Research Article
BibTex RIS Cite

Screening the Polyethylene Glycol 6000 Induced Upland Cotton (Gossypium hirsutum L.) Cultivars Drought Response at The Germination Stage

Year 2024, Volume: 4 Issue: 1, 1 - 9, 29.03.2024

Abstract

Cotton is the most important source of natural fiber used in the textile industry and oil. Cotton provides raw materials for approximately 50 industry branches; it is a source of livelihood for about 200 million people worldwide. There are about 20 biotic and abiotic stress factors that limit the production of cotton. Drought is one of the most destructive abiotic stresses in all cotton-growing areas. Since drought is an abiotic stress factor that directly or indirectly affects the entire world negatively, a multifaceted approach is necessary to combat drought. This experiment was conducted in the University of Bingol, Genç Vocational School, Agriculture Biotechnology laboratory, in May 2023 year. The objective of the research was to explore upland cotton cultivar’s reaction to drought conditions induced by osmotic pressure stresses of 0 MPa (control), -4 MPa, -6 MPa, -8 MPa, and -10 MPa using PEG6000 chemical on Ten upland cotton cultivars. Germination percentage (GP, %) of cultivars was measured. In conclusion, In summary, May 344 and May 455 cultivars display notably superior tolerance to Osmotic Stress in contrast to other varieties, with Beren and SG-125 also showing relatively favorable tolerance levels. These discoveries offer valuable perspectives into the germination characteristics of these cultivars across diverse osmotic environments. Cultivars exhibiting consistently high germination percentages (GP) should be sown in uncontrolled field conditions to evaluate their germination and emergence potential. Moreover, cultivars demonstrating a fast germination rate and emergence may have genes associated with the earliness traits in cotton.

References

  • Abdual-Baki, A. and Andersen, J. (1973). Relationship between decarboxylation of glutamatic acid and vigor in soybean seed. Crop Science. 13(2): 222-226.
  • Abhinandan, K., Skori, L., Stanic, M., Hickerson, N. M., Jamshed, M., Samuel, M. A. (2018). Abiotic stress signaling in wheat–an inclusive overview of hormonal interactions during abiotic stress responses in wheat. Frontiers in plant science, 9, 734.
  • Ali, F., Qanmber, G., Li, F., Wang, Z. (2021). Updated role of ABA in seed maturation, dormancy, and germination. J Adv Res Mar 31;35: 199-214. doi: 10.1016/j.jare.2021.03.011. PMID: 35003801; PMCID: PMC8721241.
  • Ashraf, M.Y., Naqvi, M.H. and Khan, A.H. (1996). Evaluation of four screening techniques for drought tolerance in wheat (Triticum aestivum L.). Acta Agron. Hung. 44: 213-220.
  • Babu, A.G., Patil, B. C., Pawar, K. N. (2014). Evaluation of cotton genotypes for drought tolerance using PEG-6000 water stress by slanting glass plate technique. The Bioscan, 9(4), 1419-1424.
  • Bai, Y., Xiao, S., Zhang, Z., Zhang, Y., Sun, H., Zhang, K., Liu, L. (2020). Melatonin improves the germination rate of cotton seeds under drought stress by opening pores in the seed coat. PeerJ, 8, e9450.
  • Belcher. E.W., & Miller. L. (1975). Influence of substrate moisture level on the germination of sweetgum and sand pine seed. In Proceedings.
  • Bokobana, A., Gnofam, N., Koffı, Z. K., Assıh, A., Akantetou, K. P., Bassarou, A., Koffi, T. O. Z. O. (2023). Seed hydropriming to alleviate drought stress in germination of two cotton (Gossypium hirsutum L.) varieties. Christopher, R., Viot & Jonathan F. Wendel (2023) Evolution of the Cotton Genus, Gossypium, and Its Domestication in the Americas, Critical Reviews in Plant Sciences, 42:1, 1-33, DOI: 10.1080/07352689.2022.2156061.
  • Côme, D. (1982). Germination. pp. 129–225 in Mazliak. P. (Ed.) Physiologie Végétale II Croissance et Développement. Hermann. Paris.
  • Dodd, G.L. and Donovan, L.A. (1999) Water potential and ionic effect on germination and seedling growth of two cold desert shrubs. Amer J Bot 86:1146-1153.
  • Donohue, K., Rubio, de, Casas, R., Burghardt, L., Kovach, K., Willis, C.G. (2010). Germination, postgermination adaptation, and species ecological ranges. Annu Rev Ecol Evol Syst. 2010; 41:293–319.
  • Faiza, A., Qanmber, G., Yonghui, L., Shuya, M., Lili, L., Zuoren, Y. (2019) Genome-wide identification of Gossypium INDETERMINATE DOMAIN genes and their expression profiles in ovule development and abiotic stress responses. J Cotton Res.
  • FAO. (2021). Recent Trends and Prospects in the World Cotton Market and Policy Developments. Food and Agriculture Organization of the United Nations, Markets and Trade Division - Economic and Social Development Stream Markets. https://www.fao.org/3/cb4589en/cb4589en.pdf.
  • Food of Agriculture Organization, FAO (2024). https://www.fao.org/markets-and-trade/commodities/cotton/fr/ (Accessed: 15.02.2024.
  • Heikal, M. M,. Shaddad, M.A., Ahmed, A.M. (1982) Effect of water stress and gibberellic acid on germination of flax. sesame and onion seed. Biol Plant 24:124-129.
  • Subedi, K.D. and Ma, B.L. (2005). “Seed priming does not improve corn yield in a humid temperate environment,” Agronomy Journal, vol. 97, no. 1, pp. 211–218.
  • Khadi, B.M., Santhy, V., & Yadav, M.S. (2010). Cotton: an introduction. Cotton: biotechnological advances, 1-14.
  • Kucera, B., Cohn, M.A., Leubner-Metzger, G. (2005). Plant hormone interactions during seed dormancy release and germination. Seed Sci Res. 2005;15(4):281–307.
  • Lamichhane. J.R., Messéan. A. & Ricci. P. (2019). Research and innovation priorities as defined by the Ecophyto plan to address current crop protection transformation challenges in France. Advances in agronomy. 154. 81-152.
  • Larcher, W. (2000). Plant Ecophysiology. RIMA, São Carlos, SP, Brazil. 5: 31 p. (in Portuguese)
  • Lopes. K.P.; Bruno. R.L.A.; Costa. R.F.; Bruno. G.B.; Rocha. M.S. (2006). Effects of seed processing on physiological and sanitary qualities of seeds of herbaceous cotton. Revista Brasileira de Engenharia Agrícola e Ambiental 10: 426-435. (in Portuguese with abstract in English).
  • Medeiros, Filho. S.; Silva. S.O.; Dutra. A.S.; Torres. S.B. (2006). Comparison of germination test methodologies of linted and delinted cotton seeds. Revista Caatinga 19: 56-60. (in Portuguese with abstract in English).
  • Meneses, C. H. S. G., Bruno, R. D. L. A., Fernandes, P. D., Pereira, W. E., Lima, L. H. G. D. M., Lima, M. M. D. A., Vidal, M. S. (2011). Germination of cotton cultivar seeds under water stress induced by polyethyleneglycol-6000. Scientia Agricola, 68, 131-138.
  • Michel, B.E. and Kaufmann, M.R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiol. 51:914. 1973.
  • Muscolo, A.; Sidari, M.; Anastasi, U.; Santonoceto, C.; Maggio, A. (2014) Effect of PEG-induced drought stress on seed germination of four lentil cultivars. Journal of Plant Interactions 2014, 9, 354–363.
  • Okçu, G.; Kaya, M.D.; Atak, M. (2005). Effects of salt and drought stress on germination and seedling growth of pea (Pisum sativum L.). Turkish Journal of Agriculture and Forestry 29: 237-242.
  • Pawar, K. N. and Veena, V. B. (2020). Evaluation of Cotton Genotypes for Drought Tolerance using PEG-6000 Water Stress by Slanting Glass Plate Technique.Int.J.Curr.Microbiol.App.Sci. 9(11): 3203-3212. doi: https://doi.org/10.20546/ijcmas.2020.911.386.
  • Qanmber, G., Lu L., Liu, Z., Yu, D., Zhou, K., Huo, P. (2019). Genome-wide identification of GhAAI genes reveals that GhAAI66 triggers a phase transition to induce early flowering. J Exp Bot. 2019;70(18):4721–4736.
  • Ranjbarfordoei, A.; Samson, R.; Van Damme, P.; Lemeur, R. (2000) Effects of Drought Stress Induced by Polyethylene Glycol on Pigment Content and Photosynthetic Gas Exchange of Pistacia Khinjuk and P. Mutica. Photosynthetica 2000, 38, 443–447.
  • Saleh, H., Yahaya, A. I., Abubakar, H., Sami, R. A. (2021). Effect of hydro and Osmo prımıng on the physıologıcal qualitıes of stored cotton seed (Gossypium spp. L.).
  • Shu, K., Luo, X., Meng, Y., Yang, W. (2018) Toward a molecular understanding of abscisic acid actions in floral transition. Plant Cell Physiol. 2018;59(2):215–221.
  • Souza, Filho., A.P.S. (2006). Influence of temperature, light, and osmotic and saline stresses on seed germination of Leucaena leucocephala. Pasturas Tropicales 22: 47-53. (in Spanish with abstract in English).
  • Tian, Z., Li, K., Sun, Y., Chen, B., Pan, Z., Wang, Z., Du, X. (2024). Physiological and transcriptional analyses reveal the formation of memory under recurring drought stresses in seedlings of cotton (Gossypium hirsutum). Plant Science, 338, 111920.
  • Tsaliki, E., Xanthopoulos, F., Kechagia, U., Leloudis, C. (2019). Evaluation of germination ability of cotton cultivars (Gossypium hirsutum L.) under artificial stress conditions. Agric. Sci. Pract, 4(1), 4-8.
  • Wang, J.J. (2011). Germination characteristics and comprehensive evaluation of drought resistance of 41 accessions of cotton germplasm at seed germination stage under PEG-6000 stress. Journal of Plant Genetic Resources, 12(6), 840-846.
  • Wendel J.F. and Cronn RC (2003). Polyploidy and the evolutionary history of cotton. Advances in Agronomy. vol. 78 (pg. 139-186).
  • Yang, C. and Li, L. (2017). Hormonal regulation in shade avoidance. Front Plant Sci. 2017; 8:1527.
  • Zahid, Z., Khan, M. K. R., Hameed, A., Akhtar, M. Ditta. A., Hassan., H. M., Farid, G. (2021). Dissection of Drought Tolerance in Upland Cotton Through Morpho-Physiological and Biochemical Traits at Seedling Stage. Frontiers in Plant Science. 2021. 12. 260.
  • Zerrouk, N., Chemtob, C., Arnaud, P., Toscani, S., Dugue, J. (2001). In vitro and in vivo evaluation of carbamazepine-PEG 6000 solid dispersions. International journal of pharmaceutics, 225(1-2), 49-62.

POLYETHYLENE GLYCOL 6000 uygulanmış Upland Pamuk (Gossypium hirsutum L.) pamuk çeşitlerinin çimlenme döneminde kuraklık stresine reaksiyonları

Year 2024, Volume: 4 Issue: 1, 1 - 9, 29.03.2024

Abstract

Pamuk, tekstil endüstrisinde kullanılan doğal liflerin ve yağın en önemli kaynağıdır. Pamuk, yaklaşık 50 endüstri dalı için hammadde sağlamakta; dünya çapında yaklaşık 200 milyon insanın geçim kaynağını oluşturmaktadır. Pamuk üretimini sınırlayan yaklaşık 20 tane biyotik ve abiyotik stres faktörü bulunmaktadır. Kuraklık, tüm pamuk yetiştirilen alanlarda en yıkıcı abiyotik streslerden birisidir. Kuraklık, doğrudan veya dolaylı olarak tüm dünyayı olumsuz etkileyen bir abiyotik stres faktörü olduğundan, kuraklıkla mücadele etmek için çok yönlü bir yaklaşım gerekmektedir. Bu deneme, 2023 yılı Mayıs ayında Bingöl Üniversitesi Genç Meslek Yüksekokulu Tarımsal Biyoteknolojisi laboratuvarında yürütülmüştür. Araştırmanın amacı, on farklı kara pamuk çeşidinin, PEG6000 kimyasalı kullanılarak oluşturulan 0 MPa (kontrol), -0.4 MPa, -0.6 MPa, -0.8 MPa ve -1 MPa osmotik basınç streslerine maruz bırakılarak kuraklık koşullarına karşı reaksiyonları araştırmaktır. Çeşitlerin çimlenme yüzdesi (GP, %) ölçülmüştür. Sonuç olarak, May 344 ve May 455 çeşitleri, diğer çeşitlere kıyasla Osmotik Stres'e karşı önemli derecede üstün tolerans sergilemektedirler. Beren ve SG-125 de nispeten olumlu tolerans seviyeleri göstermektedir. Sürekli yüksek çimlenme yüzdeleri (GP) gösteren çeşitler, çimlenme ve sürme potansiyellerini değerlendirmek için kontrolsüz arazi koşullarında ekilmelidir. Hızlı çimlenme oranı sergileyen çeşitlerde pamukta erkencilik özellikleriyle ilişkilendirilen genler olabilir.

References

  • Abdual-Baki, A. and Andersen, J. (1973). Relationship between decarboxylation of glutamatic acid and vigor in soybean seed. Crop Science. 13(2): 222-226.
  • Abhinandan, K., Skori, L., Stanic, M., Hickerson, N. M., Jamshed, M., Samuel, M. A. (2018). Abiotic stress signaling in wheat–an inclusive overview of hormonal interactions during abiotic stress responses in wheat. Frontiers in plant science, 9, 734.
  • Ali, F., Qanmber, G., Li, F., Wang, Z. (2021). Updated role of ABA in seed maturation, dormancy, and germination. J Adv Res Mar 31;35: 199-214. doi: 10.1016/j.jare.2021.03.011. PMID: 35003801; PMCID: PMC8721241.
  • Ashraf, M.Y., Naqvi, M.H. and Khan, A.H. (1996). Evaluation of four screening techniques for drought tolerance in wheat (Triticum aestivum L.). Acta Agron. Hung. 44: 213-220.
  • Babu, A.G., Patil, B. C., Pawar, K. N. (2014). Evaluation of cotton genotypes for drought tolerance using PEG-6000 water stress by slanting glass plate technique. The Bioscan, 9(4), 1419-1424.
  • Bai, Y., Xiao, S., Zhang, Z., Zhang, Y., Sun, H., Zhang, K., Liu, L. (2020). Melatonin improves the germination rate of cotton seeds under drought stress by opening pores in the seed coat. PeerJ, 8, e9450.
  • Belcher. E.W., & Miller. L. (1975). Influence of substrate moisture level on the germination of sweetgum and sand pine seed. In Proceedings.
  • Bokobana, A., Gnofam, N., Koffı, Z. K., Assıh, A., Akantetou, K. P., Bassarou, A., Koffi, T. O. Z. O. (2023). Seed hydropriming to alleviate drought stress in germination of two cotton (Gossypium hirsutum L.) varieties. Christopher, R., Viot & Jonathan F. Wendel (2023) Evolution of the Cotton Genus, Gossypium, and Its Domestication in the Americas, Critical Reviews in Plant Sciences, 42:1, 1-33, DOI: 10.1080/07352689.2022.2156061.
  • Côme, D. (1982). Germination. pp. 129–225 in Mazliak. P. (Ed.) Physiologie Végétale II Croissance et Développement. Hermann. Paris.
  • Dodd, G.L. and Donovan, L.A. (1999) Water potential and ionic effect on germination and seedling growth of two cold desert shrubs. Amer J Bot 86:1146-1153.
  • Donohue, K., Rubio, de, Casas, R., Burghardt, L., Kovach, K., Willis, C.G. (2010). Germination, postgermination adaptation, and species ecological ranges. Annu Rev Ecol Evol Syst. 2010; 41:293–319.
  • Faiza, A., Qanmber, G., Yonghui, L., Shuya, M., Lili, L., Zuoren, Y. (2019) Genome-wide identification of Gossypium INDETERMINATE DOMAIN genes and their expression profiles in ovule development and abiotic stress responses. J Cotton Res.
  • FAO. (2021). Recent Trends and Prospects in the World Cotton Market and Policy Developments. Food and Agriculture Organization of the United Nations, Markets and Trade Division - Economic and Social Development Stream Markets. https://www.fao.org/3/cb4589en/cb4589en.pdf.
  • Food of Agriculture Organization, FAO (2024). https://www.fao.org/markets-and-trade/commodities/cotton/fr/ (Accessed: 15.02.2024.
  • Heikal, M. M,. Shaddad, M.A., Ahmed, A.M. (1982) Effect of water stress and gibberellic acid on germination of flax. sesame and onion seed. Biol Plant 24:124-129.
  • Subedi, K.D. and Ma, B.L. (2005). “Seed priming does not improve corn yield in a humid temperate environment,” Agronomy Journal, vol. 97, no. 1, pp. 211–218.
  • Khadi, B.M., Santhy, V., & Yadav, M.S. (2010). Cotton: an introduction. Cotton: biotechnological advances, 1-14.
  • Kucera, B., Cohn, M.A., Leubner-Metzger, G. (2005). Plant hormone interactions during seed dormancy release and germination. Seed Sci Res. 2005;15(4):281–307.
  • Lamichhane. J.R., Messéan. A. & Ricci. P. (2019). Research and innovation priorities as defined by the Ecophyto plan to address current crop protection transformation challenges in France. Advances in agronomy. 154. 81-152.
  • Larcher, W. (2000). Plant Ecophysiology. RIMA, São Carlos, SP, Brazil. 5: 31 p. (in Portuguese)
  • Lopes. K.P.; Bruno. R.L.A.; Costa. R.F.; Bruno. G.B.; Rocha. M.S. (2006). Effects of seed processing on physiological and sanitary qualities of seeds of herbaceous cotton. Revista Brasileira de Engenharia Agrícola e Ambiental 10: 426-435. (in Portuguese with abstract in English).
  • Medeiros, Filho. S.; Silva. S.O.; Dutra. A.S.; Torres. S.B. (2006). Comparison of germination test methodologies of linted and delinted cotton seeds. Revista Caatinga 19: 56-60. (in Portuguese with abstract in English).
  • Meneses, C. H. S. G., Bruno, R. D. L. A., Fernandes, P. D., Pereira, W. E., Lima, L. H. G. D. M., Lima, M. M. D. A., Vidal, M. S. (2011). Germination of cotton cultivar seeds under water stress induced by polyethyleneglycol-6000. Scientia Agricola, 68, 131-138.
  • Michel, B.E. and Kaufmann, M.R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiol. 51:914. 1973.
  • Muscolo, A.; Sidari, M.; Anastasi, U.; Santonoceto, C.; Maggio, A. (2014) Effect of PEG-induced drought stress on seed germination of four lentil cultivars. Journal of Plant Interactions 2014, 9, 354–363.
  • Okçu, G.; Kaya, M.D.; Atak, M. (2005). Effects of salt and drought stress on germination and seedling growth of pea (Pisum sativum L.). Turkish Journal of Agriculture and Forestry 29: 237-242.
  • Pawar, K. N. and Veena, V. B. (2020). Evaluation of Cotton Genotypes for Drought Tolerance using PEG-6000 Water Stress by Slanting Glass Plate Technique.Int.J.Curr.Microbiol.App.Sci. 9(11): 3203-3212. doi: https://doi.org/10.20546/ijcmas.2020.911.386.
  • Qanmber, G., Lu L., Liu, Z., Yu, D., Zhou, K., Huo, P. (2019). Genome-wide identification of GhAAI genes reveals that GhAAI66 triggers a phase transition to induce early flowering. J Exp Bot. 2019;70(18):4721–4736.
  • Ranjbarfordoei, A.; Samson, R.; Van Damme, P.; Lemeur, R. (2000) Effects of Drought Stress Induced by Polyethylene Glycol on Pigment Content and Photosynthetic Gas Exchange of Pistacia Khinjuk and P. Mutica. Photosynthetica 2000, 38, 443–447.
  • Saleh, H., Yahaya, A. I., Abubakar, H., Sami, R. A. (2021). Effect of hydro and Osmo prımıng on the physıologıcal qualitıes of stored cotton seed (Gossypium spp. L.).
  • Shu, K., Luo, X., Meng, Y., Yang, W. (2018) Toward a molecular understanding of abscisic acid actions in floral transition. Plant Cell Physiol. 2018;59(2):215–221.
  • Souza, Filho., A.P.S. (2006). Influence of temperature, light, and osmotic and saline stresses on seed germination of Leucaena leucocephala. Pasturas Tropicales 22: 47-53. (in Spanish with abstract in English).
  • Tian, Z., Li, K., Sun, Y., Chen, B., Pan, Z., Wang, Z., Du, X. (2024). Physiological and transcriptional analyses reveal the formation of memory under recurring drought stresses in seedlings of cotton (Gossypium hirsutum). Plant Science, 338, 111920.
  • Tsaliki, E., Xanthopoulos, F., Kechagia, U., Leloudis, C. (2019). Evaluation of germination ability of cotton cultivars (Gossypium hirsutum L.) under artificial stress conditions. Agric. Sci. Pract, 4(1), 4-8.
  • Wang, J.J. (2011). Germination characteristics and comprehensive evaluation of drought resistance of 41 accessions of cotton germplasm at seed germination stage under PEG-6000 stress. Journal of Plant Genetic Resources, 12(6), 840-846.
  • Wendel J.F. and Cronn RC (2003). Polyploidy and the evolutionary history of cotton. Advances in Agronomy. vol. 78 (pg. 139-186).
  • Yang, C. and Li, L. (2017). Hormonal regulation in shade avoidance. Front Plant Sci. 2017; 8:1527.
  • Zahid, Z., Khan, M. K. R., Hameed, A., Akhtar, M. Ditta. A., Hassan., H. M., Farid, G. (2021). Dissection of Drought Tolerance in Upland Cotton Through Morpho-Physiological and Biochemical Traits at Seedling Stage. Frontiers in Plant Science. 2021. 12. 260.
  • Zerrouk, N., Chemtob, C., Arnaud, P., Toscani, S., Dugue, J. (2001). In vitro and in vivo evaluation of carbamazepine-PEG 6000 solid dispersions. International journal of pharmaceutics, 225(1-2), 49-62.
There are 39 citations in total.

Details

Primary Language English
Subjects Field Crops and Pasture Production (Other)
Journal Section Research Articles
Authors

Sadettin Celik 0000-0002-8396-4627

Early Pub Date March 28, 2024
Publication Date March 29, 2024
Submission Date February 19, 2024
Acceptance Date March 7, 2024
Published in Issue Year 2024 Volume: 4 Issue: 1

Cite

APA Celik, S. (2024). Screening the Polyethylene Glycol 6000 Induced Upland Cotton (Gossypium hirsutum L.) Cultivars Drought Response at The Germination Stage. Uluslararası Gıda Tarım Ve Hayvan Bilimleri Dergisi, 4(1), 1-9.