indus Basin, Pakistan. Journal of Chemistry Article ID 636845. http://dx.doi.org/10.1155/2013/636845.
  • Nwadinigwe, C.A., Alumona, T.N., 2018. Assessment of n-alkanes and acyclic isoprenoids (geochemical markers) in crudes: A case study of Iraq and Niger delta, Nigeria. Egyptian Journal of Petroleum 27 (1), 111-116.
  • Oforka, N.C., Osuji, L.C., Onojake, M.C., 2012. Petroleum hydrocarbon fingerprinting of crude oils from Umutu/Bomu Oilfields in Niger Delta, Nigeria. Archives of Applied Science Research 4 (1), 246-253.
  • Onojake, M.C., Osuji, L.C., Abrakasa, S., 2015. Source, depositional environment and maturity levels of some crude oils in southwest Niger Delta, Nigeria. Chin J Geochem 34 (2), 224-232.
  • Orr, W.L., 1974. Changes in sulfur content and isotopic ratios of sulphur during petroleum maturation: Study of Big Horn Basin Paleozoic oils. Part 1. AAPG Bulletin 58, 2295-2318.
  • Ozdemir, A., 2018. Usage of the Total Petroleum Hydrocarbons (TPH) in water analysis for oil and gas exploration: First important results from Turkey. Journal of Engineering Sciences and Design of Suleyman Demirel University 6 (4), 615-635 (in Turkish with English abstract).
  • Ozdemir, A., 2019a. Organic hydrogeochemical evidence of Hasanoğlan (Ankara) petroleum system. Pamukkale University Journal of Engineering Sciences 25 (6), 748-763 (in Turkish with English abstract).
  • Ozdemir, A., 2019b. Mature hydrocarbons-rich waters as geochemical evidence of working petroleum system of Mamak (Ankara) and potential trap area in the region. European Journal of Science and Technology 17, 244-260 (in Turkish with English abstract).
  • Ozdemir, A., 2019c. Organic hydrogeochemical evidence of pre-Neogene petroleum system of the Buyuk Menderes graben and potential traps (Western Turkey). European Journal of Science and Technology 16, 325-354 (in Turkish with English abstract).
  • Ozdemir A., Palabiyik Y. 2019a. A new approach to petroleum source rock occurrence: The relationships between petroleum source rock, ophiolites, mantle plume and mass extinction. Paper presented at the IV. International scientific and vocational studies congress - engineering sciences (BILMES EN), Ankara, Turkey, 07 - 10 November 2019
  • Ozdemir, A., Palabiyik, Y., 2019b. A shallow and reliable indicator for deep oil and gas accumulations in the subsurface: Metallic ore deposits. Paper presented at the IV. International Scientific and Vocational Studies Congress - Engineering Sciences (BILMES EN), Ankara, Turkey, 07 - 10 November 2019.
  • Ozdemir, A., Palabiyik, Y., 2019c. Significance of relationships between hydrocarbons and metallic ore deposits in oil and gas exploration: Part I. Gold deposits. Paper presented at BİLTEK International Symposium on Recent Developments in Science, Technology and Social Studies, Ankara, Turkey, 21-22 December 2019.
  • Ozdemir, A., Palabiyik, Y., 2019d. Significance of relationships between hydrocarbons and metallic ore deposits in oil and gas exploration: Part II. Copper deposits. Paper presented at BİLTEK International Symposium on Recent Developments in Science, Technology and Social Studies, Ankara, Turkey, 21-22 December 2019.
  • Ozdemir, A., Palabiyik, Y., 2019e. Significance of relationships between hydrocarbons and metallic ore deposits in oil and gas exploration: Part III. Lead and zinc deposits. Paper presented at BİLTEK International Symposium on Recent Developments in Science, Technology and Social Studies, Ankara, Turkey, 21-22 December 2019.
  • Ozdemir, A., Palabiyik, Y., 2019f. Use of Rhenium-Osmium (Re-Os) isotope for direct dating of organic-rich rocks and hydrocarbons/oils in petroleum geology: A review. Paper presented at ISPEC 4th International Conference on Engineering & Natural Sciences, Ankara, Turkey, 18-20 October 2019.
  • Ozdemir, A., Palabiyik, Y., 2019g. A review of Paleozoic - Miocene petroleum source rocks of Turkey by paleogeographic and paleotectonic data: New interpretations and major outcomes. Paper presented at the 7th International Symposium on Academic Studies in Science, Engineering and Architecture Sciences, Ankara, Turkey, 15-17 November 2019.
  • Ozdemir, A., Palabiyik, Y., 2020. Findings for Hydrocarbon Occurrence and Generation Associated with Possible Jurassic-Cretaceous Riftings in Eastern Pontides. Paper presented at the 4. International Academic Studies Conference, 28-30 September 2020 (in Turkish with English abstract).
  • Ozdemir, A., Palabiyik, Y., 2022. A new method for geochemical prediction of the existence of petroleum reservoirs in magmatic and metamorphic rocks. In: Lin J. (eds) Proceedings of the 2021 International Petroleum and Petrochemical Technology Conference, IPPTC 2021, Springer, https://doi.org/10.1007/978-981-16-9427-1_64.
  • Ozdemir, A., Karataş, A., Palabiyik, Y., Yasar, E., Sahinoglu, A., 2020a. Oil and gas exploration in Seferihisar Uplift (Western Turkey) containing an operable-size gold deposit: Geochemical evidence for the presence of a working petroleum system. Geomechanics and Geophysics for Geo-Energy and Geo-Resources 6 (30), 1-22. https://doi.org/10.1007/s40948-020-00152-2.
  • Ozdemir, A., Palabiyik, Y., Karataş, A., Sahinoglu, A., 2020b. Organic geochemical evidence of the working petroleum system in Beypazarı Neogene Basin and potential traps (Northwest Central Anatolia, Turkey). Turkish Journal of Geosciences 1 (2), 35-52.
  • Ozdemir, A., Karataş, A., Palabiyik, Y., Sahinoglu, A., 2020c. Reservoir-targeted oil and gas exploration in the Karaburun Peninsula (Western Turkey). International Journal of Energy and Engineering Sciences 5 (2) 115-145.
  • Ozdemir, A., Sahinoglu, A., Palabiyik, Y., Karatas, A., 2021. Reservoir-targeted oil and gas exploration in metamorphic and magmatic rocks of the Niğde Massif (Central Anatolia, Turkey). Journal of Scientific Reports-A 47, 1-26.
  • Ozdemir, A, Palabiyik, Y, Karataş, A, Sahinoglu, A., 2022. Mature petroleum hydrocarbons contamination in surface and subsurface waters of Kızılırmak Graben (Central Anatolia, Turkey): Geochemical evidence for a working petroleum system associated with a possible salt diapir. Turkish Journal of Engineering 6 (1), 01-15.
  • Palabiyik, Y., Ozdemir, A., Sahinoglu, A., Karatas, A., 2020a. Evaluation of oil and gas potential of Uludağ Massif (Northwestern Anatolia) by a new geochemical method. Trakya University Journal of Engineering Sciences 21 (1), 45-66 (in Turkish with English abstract).
  • Palabiyik, Y., Ozdemir, A., Karatas, A., Ozyagcı, M., 2020b. Identification of Oil and Gas Potential of Kastamonu and Sinop Provinces and their Surroundings (Central Pontides) by Using Total Petroleum Hydrocarbons (TPH) in Water Analysis, İstanbul Technical University, Scientific Research Project ID: MAB-2019-42217 (Ongoing project).
  • Palabiyik, Y., Ozdemir, A., 2019. Oil and gas seeps in Turkey: A review. Paper presented at the 7th International Symposium on Academic Studies in Science, Engineering and Architecture Sciences, Ankara, Turkey, 15-17 November 2019.
  • Palabiyik, Y., Ozdemir, A., 2020. Use of TPH (Total Petroleum Hydrocarbons) in water analysis for oil and gas exploration in Turkey: The case studies from Western, Northwestern, and Central Anatolia regions and major outcomes. Turkey IV Scientific and Technical Petroleum Congress, November 18-20, Ankara, Turkey (in press) (in Turkish).
  • Palacas, J.G., Ander,s D.E., King, J.D., 1984. South Florida Basin- A prime example of carbonate source rocks in petroleum, in J. G. Palacas, ed., Geochemistry and Source Rock Potential of Carbonate Rocks. AAPG Studies in Geology 18, 71-96.
  • Paul, M., Reisberg, L., Vigier, N., 2009. A new method for analysis of osmium isotopes and concentrations in surface and subsurface water samples. Chemical Geology 258, 136-144.
  • Peters, K.E., 2000. Petroleum tricyclic terpanes: predicted physicochemical behavior from molecular mechanics calculations. Organic Geochemistry 31, 497-507.
  • Peters, K.E., Cassa, M.R., 1994. Applied Source Rock Geochemistry. In: Magoon, LB, Dow WG (eds) The Petroleum System - from Source to Trap. AAPG Memoir 60, p 93-120.
  • Peters, K.E., Fraser, T.H., Amris, W., Rustanto, B., Hermanto, E., 1999. Geochemistry of crude oils from eastern Indonesia. AAPG Bulletin 83, 1927-1942.
  • Peters, K.E., Fowler, M.G., 2002. Applications of petroleum geochemistry to exploration and reservoir management. Organic Geochemistry 33, 5-36.
  • Peters, K.E., Walters, C.C., Moldowan, J.M., 2005. The Biomarker Guide: Biomarkers and Isotopes in Petroleum Exploration and Earth History. Second Edn. Cambridge University Press, p 1155.
  • Peters, K.E., Moldowan, J.M., 1993. The Biomarker Guide, Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Englewood Cliffs, Jersey, Prentice Hall, p 339-363
  • Petersen, H.I., Hertle, M., Juhasz, A., Krabbe, H., 2016. Oil family typing, biodegradation and source rock affinity of liquid petroleum in the Danish North Sea. Journal of Petroleum Geology 39 (3), 247-268.
  • Pletsch, T., Appel, J., Botor, D., Clayton, C., Duin, E., Faber, E., Gorecki, W., Kombrink, H., Kosakowski, P., Kuper, G., Kus, J., Lutz, R., Mathiesen, A., Ostertag-Henning, C., Papiemik, B., van Bergen, F., 2010. Petroleum generation and migration. In: Doornenbal JC, Stevenson AG (eds.) Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v. (Houten), p 225-253.
  • Pierson-Wickmann, A.C., Reisberg, L., France-Lanord, C., 2002. Behavior of Re and Os during low-temperature alteration: Results from Himalayan soils and altered black shales. Geochim Cosmochim Acta 66 (9), 1539-1548.
  • Potter, II R.W., Harrington, P.A., Silliman, A.H., 1996. Significance of geochemical anomalies in hydrocarbon exploration. In: Schumacher D, Abrams MA (eds.) Hydrocarbon migration and its near-surface expression. AAPG Memoir 66, p 431-439.
  • Poturay, V.A., Kompanichenko, V.N., 2019. Composition and distribution of saturated hydrocarbons in the thermal waters and vapor-water mixture of the Mutnovskii Geothermal Field and Uzon Caldera, Kamchatka. Geochemistry International 57 (1), 74-82.
  • Prosser, S.A., Kornacki, A.S., Laughland, M., McCaffrey, M.A., Edmonds, V.J., 2020. Identification and characterization of oil groups in the Midland Basin using geochemical source and maturity parameters measured on > 1,600 oils and condensates from 692 wells. Paper presented at Unconventional Resources Technology Conference, Austin, Texas, USA, 20-22 July 2020.
  • Rantitsch, G., Judik, K., 2009. Alpine metamorphism in the central segment of the Western Greywacke Zone (Eastern Alps). Geologica Carpathica 60 (4), 319-329.
  • Rantitsch, G., Grogger, W., Teichert C., Ebner, F., Hofer, C., Maurer, E-M., Schaffer, B., Toth, M., 2004. Conversion of carbonaceous material to graphite within the Greywacke Zone of the Eastern Alps. International Journal of Earth Sciences 93, 959-973.
  • Ravizza, G., Turekian, K.K., 1989. Application of the 187Re-187Os system to black shale geochronometry. Geochim Cosmochim Acta 53, 3257-3262.
  • Ravizza, G., Turekian, K.K., Hay, B.J., 1991. The geochemistry of rhenium and osmium in recent sediment from the Black Sea. Geochim Cosmochim Acta 55, 3741-3752.
  • Rice, D., 1993. Composition and Origins of Coalbed Gas. In: Law BE, Rice D (eds.) Hydrocarbons from Coal. AAPG Studies in Geology 38, p 159-184.
  • Roadifer, R.E., 1987. Size distributions of the world’s largest known oil and tar accumulations. In: Meyer RF (ed) Exploration for Heavy Crude Oil and Natural Bitumen. American Association of Petroleum Geologists, Tulsa, AAPG Studies in Geology 25, p 3-23.
  • Rooney, A.D., Selby, D., Houzay, J-P., renne, P.R., 2010. Re-Os geochronology of a Mesoproterozoic sedimentary succession, Taoudeni basin, Mauritania: Implications for basin-wide correlations and Re-Os organic-rich sediments systematic. Earth Planet Sciences Letters 289, 486-496.
  • Sahinoglu, A., Ozdemir, A., Palabiyik., Y., 2020a. Investigation of Oil and Gas Potential of Northern Ankara (Central Turkey) by Total Petroleum Hydrocarbons (TPH) in Water and Soil Analyses. İstanbul Esenyurt University, Scientific Research Project ID: BAP2019-02 (Ongoing project).
  • Sahinoglu, A., Ozdemir, A., Palabiyik, Y., 2020b. Investigation of Oil and Gas Potential of Ulukışla Basin (Central Turkey) by Total Petroleum Hydrocarbons (TPH) in Water and Soil Analyses. İstanbul Esenyurt University, Scientific Research Project ID: BAP2020-07 (Ongoing project)
  • Sainbayar, A., Vosmerikov, A.V., Nordov, E., Golovko, A.K., 2005. Study of individual hydrocarbons’ composition of gasoline fraction of Tamsagbulag oil, Mongolia. Journal of Petroleum Science and Engineering 46 (4), 233-242.
  • Samoilenko, V.K., Shadrina, E.S., Goncharov, I.V., Oblasov, N.V., Veklich, M.A., Zherdeva, A.V., 2019. The origin of hydrocarbon fluids and features of the formation of oil and gas fields in the Gydan Peninsula. Paper presented at the 29th International Meeting on Organic Geochemistry (IMOG). Gothenburg, Sweden, 1-6 September 2019.
  • Sari, G.L., Trihadiningrum, Y., Ni’matuzahroh, N., 2018. Petroleum hydrocarbon pollution in soil and surface water by public oil fields in Wonocolo Sub-district, Indonesia. Journal of Ecological Engineering 19 (2), 184-193.
  • Sawicka, N., Janeczek, J., Fabiañska, M., Bahranowski, K., Krzykawski, T., Matuszewska, A., 2018. Mineralogy and organic geochemistry of phyllite from the Dewon–Pokrzywna deposit, the Opava Mountains (SW Poland). Geological Quarterly 62 (4), 817-828. Selby, D., Creaser, R.A., 2003. Re-Os geochronology of organic rich sediments: an evaluation of organic matter analysis methods. Chemical Geology 200, 225-240.
  • Selby, D., Creaser, R.A., 2005. Direct radiometric dating of the Devonian-Carboniferous timescale boundary using the Re-Os black shale geochronometer. Geology 33, 545-548.
  • Selby, D., Mutterlose, J., Condon, D.J., 2009. U-Pb and Re-Os Geochronology of the Aptian/Albian and Cenomanian/ Turonian stage boundaries: Implications for timescale calibration, osmium isotope seawater composition and Re-Os systematics in organic-rich sediments. Chemical Geology 265, 394-409.
  • Shanmugam, G., 1985. Significance of coniferous rain forests and related oil. Gippsland Basin, Australia. AAPG Bulletin 69, 1241-1254.
  • Stein, H.J., Hannah, J.L., 2014. The emerging potential of Re‐Os isotope geochemistry for source rocks and maturation‐migration histories. Paper presented at International Petroleum Technology Conference (IPTC), Doha, Qatar, 20‐22 January 2014.
  • Stein, H.J., Hannah, J.L., Yang, G., Galimberti, R., Nali, M., 2014. Ordovician source rocks and Devonian oil expulsion on bolide impact at Siljan, Sweden - the Re‐Os story. Paper presented at International Petroleum Technology Conference (IPTC), Doha, Qatar, 20‐22 January 2014.
  • Suárez-Ruiz, I., Flores, D., Filho, J.G.M., Hackley, P.C., 2012. Review and update of the applications of organic petrology: Part 1, geological applications. International Journal of Coal Geology 99, 54-112.
  • Suchý, V., Sandler, A., Slobodník, M., Sýkorová, I., Filip, J., Melka, K., Zeman, A., 2015. Diagenesis to very low-grade metamorphism in lower Palaeozoic sediments: A case study from deep borehole Tobolka 1, the Barrandian Basin, Czech Republic. International Journal of Coal Geology 140, 41-62.
  • Suchý, V., Sykorova, I., Melka, K., Filip, J., Machovič, V., 2007. Illite ‘crystallinity’, maturation of organic matter and microstructural development associated with lowest-grade metamorphism of Neoproterozoic sediments in the Tepla´-Barrandian unit, Czech Republic. Clay Minerals 42, 503-526.
  • Sun, Y.Z., Wang, J.X., Liu, L.F., Chen, J., 2005. Maturity parameters of source rocks from the Baise Basin, South China. Energy Exploration and Exploitation 23 (4), 257-266.
  • Sun, Y.Z., Liu, C.Y., Lin, M.Y., Li, Y., Qin, P., 2009. Geochemical evidences of natural gas migration and releasing in the Ordos Basin, China. Energy Exploration and Exploitation 27 (1), 1-13.
  • Sun, Y.Z., Qin, S.J., Zhao, C.L., Kalkreuth, W., 2010. Experimental study of early formation processes of macerals and sulfides. Energy and Fuels 24, 1124-1128.
  • ten Haven, H.L., Baas, M., Kroot, M., de Leeuw, J.W., Schenck, P.A., Ebbing, J., 1987. Late Quaternary Mediterranean sapropels. III: assessment of source of input and palaeotemperature as derived from biological markers. Geochim Cosmochim Acta 51, 803-810.
  • Tissot, B., Califet-Debyser, Y., Deroo, G., Oudin, J.L., 1971. Origin and evolution of hydrocarbons in early Toarcian shales, Paris Basin, France. AAPG Bulletin 55, 2177-93.
  • Tissot, B.P., Welte, D.H., 1984. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration. Springer-Verlag, p 699.
  • Tran, K.L., Philippe, B., 1993. Oil and rock extract analysis. In: Bordenave ML (eds.) Applied Petroleum Geochemistry, p. 373-394
  • Tripathy, G.R., Hannah, J.L., Stein, H.J., Yang, G., 2014. Re‐Os age and depositional environment for black shales from the Cambrian‐Ordovician boundary, Green Point, western Newfoundland. Geochemistry, Geophysics, Geosystems 15, 1021‐1037.
  • Thompson, J.G., 1982. Hydrocarbon source rock analyses of Pakawau Group and Kapuni Formation sediments, northwest Nelson and offshore South Taranaki, New Zealand. New Zealand Journal of Geology and Geophysics 25 (2), 141-148.
  • Ulmishek, G.F., Klemme, H.D., 1991. Depositional controls, distribution and effectiveness of world’s petroleum source rocks. US Geological Survey, p 59.
  • US-EPA, 2009. US Environmental Protection Agency, Soil Hazard Categorization and Management. Industrial Waste Resource Guidelines (IWRG621). https://www.epa.vic.gov.au/about-epa/publications/iwrg621.
  • Volk, H., 2020. Source Rocks, Bitumens and Petroleum Inclusions from the Prague Basin (Barrandian, Czech Republic) Constraints for Petroleum Generation and Migration from Petrology, Organic Geochemistry and Basin Modelling. PhD Thesis, RWTH Aachen University.
  • Volkman, J.K., Alexander, R., Kagi, R.I., Woodhouse, G.W., 1983. Demethylated hopanes in crude oils and their applications in petroleum geochemistry. Geochim Cosmochim Acta 47 (4), 785-794.
  • Volkman, J.K., Maxwell, J.R., 1986. Acyclic isoprenoids as biological markers. In: Johns RB (ed) Biological Markers in the Sedimentary Record, Elsevier, New York, p 1-42.
  • Waples, D.A., Curiale, J.A., 1999. Oil-Oil and Oil-Source Rock Correlations. In: Edward A, Foster D (eds.) Exploration for Oil and Gas Traps. AAPG, Chapter 8.
  • Waples, D.W., 1985. Geochemistry in Petroleum Exploration. International Human Resources Development Corp. p 232.
  • Wardlaw, G.D., Nelson, R.K., Reddy, C.M., Laventine, D.L., 2011. Biodegradation preference for isomers of alkylated naphthalenes and benzothiophenes in marine sediment contaminated with crude oil. Organic Geochemistry 42, 630-639.
  • Wenger, L.M., Davis, C.L., Isaksen, G.H., 2001. Multiple controls on petroleum biodegradation and impact on oil quality. SPE Reservoir Evaluation & Engineering 5, 375-383.
  • Winters, J.C., Williams, J.A., 1969. Microbiological alteration of crude oil. I: The reservoir. Preprints. American Chemical Society Division of Fuel Chemistry, Paper PETR 86, p. E22–E31.
  • Worden, R.H., Smalley, P.C., Oxtoby, N.H., 1995. Gas souring by thermochemical sulfate reduction at 140 °C. AAPG Bulletin 79 (6), 854-863. Wright, S.C., 2015. Applications of the Rhenium-Osmium Isotopic System, and Platinum and Iridium Abundances in Organic-Rich Mud Rocks: A Geochronology, Geochemistry, and Redox Study. PhD Thesis, University of Houston.
  • Xia, L., Cao, L., Wang, M., Mi, J-L., Wang, T-T., 2019. A review of carbonates as hydrocarbon source rocks: basic geochemistry and oil-gas generation. Petroleum Science 16, 713-728.
  • Xu, G., Hannah, J.L., Stein, H.J., Mork, A., Vigran, J.O., Bingen, B., Schutt, D.L., Lundschien, B.A., 2014. Cause of Upper Triassic climate crisis revealed by Re‐Os geochemistry of Boreal black shales. Palaeogeography, Palaeoclimatology, Palaeoecology 395, 222‐232.
  • Xu, G., Hannah, J.L., Stein, H.J., Bingen, B., Yang, G., Zimmerman, A., Weitschat, W., Mork, A., Weiss, H.M., 2009. Re-Os geochronology of Arctic black shales to evaluate the Anisian-Ladinian boundary and global faunal correlations. Earth and Planetary Science Letters 288, 581‐587.
  • Xu, G., Hannah, J.L., Stein, H.J., Gorgiev, S.V., 2013. Application of Re‐Os geochemistry to sedimentary basins: stratigraphic correlation oil-source correlation and paleo‐environmental condition. First joint GSC‐GSA Meeting, Chengdu, Acta Geologica Sinica (English Edition) 87, 602‐604.
  • Yang, Z.H., Lien, P.J., Huang, W.S., Surampalli, R.Y., Kao, C.M., 2015. Development of the risk assessment and management strategies for TPH-contaminated sites using TPH fraction methods. Journal of Hazardous, Toxic and Radioactive Waste 21 (1), D4015003.
  • Zamansani, N., Rajabzadeh, M.A., Littke, R., Zieger, L., Baniasad, A., 2019. Organic petrology and geochemistry of Triassic and Jurassic coals of the Tabas Basin, Northeastern/Central Iran. International Journal of Coal Science & Technology 6 (3), 354-371.
  • Zdravkov, A., Bechtel, A., Sachsenhofer, R.F., Kortenski, J., Gratzer, R., 2011. Vegetation differences and diagenetic changes between two Bulgarian lignite deposits - Insights from coal petrology and biomarker composition. Organic Geochemistry 42, 237-254.
  • Zemo, D.A., Foote, G.R., 2003. The technical case eliminating the use of the TPH analysis in assessing and regulating dissolved petroleum hydrocarbons in groundwater. Groundwater Monitoring & Remediation 23 (3), 95-104.
  • Zhou, X., Jiao, W., Han, J., Zhang, J., Yu, H., Wu, L., 2010. Tracing hydrocarbons migration pathway in carbonate rock in Lunnan-Tahe oilfield. Energy Exploration & Exploitation 28 (4), 259-278.
There are 200 citations in total.

Details

Primary Language English
Subjects Geological Sciences and Engineering (Other)
Journal Section Research Article
Authors

Adil Ozdemır

Yildiray Palabıyık

Publication Date July 4, 2022
Published in Issue Year 2022 Volume: 4 Issue: 2

Cite

AMA Ozdemır A, Palabıyık Y. Geochemical Assessment Methods of Outcropped Metasedimentary/ Metamorphic and Deeply Buried Sedimentary Oil and Gas Source Rocks by Hydrocarbon-Rich Waters and Soils: A Novel Graphical Approach and Case Studies. IJESKA. July 2022;4(2):189-225.