Research Article
BibTex RIS Cite
Year 2019, Volume: 5 Issue: 2, 59 - 63, 30.06.2019

Abstract

References

  • E. B. Mathew, D. Khanduja, B. Sapra, B. Bhushan, Robotic arm control through human arm movement detection using potentiometers, International Conference on Recent Developments in Control, Automation and Power Engineering, 2015.
  • B. İşçimen, H. Atasoy, Y. Kutlu, S. Yıldırım, E. Yıldırım, Smart robot arm motion using computer vision, Elektronika Ir Elektrotechnika, ISSN 1392-1215.
  • M. A. Jayaram, H. Fleyeh, Convex hulls in image processing: a scoping review, American Journal of Intelligent Systems, 2016.
  • OpenCV library document, https://opencv.org/
  • Structural Analysis and Shape Descriptors, OpenCV “2.4.13.7 documentation”. https://docs.opencv.org
  • A. Dhawan, A. Bhat, S. Sharma, H. K. Kaura, Automated robot with object recognition and handling features, International Journal of Electronics and Computer Science Engineering, ISSN 2277-1956/V2N3-861-873.
  • Abhishek Chavan, Abhishek Bhuskute, Anmol Jain, Dynamics of robotic arm, International Journal of Computer Applications (0975 – 8887), 2014.
  • C. Manresa, J. Varona, R. Mas, F. J. Perales, ‘‘Hand tracking and gesture recognition for human-computer interaction’’, Electronic Letters on Computer Vision and Image Analysis 5(3):96-104, 2005.
  • P. Xu, A real-time hand gesture recognition and humancomputer interaction system, arXiv:1704.07296v1 [cs.CV] 24 Apr 2017.
  • A. Soetedjo, I.K. Somawirata, A. Irawan, ‘‘Human arm movement detection using low-cost sensors for controlling robotic arm’’, Journal of Telecommunication, Electronic and Computer Engineering, e-ISSN: 2289-8131 Vol. 10 No. 2-3.
  • A. Alam, T. Rana, M. Hashemy, An autonomous detective robotic arm, International Conference on Mechanical, Industrial and Materials Engineering 2017.

Controlling A Robotic Arm Using Hand Recognition Software

Year 2019, Volume: 5 Issue: 2, 59 - 63, 30.06.2019

Abstract

With the increasing need of repetitive tasks in
the manufacturing industry, robotic automation is becoming a necessity. In the
steel industry, workers become less efficient over time, causing interruptions
during assembly. Robotic automation is capable of operating at highest
efficiency therefore increasing productivity in the steel industry. 
The robot will be able to pick up and drop
metallic object with the help of the electromagnet present on the robotic arm.
The handling of the objects will be triggered by the hand gestures from the
user. The image to be processed will be captured by an external camera. This
robot is built as a prototype for the steel industry. 

References

  • E. B. Mathew, D. Khanduja, B. Sapra, B. Bhushan, Robotic arm control through human arm movement detection using potentiometers, International Conference on Recent Developments in Control, Automation and Power Engineering, 2015.
  • B. İşçimen, H. Atasoy, Y. Kutlu, S. Yıldırım, E. Yıldırım, Smart robot arm motion using computer vision, Elektronika Ir Elektrotechnika, ISSN 1392-1215.
  • M. A. Jayaram, H. Fleyeh, Convex hulls in image processing: a scoping review, American Journal of Intelligent Systems, 2016.
  • OpenCV library document, https://opencv.org/
  • Structural Analysis and Shape Descriptors, OpenCV “2.4.13.7 documentation”. https://docs.opencv.org
  • A. Dhawan, A. Bhat, S. Sharma, H. K. Kaura, Automated robot with object recognition and handling features, International Journal of Electronics and Computer Science Engineering, ISSN 2277-1956/V2N3-861-873.
  • Abhishek Chavan, Abhishek Bhuskute, Anmol Jain, Dynamics of robotic arm, International Journal of Computer Applications (0975 – 8887), 2014.
  • C. Manresa, J. Varona, R. Mas, F. J. Perales, ‘‘Hand tracking and gesture recognition for human-computer interaction’’, Electronic Letters on Computer Vision and Image Analysis 5(3):96-104, 2005.
  • P. Xu, A real-time hand gesture recognition and humancomputer interaction system, arXiv:1704.07296v1 [cs.CV] 24 Apr 2017.
  • A. Soetedjo, I.K. Somawirata, A. Irawan, ‘‘Human arm movement detection using low-cost sensors for controlling robotic arm’’, Journal of Telecommunication, Electronic and Computer Engineering, e-ISSN: 2289-8131 Vol. 10 No. 2-3.
  • A. Alam, T. Rana, M. Hashemy, An autonomous detective robotic arm, International Conference on Mechanical, Industrial and Materials Engineering 2017.
There are 11 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Ali Çetinkaya 0000-0003-4535-3953

Onur Öztürk This is me 0000-0002-1625-3075

Ali Okatan This is me 0000-0002-8893-9711

Publication Date June 30, 2019
Acceptance Date April 27, 2019
Published in Issue Year 2019 Volume: 5 Issue: 2

Cite

APA Çetinkaya, A., Öztürk, O., & Okatan, A. (2019). Controlling A Robotic Arm Using Hand Recognition Software. International Journal of Engineering Technologies IJET, 5(2), 59-63.
AMA Çetinkaya A, Öztürk O, Okatan A. Controlling A Robotic Arm Using Hand Recognition Software. IJET. June 2019;5(2):59-63.
Chicago Çetinkaya, Ali, Onur Öztürk, and Ali Okatan. “Controlling A Robotic Arm Using Hand Recognition Software”. International Journal of Engineering Technologies IJET 5, no. 2 (June 2019): 59-63.
EndNote Çetinkaya A, Öztürk O, Okatan A (June 1, 2019) Controlling A Robotic Arm Using Hand Recognition Software. International Journal of Engineering Technologies IJET 5 2 59–63.
IEEE A. Çetinkaya, O. Öztürk, and A. Okatan, “Controlling A Robotic Arm Using Hand Recognition Software”, IJET, vol. 5, no. 2, pp. 59–63, 2019.
ISNAD Çetinkaya, Ali et al. “Controlling A Robotic Arm Using Hand Recognition Software”. International Journal of Engineering Technologies IJET 5/2 (June 2019), 59-63.
JAMA Çetinkaya A, Öztürk O, Okatan A. Controlling A Robotic Arm Using Hand Recognition Software. IJET. 2019;5:59–63.
MLA Çetinkaya, Ali et al. “Controlling A Robotic Arm Using Hand Recognition Software”. International Journal of Engineering Technologies IJET, vol. 5, no. 2, 2019, pp. 59-63.
Vancouver Çetinkaya A, Öztürk O, Okatan A. Controlling A Robotic Arm Using Hand Recognition Software. IJET. 2019;5(2):59-63.

88x31.png Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)