Research Article
BibTex RIS Cite
Year 2020, Volume: 6 Issue: 2, 95 - 120, 01.10.2020

Abstract

References

  • [1] Jayaprakasha, G. K., Rao, L. J. M., & Sakariah, K. K. (2005). Chemistry and biological activities of C. longa. Trends in Food Science & Technology, 16(12), 533-548.
  • [2] Hatcher, H., Planalp, R., Cho, J., Torti, F. M., & Torti, S. V. (2008). Curcumin: from ancient medicine to current clinical trials. Cellular and molecular life sciences, 65(11), 1631-1652.
  • [3] Euterpio, M. A., Cavaliere, C., Capriotti, A. L., & Crescenzi, C. (2011). Extending the applicability of pressurized hot water extraction to compounds exhibiting limited water solubility by pH control: curcumin from the turmeric rhizome. Analytical and bioanalytical chemistry, 401(9), 2977-2985.
  • [4] Nelson, K. M., Dahlin, J. L., Bisson, J., Graham, J., Pauli, G. F., & Walters, M. A. (2017). The essential medicinal chemistry of curcumin: miniperspective. Journal of medicinal chemistry, 60(5), 1620-1637.
  • [5] Rouhani, S., Alizadeh, N., Salimi, S., & Haji-Ghasemi, T. (2009). Ultrasonic Assisted Extraction of Natural Pigments from Rhizomes of Curcuma Longa L. Progress in Color, Colorants and Coatings, 2(2), 103-113.
  • [6] Lestari, M. L., & Indrayanto, G. (2014). Curcumin. Profiles of drug substances, excipients, and related methodology, 39, 113-204.
  • [7] Kotra, V. S. R., Satyabanta, L., & Goswami, T. K. (2019). A critical review of analytical methods for determination of curcuminoids in turmeric. Journal of food science and technology, 56(12), 5153-5166.
  • [8] Chun, K.-S., Sohn, Y., Kim, H.-S., Kim, O. H., Park, K.-K., Lee, J.-M., Lee, J., Lee, J.-Y., Moon, A., Lee, S. S., & Surh, Y.-J. (1999). Anti-tumor promoting potential of naturally occurring diarylheptanoids structurally related to curcumin. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 428(1–2), 49–57.
  • [9] Tonnesen, H. H., & Karlsen, J. (1985). Studies on curcumin and curcuminoids. V. Alkaline degradation of curcumin. Zeitschrift für Lebensmittel- Untersuchung und-Forschung, 180(2), 132-134.
  • [10] Ravindran, P. N., Babu, K. N., & Sivaraman, K. (Eds.). (2007). Turmeric: the genus Curcuma. CRC press.
  • [11] Amalraj, A., Pius, A., Gopi, S., & Gopi, S. (2017). Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives–A review. Journal of traditional and complementary medicine, 7(2), 205-233.
  • [12] Suhit et al., 2010 G. Suhit, K. Meghana, B. Ramesh, P. Anant Activity of water-soluble turmeric extract using hydrophilic excipients LWT – Food Science and Technology, 43 (2010), pp. 59-66
  • [13] Lukita-Atmadja, W., Ito, Y., Baker, G. L., & McCuskey, R. S. (2002). Effect of curcuminoids as anti-inflammatory agents on the hepatic microvascular response to endotoxin. Shock, 17(5), 399-403.
  • [14] Sharma, R. A., Gescher, A. J., & Steward, W. P. (2005). Curcumin: the story so far. European journal of cancer, 41(13), 1955-1968.
  • [15] Singh, S., & Khar, A. (2006). Biological effects of curcumin and its role in cancer chemoprevention and therapy. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 6(3), 259-270.
  • [16] Bagheri, H., Ghasemi, F., Barreto, G. E., Rafiee, R., Sathyapalan, T., & Sahebkar, A. (2020). Effects of curcumin on mitochondria in neurodegenerative diseases. Biofactors, 46(1), 5-20.
  • [17] Ramsewak, R. S., DeWitt, D. L., & Nair, M. G. (2000). Cytotoxicity, antioxidant, and anti-inflammatory activities of curcumins I–III from Curcuma longa. Phytomedicine, 7(4), 303-308.
  • [18] Song, E. K., Cho, H., Kim, J. S., Kim, N. Y., An, N. H., Kim, J. A., Lee, S.- H., & Kim, Y. C. (2001). Diarylheptanoids with free radical scavenging and hepatoprotective activity in vitro from Curcuma longa. Planta medica, 67(09), 876-877.
  • [19] Kalpravidh, R. W., Siritanaratkul, N., Insain, P., Charoensakdi, R., Panichkul, N., Hatairaktham, S., Srichairatanakool, S., Phisalaphong, C., Rachmilewitz, E., & Fucharoen, S. (2010). Improvement in oxidative stress and antioxidant parameters in β-thalassemia/Hb E patients treated with curcuminoids. Clinical Biochemistry, 43(4–5), 424–429.
  • [20] Mazumder, A., Raghavan, K., Weinstein, J., Kohn, K. W., & Pommier, Y. (1995). Inhibition of human immunodeficiency virus type-1 integrase by curcumin. Biochemical pharmacology, 49(8), 1165-1170.
  • [21] Anand, P., Thomas, S. G., Kunnumakkara, A. B., Sundaram, C., Harikumar, K. B., Sung, B., Tharakan, S. T., Misra, K., Priyadarsini, I. K., Rajasekharan, K. N., & Aggarwal, B. B. (2008). Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochemical Pharmacology, 76(11), 1590–1611.
  • [22] Nurfina, A. N., Reksohadiprodjo, M. S., Timmerman, H., Jenie, U. A., Sugiyanto, D., & Van der Goot, H. (1997). Synthesis of some symmetrical curcumin derivatives and their antiinflammatory activity. European journal of medicinal chemistry, 32(4), 321-328.
  • [23] Rasmussen, H. B., Christensen, S. B., Kvist, L. P., & Karazmi, A. (2000). A simple and efficient separation of the curcumins, the antiprotozoal constituents of Curcuma longa. Planta medica, 66(04), 396-398.
  • [24] Yodkeeree, S., Chaiwangyen, W., Garbisa, S., & Limtrakul, P. (2009). Curcumin, demethoxycurcumin and bisdemethoxycurcumin differentially inhibit cancer cell invasion through the downregulation of MMPs and uPA. The Journal of nutritional biochemistry, 20(2), 87-95.
  • [25] Nandakumar, D. N., Nagaraj, V. A., Vathsala, P. G., Rangarajan, P., & Padmanaban, G. (2006). Curcumin-artemisinin combination therapy for malaria. Antimicrobial agents and chemotherapy, 50(5), 1859-1860.
  • [26] Peram, M. R., Jalalpure, S. S., Joshi, S. A., Palkar, M. B., & Diwan, P. V. (2017). Single robust RP-HPLC analytical method for quantification of curcuminoids in commercial turmeric products, Ayurvedic medicines, and nanovesicular systems. Journal of Liquid Chromatography & Related Technologies, 40(10), 487–498.
  • [27] Stankovic, I. (2004). Curcumin: Chemical and Technical Assessment (CTA). JECFA, Rome, 8.
  • [28] Schieffer, G. W. (2002). Pressurized liquid extraction of curcuminoids and curcuminoid degradation products from turmeric (Curcuma longa) with subsequent HPLC assays. Journal of Liquid Chromatography & Related Technologies, 25(19), 3033-3044.
  • [29] Suresh, D., Manjunatha, H., & Srinivasan, K. (2007). Effect of heat processing of spices on the concentrations of their bioactive principles: Turmeric (Curcuma longa), red pepper (Capsicum annuum) and black pepper (Piper nigrum). Journal of Food Composition and Analysis, 20(3-4), 346-351.
  • [30] Kimbaris, A. C., Siatis, N. G., Daferera, D. J., Tarantilis, P. A., Pappas, C. S., & Polissiou, M. G. (2006). Comparison of distillation and ultrasound-assisted extraction methods for the isolation of sensitive aroma compounds from garlic (Allium sativum). Ultrasonics Sonochemistry, 13(1), 54-60.
  • [31] Vinatoru, M. (2001). An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonics Sonochemistry, 8(3), 303-313.
  • [32] Da Porto, C., & Decorti, D. (2009). Ultrasound-assisted extraction coupled with under vacuum distillation of flavour compounds from spearmint (carvonerich) plants: comparison with conventional hydrodistillation. Ultrasonics Sonochemistry, 16(6), 795-799.
  • [33] Khan, M. K., Abert-Vian, M., Fabiano-Tixier, A. S., Dangles, O., & Chemat, F. (2010). Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chemistry, 119(2), 851-858.
  • [34] Lianfu, Z., & Zelong, L. (2008). Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrasonics Sonochemistry, 15(5), 731-737.
  • [35] Adjé, F., Lozano, Y. F., Lozano, P., Adima, A., Chemat, F., & Gaydou, E. M. (2010). Optimization of anthocyanin, flavonol and phenolic acid extractions from Delonix regia tree flowers using ultrasound-assisted water extraction. Industrial Crops and Products, 32(3), 439-444.
  • [36] Shirsath, S. R., Sonawane, S. H., & Gogate, P. R. (2012). Intensification of extraction of natural products using ultrasonic irradiations—A review of current status. Chemical Engineering and Processing: Process Intensification, 53, 10-23.
  • [37] Reverchon, E., & Osséo, L. S. (1994). Comparison of processes for the supercritical carbon dioxide extraction of oil from soybean seeds. Journal of the American Oil Chemists’ Society, 71(9), 1007-1012.
  • [38] Wang, L., & Weller, C. L. (2006). Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology, 17(6), 300- 312.
  • [39] Shen, Y., Han, C., Chen, X., Hou, X., & Long, Z. (2013). Simultaneous determination of three Curcuminoids in Curcuma wenyujin YH chen et C. Ling. by liquid chromatography–tandem mass spectrometry combined with pressurized liquid extraction. Journal of Pharmaceutical And Biomedical Analysis, 81, 146- 150.
  • [40] Wakte, P. S., Sachin, B. S., Patil, A. A., Mohato, D. M., Band, T. H., & Shinde, D. B. (2011). Optimization of microwave, ultra-sonic and supercritical carbon dioxide assisted extraction techniques for curcumin from Curcuma longa. Separation and Purification Technology, 79(1), 50-55.
  • [41] Kwon, H. L., & Chung, M. S. (2015). Pilot-scale subcritical solvent extraction of curcuminoids from Curcuma longa L. Food chemistry, 185, 58-64.
  • [42] Kimthet, C., Wahyudiono, Kanda, H., & Goto, M. (2017, May). Extraction of curcumin from Curcuma longa L. using ultrasound assisted supercritical carbon dioxide. In AIP conference proceedings (Vol. 1840, No. 1, p. 100001). AIP Publishing LLC.
  • [43] Kiamahalleh, M. V., Najafpour-Darzi, G., Rahimnejad, M., Moghadamnia, A. A., & Kiamahalleh, M. V. (2016). High performance curcumin subcritical water extraction from turmeric (Curcuma longa L.). Journal of Chromatography B, 1022, 191-198.
  • [44] Kewen, T., Jianmin, Y., & Li, L. (2005). Microwave Assisted Extraction- Adsorption Separation of Curcumin from Turmeric. Chemical Industry and Engineering Progress, 24(6), 647.
  • [45] Bener, M., Özyürek, M., Güçlü, K., & Apak, R. (2016). Optimization of microwave-assisted extraction of curcumin from Curcuma longa L. (Turmeric) and evaluation of antioxidant activity in multi-test systems. Records of Natural Products, 10(5), 542.
  • [46] Rezaei, S., Najafpour, G. D., Mohammadi, M., Moghadamnia, A. A., Kazemi S. (2016). Formic acid and microwave assisted extraction of curcumin from turmeric (Curcuma longa L.). International Journal of Engineering, 29(2), 145-151.
  • [47] Sahne, F., Mohammadi, M., Najafpour, G. D., & Moghadamnia, A. A. (2016). Extraction of bioactive compound curcumin from turmeric (Curcuma longa L.) via different routes: A comparative study. Pak. Journal of Biotechnology, 13(3), 173-180.
  • [48] Sahne, F., Mohammadi, M., Najafpour, G. D., & Moghadamnia, A. A. (2017). Enzyme-assisted ionic liquid extraction of bioactive compound from turmeric (Curcuma longa L.): Isolation, purification and analysis of curcumin. Industrial Crops and Products, 95, 686-694.
  • [49] Ou, Z. Q., Jia, L. Q., Jin, H. Y., Yediler, A., Sun, T. H., & Kettrup, A. (1997). Ultrasonic extraction and LC determination of linear alkylbenzene sulfonate in plant tissues. Chromatographia, 44(7-8), 417-420.
  • [50] Shotipruk, A., Kaufman, P. B., & Wang, H. Y. (2001). Feasibility study of repeated harvesting of menthol from biologically viable menthaxpiperata using ultrasonic extraction. Biotechnology Progress, 17(5), 924-928.
  • [51] Djilani, A., Legseir, B., Soulimani, R., Dicko, A., & Younos, C. (2006). New extraction technique for alkaloids. Journal of the Brazilian Chemical Society, 17(3), 518-520.
  • [52] Bong, P. H. (2000). Spectral and photophysical behaviors of curcumin and curcuminoids. Bulletin of the Korean Chemical Society, 21(1), 81-86.
  • [53] Santos, D. T., Veggi, P. C., & Meireles, M. A. A. (2012). Optimization and economic evaluation of pressurized liquid extraction of phenolic compounds from jabuticaba skins. Journal of Food Engineering, 108(3), 444-452.
  • [54] Mustafa, A., & Turner, C. (2011). Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Analytica Chimica Acta, 703(1), 8-18.
  • [55] Zaibunnisa, A. H., Norashikin, S., Mamot, S., & Osman, H. (2009). An experimental design approach for the extraction of volatile compounds from turmeric leaves (Curcuma domestica) using pressurised liquid extraction (PLE). LWT-Food Science and Technology, 42(1), 233-238.
  • [56] Teo, C. C., Tan, S. N., Yong, J. W. H., Hew, C. S., & Ong, E. S. (2010). Pressurized hot water extraction (PHWE). Journal of Chromatography A, 1217(16), 2484-2494.
  • [57] Osorio-Tobón, J. F., & Meireles, M. A. A., (2013). Recent applications of pressurized fluid extraction: curcuminoids extraction with pressurized liquids. Food Public Health, 3(6), 289-303.
  • [58] Mira, B., Blasco, M., Berna, A., & Subirats, S. (1999). Supercritical CO2 extraction of essential oil from orange peel. Effect of operation conditions on the extract composition. The Journal of Supercritical Fluids, 14(2), 95-104.
  • [59] Zougagh, M., Valcárcel, M., & Rıos, A. (2004). Supercritical fluid extraction: a critical review of its analytical usefulness. TrAC Trends in Analytical Chemistry, 23(5), 399-405.
  • [60] Büyüktuncel, E. (2012). Gelişmiş ekstraksiyon teknikleri I. Hacettepe Üniversitesi Eczacılık Fakültesi Dergisi, (2), 209-242.
  • [61] Brunner, G. (2005). Supercritical fluids: technology and application to food processing. Journal of Food Engineering, 67(1-2), 21-33.
  • [62] Brunner, G. (1987). Stofftrennung mit ueberkritischen gasen (gasextraktion). Chemie Ingenieur Technik, 59(1), 12-22.
  • [63] Del Valle, J. M., & Aguilera, J. M. (1999). Revision: Extracción con CO2 a alta presión. Fundamentos y aplicaciones en la industria de alimentos/Review: High pressure CO2 extraction. Fundamentals and applications in the food industry. Food Science and Technology International, 5(1), 1-24.
  • [64] Carabias-Martínez, R., Rodríguez-Gonzalo, E., Revilla-Ruiz, P., & Hernández-Méndez, J. (2005). Pressurized liquid extraction in the analysis of food and biological samples. Journal of Chromatography A, 1089(1-2), 1-17.
  • [65] Hawthorne, S. B., Yang, Y., & Miller, D. J. (1994). Extraction of organic pollutants from environmental solids with sub-and supercritical water. Analytical Chemistry, 66(18), 2912-2920.
  • [66] Liang, X., & Fan, Q. (2013). Application of sub-critical water extraction in pharmaceutical industry. Journal of Materials Science and Chemical Engineering, 1(05), 1.
  • [67] Ramos, L., Kristenson, E. M., & Brinkman, U. T. (2002). Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis. Journal of Chromatography A, 975(1), 3-29.
  • [68] Smith, R. M. (2002). Extractions with superheated water. Journal of Chromatography A, 975(1), 31-46.
  • [69] Kubátová, A., Jansen, B., Vaudoisot, J. F., & Hawthorne, S. B. (2002). Thermodynamic and kinetic models for the extraction of essential oil from savory and polycyclic aromatic hydrocarbons from soil with hot (subcritical) water and supercritical CO2. Journal of Chromatography A, 975(1), 175-188.
  • [70] Kaderides, K., Papaoikonomou, L., Serafim, M., & Goula, A. M. (2019). Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chemical Engineering and Processing-Process Intensification, 137, 1-11.
  • [71] Zheng, X., Xu, X., Liu, C., Sun, Y., Lin, Z., & Liu, H. (2013). Extraction characteristics and optimal parameters of anthocyanin from blueberry powder under microwave-assisted extraction conditions. Separation and Purification Technology, 104, 17-25.
  • [72] Dandekar, D. V., & Gaikar, V. G. (2002). Microwave assisted extraction of curcuminoids from Curcuma longa. Separation Science and Technology, 37(11), 2669-2690.
  • [73] Destandau, E., Michel, T., & Elfakir, C. (2013). Microwave-assisted extraction. Natural Product Extraction: Principles and Applications, (21), 113.
  • [74] Kormin, F., Abdurahman, N. H., Yunus, R. M., & Rivai, M. (2013). Study the heating mechanisms of temperature-controlled microwave closed system (TCMCS). International Journal of Engineering Science and Innovative Technology (IJESIT), 2(5), 417-429.
  • [75] Li, M., Ngadi, M. O., & Ma, Y. (2014). Optimisation of pulsed ultrasonic and microwave-assisted extraction for curcuminoids by response surface methodology and kinetic study. Food chemistry, 165, 29-34.
  • [76] Anonymous. 2020. Solvent Choice for Microwave Synthesis. CEM Corporation. Website: https://cem.com/en/microwave-chemistry/solvent-choice. Access Date: 10.02.2021.
  • [77] Priyadarsini, K. I. (2014). The chemistry of curcumin: from extraction to therapeutic agent. Molecules, 19(12), 20091-20112.
  • [78] Sevindik, O., & Selli, S. (2017). Üzüm Çekirdek Yaği Eldesinde Kullanilan Ekstraksiyon Yöntemleri. Gıda, 42(1), 95-103.
  • [79] Sowbhagya, H. B., & Chitra, V. N. (2010). Enzyme-assisted extraction of flavorings and colorants from plant materials. Critical Reviews In Food Science and Nutrition, 50(2), 146-161.
  • [80] Puri, M., Sharma, D., & Barrow, C. J. (2012). Enzyme-assisted extraction of bioactives from plants. Trends in Biotechnology, 30(1), 37-44.
  • [81] Zhang, G., Hu, M., He, L., Fu, P., Wang, L., & Zhou, J. (2013). Optimization of microwave-assisted enzymatic extraction of polyphenols from waste peanut shells and evaluation of its antioxidant and antibacterial activities in vitro. Food and Bioproducts Processing, 91(2), 158-168.
  • [82] Campbell, K. A., Vaca-Medina, G., Glatz, C. E., & Pontalier, P. Y. (2016). Parameters affecting enzyme-assisted aqueous extraction of extruded sunflower meal. Food Chemistry, 208, 245-251.
  • [83] Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A., Ghafoor, K., Norulaini, N. A. N., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117(4), 426–436.
  • [84] Kurmudle, N., Kagliwal, L. D., Bankar, S. B., & Singhal, R. S. (2013). Enzyme-assisted extraction for enhanced yields of turmeric oleoresin and its constituents. Food Bioscience, 3, 36-41.

ALTERNATIVE EXTRACTION TECHNIQUES OF CURCUMINOIDS FROM TURMERIC

Year 2020, Volume: 6 Issue: 2, 95 - 120, 01.10.2020

Abstract

Curcumin, demethoxycurcumin, and bisdemethoxycurcumin have recently been
the focus of attention on food science due to their growing popularity among
health-conscious consumers. Traditionally, curcumin has been used as a colorant,
a sweetener, and a food preservative. Natural plants contain various bioactive
components such as lipids, phytochemicals, compounds used in pharmacology,
flavors, odors, and pigments, so extracts of these plants are often used in
industries such as pharmaceuticals, food, and cosmetics. Some traditional and
mechanical processes are used to achieve maximum benefit in the commercial
use of these high-cost compounds. Alternative techniques are used to overcome
the disadvantages of traditional extraction methods. These techniques have been
developed to overcome these disadvantages and, most importantly, maintain the integrity of the compounds and achieve an environmentally friendly process
Developed as an alternative to traditional methods to extract chemicals from plant
sources, ultrasound-assisted extraction (UAE), accelerated solvent extraction
(ASE), supercritical fluid extraction (SFE), subcritical water extraction (SWE),
microwave assisted extraction and enzyme-assisted extraction (EAE) methods,
such as fast, effective, and relatively environmentally friendly compared to the
organic solvents used are considered.

References

  • [1] Jayaprakasha, G. K., Rao, L. J. M., & Sakariah, K. K. (2005). Chemistry and biological activities of C. longa. Trends in Food Science & Technology, 16(12), 533-548.
  • [2] Hatcher, H., Planalp, R., Cho, J., Torti, F. M., & Torti, S. V. (2008). Curcumin: from ancient medicine to current clinical trials. Cellular and molecular life sciences, 65(11), 1631-1652.
  • [3] Euterpio, M. A., Cavaliere, C., Capriotti, A. L., & Crescenzi, C. (2011). Extending the applicability of pressurized hot water extraction to compounds exhibiting limited water solubility by pH control: curcumin from the turmeric rhizome. Analytical and bioanalytical chemistry, 401(9), 2977-2985.
  • [4] Nelson, K. M., Dahlin, J. L., Bisson, J., Graham, J., Pauli, G. F., & Walters, M. A. (2017). The essential medicinal chemistry of curcumin: miniperspective. Journal of medicinal chemistry, 60(5), 1620-1637.
  • [5] Rouhani, S., Alizadeh, N., Salimi, S., & Haji-Ghasemi, T. (2009). Ultrasonic Assisted Extraction of Natural Pigments from Rhizomes of Curcuma Longa L. Progress in Color, Colorants and Coatings, 2(2), 103-113.
  • [6] Lestari, M. L., & Indrayanto, G. (2014). Curcumin. Profiles of drug substances, excipients, and related methodology, 39, 113-204.
  • [7] Kotra, V. S. R., Satyabanta, L., & Goswami, T. K. (2019). A critical review of analytical methods for determination of curcuminoids in turmeric. Journal of food science and technology, 56(12), 5153-5166.
  • [8] Chun, K.-S., Sohn, Y., Kim, H.-S., Kim, O. H., Park, K.-K., Lee, J.-M., Lee, J., Lee, J.-Y., Moon, A., Lee, S. S., & Surh, Y.-J. (1999). Anti-tumor promoting potential of naturally occurring diarylheptanoids structurally related to curcumin. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 428(1–2), 49–57.
  • [9] Tonnesen, H. H., & Karlsen, J. (1985). Studies on curcumin and curcuminoids. V. Alkaline degradation of curcumin. Zeitschrift für Lebensmittel- Untersuchung und-Forschung, 180(2), 132-134.
  • [10] Ravindran, P. N., Babu, K. N., & Sivaraman, K. (Eds.). (2007). Turmeric: the genus Curcuma. CRC press.
  • [11] Amalraj, A., Pius, A., Gopi, S., & Gopi, S. (2017). Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives–A review. Journal of traditional and complementary medicine, 7(2), 205-233.
  • [12] Suhit et al., 2010 G. Suhit, K. Meghana, B. Ramesh, P. Anant Activity of water-soluble turmeric extract using hydrophilic excipients LWT – Food Science and Technology, 43 (2010), pp. 59-66
  • [13] Lukita-Atmadja, W., Ito, Y., Baker, G. L., & McCuskey, R. S. (2002). Effect of curcuminoids as anti-inflammatory agents on the hepatic microvascular response to endotoxin. Shock, 17(5), 399-403.
  • [14] Sharma, R. A., Gescher, A. J., & Steward, W. P. (2005). Curcumin: the story so far. European journal of cancer, 41(13), 1955-1968.
  • [15] Singh, S., & Khar, A. (2006). Biological effects of curcumin and its role in cancer chemoprevention and therapy. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 6(3), 259-270.
  • [16] Bagheri, H., Ghasemi, F., Barreto, G. E., Rafiee, R., Sathyapalan, T., & Sahebkar, A. (2020). Effects of curcumin on mitochondria in neurodegenerative diseases. Biofactors, 46(1), 5-20.
  • [17] Ramsewak, R. S., DeWitt, D. L., & Nair, M. G. (2000). Cytotoxicity, antioxidant, and anti-inflammatory activities of curcumins I–III from Curcuma longa. Phytomedicine, 7(4), 303-308.
  • [18] Song, E. K., Cho, H., Kim, J. S., Kim, N. Y., An, N. H., Kim, J. A., Lee, S.- H., & Kim, Y. C. (2001). Diarylheptanoids with free radical scavenging and hepatoprotective activity in vitro from Curcuma longa. Planta medica, 67(09), 876-877.
  • [19] Kalpravidh, R. W., Siritanaratkul, N., Insain, P., Charoensakdi, R., Panichkul, N., Hatairaktham, S., Srichairatanakool, S., Phisalaphong, C., Rachmilewitz, E., & Fucharoen, S. (2010). Improvement in oxidative stress and antioxidant parameters in β-thalassemia/Hb E patients treated with curcuminoids. Clinical Biochemistry, 43(4–5), 424–429.
  • [20] Mazumder, A., Raghavan, K., Weinstein, J., Kohn, K. W., & Pommier, Y. (1995). Inhibition of human immunodeficiency virus type-1 integrase by curcumin. Biochemical pharmacology, 49(8), 1165-1170.
  • [21] Anand, P., Thomas, S. G., Kunnumakkara, A. B., Sundaram, C., Harikumar, K. B., Sung, B., Tharakan, S. T., Misra, K., Priyadarsini, I. K., Rajasekharan, K. N., & Aggarwal, B. B. (2008). Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochemical Pharmacology, 76(11), 1590–1611.
  • [22] Nurfina, A. N., Reksohadiprodjo, M. S., Timmerman, H., Jenie, U. A., Sugiyanto, D., & Van der Goot, H. (1997). Synthesis of some symmetrical curcumin derivatives and their antiinflammatory activity. European journal of medicinal chemistry, 32(4), 321-328.
  • [23] Rasmussen, H. B., Christensen, S. B., Kvist, L. P., & Karazmi, A. (2000). A simple and efficient separation of the curcumins, the antiprotozoal constituents of Curcuma longa. Planta medica, 66(04), 396-398.
  • [24] Yodkeeree, S., Chaiwangyen, W., Garbisa, S., & Limtrakul, P. (2009). Curcumin, demethoxycurcumin and bisdemethoxycurcumin differentially inhibit cancer cell invasion through the downregulation of MMPs and uPA. The Journal of nutritional biochemistry, 20(2), 87-95.
  • [25] Nandakumar, D. N., Nagaraj, V. A., Vathsala, P. G., Rangarajan, P., & Padmanaban, G. (2006). Curcumin-artemisinin combination therapy for malaria. Antimicrobial agents and chemotherapy, 50(5), 1859-1860.
  • [26] Peram, M. R., Jalalpure, S. S., Joshi, S. A., Palkar, M. B., & Diwan, P. V. (2017). Single robust RP-HPLC analytical method for quantification of curcuminoids in commercial turmeric products, Ayurvedic medicines, and nanovesicular systems. Journal of Liquid Chromatography & Related Technologies, 40(10), 487–498.
  • [27] Stankovic, I. (2004). Curcumin: Chemical and Technical Assessment (CTA). JECFA, Rome, 8.
  • [28] Schieffer, G. W. (2002). Pressurized liquid extraction of curcuminoids and curcuminoid degradation products from turmeric (Curcuma longa) with subsequent HPLC assays. Journal of Liquid Chromatography & Related Technologies, 25(19), 3033-3044.
  • [29] Suresh, D., Manjunatha, H., & Srinivasan, K. (2007). Effect of heat processing of spices on the concentrations of their bioactive principles: Turmeric (Curcuma longa), red pepper (Capsicum annuum) and black pepper (Piper nigrum). Journal of Food Composition and Analysis, 20(3-4), 346-351.
  • [30] Kimbaris, A. C., Siatis, N. G., Daferera, D. J., Tarantilis, P. A., Pappas, C. S., & Polissiou, M. G. (2006). Comparison of distillation and ultrasound-assisted extraction methods for the isolation of sensitive aroma compounds from garlic (Allium sativum). Ultrasonics Sonochemistry, 13(1), 54-60.
  • [31] Vinatoru, M. (2001). An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonics Sonochemistry, 8(3), 303-313.
  • [32] Da Porto, C., & Decorti, D. (2009). Ultrasound-assisted extraction coupled with under vacuum distillation of flavour compounds from spearmint (carvonerich) plants: comparison with conventional hydrodistillation. Ultrasonics Sonochemistry, 16(6), 795-799.
  • [33] Khan, M. K., Abert-Vian, M., Fabiano-Tixier, A. S., Dangles, O., & Chemat, F. (2010). Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chemistry, 119(2), 851-858.
  • [34] Lianfu, Z., & Zelong, L. (2008). Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrasonics Sonochemistry, 15(5), 731-737.
  • [35] Adjé, F., Lozano, Y. F., Lozano, P., Adima, A., Chemat, F., & Gaydou, E. M. (2010). Optimization of anthocyanin, flavonol and phenolic acid extractions from Delonix regia tree flowers using ultrasound-assisted water extraction. Industrial Crops and Products, 32(3), 439-444.
  • [36] Shirsath, S. R., Sonawane, S. H., & Gogate, P. R. (2012). Intensification of extraction of natural products using ultrasonic irradiations—A review of current status. Chemical Engineering and Processing: Process Intensification, 53, 10-23.
  • [37] Reverchon, E., & Osséo, L. S. (1994). Comparison of processes for the supercritical carbon dioxide extraction of oil from soybean seeds. Journal of the American Oil Chemists’ Society, 71(9), 1007-1012.
  • [38] Wang, L., & Weller, C. L. (2006). Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology, 17(6), 300- 312.
  • [39] Shen, Y., Han, C., Chen, X., Hou, X., & Long, Z. (2013). Simultaneous determination of three Curcuminoids in Curcuma wenyujin YH chen et C. Ling. by liquid chromatography–tandem mass spectrometry combined with pressurized liquid extraction. Journal of Pharmaceutical And Biomedical Analysis, 81, 146- 150.
  • [40] Wakte, P. S., Sachin, B. S., Patil, A. A., Mohato, D. M., Band, T. H., & Shinde, D. B. (2011). Optimization of microwave, ultra-sonic and supercritical carbon dioxide assisted extraction techniques for curcumin from Curcuma longa. Separation and Purification Technology, 79(1), 50-55.
  • [41] Kwon, H. L., & Chung, M. S. (2015). Pilot-scale subcritical solvent extraction of curcuminoids from Curcuma longa L. Food chemistry, 185, 58-64.
  • [42] Kimthet, C., Wahyudiono, Kanda, H., & Goto, M. (2017, May). Extraction of curcumin from Curcuma longa L. using ultrasound assisted supercritical carbon dioxide. In AIP conference proceedings (Vol. 1840, No. 1, p. 100001). AIP Publishing LLC.
  • [43] Kiamahalleh, M. V., Najafpour-Darzi, G., Rahimnejad, M., Moghadamnia, A. A., & Kiamahalleh, M. V. (2016). High performance curcumin subcritical water extraction from turmeric (Curcuma longa L.). Journal of Chromatography B, 1022, 191-198.
  • [44] Kewen, T., Jianmin, Y., & Li, L. (2005). Microwave Assisted Extraction- Adsorption Separation of Curcumin from Turmeric. Chemical Industry and Engineering Progress, 24(6), 647.
  • [45] Bener, M., Özyürek, M., Güçlü, K., & Apak, R. (2016). Optimization of microwave-assisted extraction of curcumin from Curcuma longa L. (Turmeric) and evaluation of antioxidant activity in multi-test systems. Records of Natural Products, 10(5), 542.
  • [46] Rezaei, S., Najafpour, G. D., Mohammadi, M., Moghadamnia, A. A., Kazemi S. (2016). Formic acid and microwave assisted extraction of curcumin from turmeric (Curcuma longa L.). International Journal of Engineering, 29(2), 145-151.
  • [47] Sahne, F., Mohammadi, M., Najafpour, G. D., & Moghadamnia, A. A. (2016). Extraction of bioactive compound curcumin from turmeric (Curcuma longa L.) via different routes: A comparative study. Pak. Journal of Biotechnology, 13(3), 173-180.
  • [48] Sahne, F., Mohammadi, M., Najafpour, G. D., & Moghadamnia, A. A. (2017). Enzyme-assisted ionic liquid extraction of bioactive compound from turmeric (Curcuma longa L.): Isolation, purification and analysis of curcumin. Industrial Crops and Products, 95, 686-694.
  • [49] Ou, Z. Q., Jia, L. Q., Jin, H. Y., Yediler, A., Sun, T. H., & Kettrup, A. (1997). Ultrasonic extraction and LC determination of linear alkylbenzene sulfonate in plant tissues. Chromatographia, 44(7-8), 417-420.
  • [50] Shotipruk, A., Kaufman, P. B., & Wang, H. Y. (2001). Feasibility study of repeated harvesting of menthol from biologically viable menthaxpiperata using ultrasonic extraction. Biotechnology Progress, 17(5), 924-928.
  • [51] Djilani, A., Legseir, B., Soulimani, R., Dicko, A., & Younos, C. (2006). New extraction technique for alkaloids. Journal of the Brazilian Chemical Society, 17(3), 518-520.
  • [52] Bong, P. H. (2000). Spectral and photophysical behaviors of curcumin and curcuminoids. Bulletin of the Korean Chemical Society, 21(1), 81-86.
  • [53] Santos, D. T., Veggi, P. C., & Meireles, M. A. A. (2012). Optimization and economic evaluation of pressurized liquid extraction of phenolic compounds from jabuticaba skins. Journal of Food Engineering, 108(3), 444-452.
  • [54] Mustafa, A., & Turner, C. (2011). Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Analytica Chimica Acta, 703(1), 8-18.
  • [55] Zaibunnisa, A. H., Norashikin, S., Mamot, S., & Osman, H. (2009). An experimental design approach for the extraction of volatile compounds from turmeric leaves (Curcuma domestica) using pressurised liquid extraction (PLE). LWT-Food Science and Technology, 42(1), 233-238.
  • [56] Teo, C. C., Tan, S. N., Yong, J. W. H., Hew, C. S., & Ong, E. S. (2010). Pressurized hot water extraction (PHWE). Journal of Chromatography A, 1217(16), 2484-2494.
  • [57] Osorio-Tobón, J. F., & Meireles, M. A. A., (2013). Recent applications of pressurized fluid extraction: curcuminoids extraction with pressurized liquids. Food Public Health, 3(6), 289-303.
  • [58] Mira, B., Blasco, M., Berna, A., & Subirats, S. (1999). Supercritical CO2 extraction of essential oil from orange peel. Effect of operation conditions on the extract composition. The Journal of Supercritical Fluids, 14(2), 95-104.
  • [59] Zougagh, M., Valcárcel, M., & Rıos, A. (2004). Supercritical fluid extraction: a critical review of its analytical usefulness. TrAC Trends in Analytical Chemistry, 23(5), 399-405.
  • [60] Büyüktuncel, E. (2012). Gelişmiş ekstraksiyon teknikleri I. Hacettepe Üniversitesi Eczacılık Fakültesi Dergisi, (2), 209-242.
  • [61] Brunner, G. (2005). Supercritical fluids: technology and application to food processing. Journal of Food Engineering, 67(1-2), 21-33.
  • [62] Brunner, G. (1987). Stofftrennung mit ueberkritischen gasen (gasextraktion). Chemie Ingenieur Technik, 59(1), 12-22.
  • [63] Del Valle, J. M., & Aguilera, J. M. (1999). Revision: Extracción con CO2 a alta presión. Fundamentos y aplicaciones en la industria de alimentos/Review: High pressure CO2 extraction. Fundamentals and applications in the food industry. Food Science and Technology International, 5(1), 1-24.
  • [64] Carabias-Martínez, R., Rodríguez-Gonzalo, E., Revilla-Ruiz, P., & Hernández-Méndez, J. (2005). Pressurized liquid extraction in the analysis of food and biological samples. Journal of Chromatography A, 1089(1-2), 1-17.
  • [65] Hawthorne, S. B., Yang, Y., & Miller, D. J. (1994). Extraction of organic pollutants from environmental solids with sub-and supercritical water. Analytical Chemistry, 66(18), 2912-2920.
  • [66] Liang, X., & Fan, Q. (2013). Application of sub-critical water extraction in pharmaceutical industry. Journal of Materials Science and Chemical Engineering, 1(05), 1.
  • [67] Ramos, L., Kristenson, E. M., & Brinkman, U. T. (2002). Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis. Journal of Chromatography A, 975(1), 3-29.
  • [68] Smith, R. M. (2002). Extractions with superheated water. Journal of Chromatography A, 975(1), 31-46.
  • [69] Kubátová, A., Jansen, B., Vaudoisot, J. F., & Hawthorne, S. B. (2002). Thermodynamic and kinetic models for the extraction of essential oil from savory and polycyclic aromatic hydrocarbons from soil with hot (subcritical) water and supercritical CO2. Journal of Chromatography A, 975(1), 175-188.
  • [70] Kaderides, K., Papaoikonomou, L., Serafim, M., & Goula, A. M. (2019). Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chemical Engineering and Processing-Process Intensification, 137, 1-11.
  • [71] Zheng, X., Xu, X., Liu, C., Sun, Y., Lin, Z., & Liu, H. (2013). Extraction characteristics and optimal parameters of anthocyanin from blueberry powder under microwave-assisted extraction conditions. Separation and Purification Technology, 104, 17-25.
  • [72] Dandekar, D. V., & Gaikar, V. G. (2002). Microwave assisted extraction of curcuminoids from Curcuma longa. Separation Science and Technology, 37(11), 2669-2690.
  • [73] Destandau, E., Michel, T., & Elfakir, C. (2013). Microwave-assisted extraction. Natural Product Extraction: Principles and Applications, (21), 113.
  • [74] Kormin, F., Abdurahman, N. H., Yunus, R. M., & Rivai, M. (2013). Study the heating mechanisms of temperature-controlled microwave closed system (TCMCS). International Journal of Engineering Science and Innovative Technology (IJESIT), 2(5), 417-429.
  • [75] Li, M., Ngadi, M. O., & Ma, Y. (2014). Optimisation of pulsed ultrasonic and microwave-assisted extraction for curcuminoids by response surface methodology and kinetic study. Food chemistry, 165, 29-34.
  • [76] Anonymous. 2020. Solvent Choice for Microwave Synthesis. CEM Corporation. Website: https://cem.com/en/microwave-chemistry/solvent-choice. Access Date: 10.02.2021.
  • [77] Priyadarsini, K. I. (2014). The chemistry of curcumin: from extraction to therapeutic agent. Molecules, 19(12), 20091-20112.
  • [78] Sevindik, O., & Selli, S. (2017). Üzüm Çekirdek Yaği Eldesinde Kullanilan Ekstraksiyon Yöntemleri. Gıda, 42(1), 95-103.
  • [79] Sowbhagya, H. B., & Chitra, V. N. (2010). Enzyme-assisted extraction of flavorings and colorants from plant materials. Critical Reviews In Food Science and Nutrition, 50(2), 146-161.
  • [80] Puri, M., Sharma, D., & Barrow, C. J. (2012). Enzyme-assisted extraction of bioactives from plants. Trends in Biotechnology, 30(1), 37-44.
  • [81] Zhang, G., Hu, M., He, L., Fu, P., Wang, L., & Zhou, J. (2013). Optimization of microwave-assisted enzymatic extraction of polyphenols from waste peanut shells and evaluation of its antioxidant and antibacterial activities in vitro. Food and Bioproducts Processing, 91(2), 158-168.
  • [82] Campbell, K. A., Vaca-Medina, G., Glatz, C. E., & Pontalier, P. Y. (2016). Parameters affecting enzyme-assisted aqueous extraction of extruded sunflower meal. Food Chemistry, 208, 245-251.
  • [83] Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A., Ghafoor, K., Norulaini, N. A. N., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117(4), 426–436.
  • [84] Kurmudle, N., Kagliwal, L. D., Bankar, S. B., & Singhal, R. S. (2013). Enzyme-assisted extraction for enhanced yields of turmeric oleoresin and its constituents. Food Bioscience, 3, 36-41.
There are 84 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Article
Authors

Tuğçe Ceyhan 0000-0002-7189-7439

Furkan Erdem This is me

Publication Date October 1, 2020
Published in Issue Year 2020 Volume: 6 Issue: 2

Cite

APA Ceyhan, T., & Erdem, F. (2020). ALTERNATIVE EXTRACTION TECHNIQUES OF CURCUMINOIDS FROM TURMERIC. International Journal of Food Engineering Research, 6(2), 95-120.

All site content, except where otherwise noted, is licensed under a Creative Common Attribution Licence. (CC-BY-NC 4.0)

by-nc.png