Research Article
BibTex RIS Cite

Cell Culture Test and Bacterial Growth Evaluation of NiTiNbX ( X=Ta and V) Biocompatible Shape Memory Alloys in Simulated Body Fluid

Year 2022, Volume: 6 Issue: 1, 59 - 64, 28.06.2022
https://doi.org/10.46460/ijiea.1057497

Abstract

In this study, a quaternary biocompatible shape memory alloy (BSMA) was produced by adding different ratios of Ta and V elements to the equiatomic NiTi and Ni27Ti50Nb23 ternary alloy. Prepared alloys; They were coded as Ni50Ti50 (EB1), Ni27Ti50Nb23 (EB2), Ni27Ti50Nb22Ta1 (E1), Ni27Ti50Nb20Ta3 (E3), Ni27Ti50Nb18Ta5 (E5), Ni27Ti50Nb22V1 (B1), Ni27Ti50Nb21V2 (B2) ve Ni27Ti50Nb18V5 (B5). The BSMA samples prepared to be used for this experiment were cut in regular and equal sizes and subjected to sterilization processes. Simulated body fluid (SBF), in which the prepared alloys were in contact, was prepared in the laboratory and used in in-vitro studies. In this study, a closed incubator system was preferred and a pathogenic bacterium, Pseudomonas aeruginosa (ATCC 27853), was used. For the production of bacteria, Nutrient agar solid was prepared. Bacterial cell density grown in the artificial body fluid with the control (simulated body fluid); determined for each alloy using a spectrophotometer (OD600). In the other stage; bacteria were cultivated from liquid culture (SBF containing Pseudomonas aeruginosa) to petri dishes containing solid media by smear method for each alloy. At the end of this period, bacterial colonies were observed with an ultraviolet (UV) lamp. The degree of biocompatibility was evaluated according to the results of the cell culture test performed for examination. It was observed that the cell density values of NiTiNbTa BSMAs added with Ta element were lower than the control (SBF). In addition, much lower values were determined in the alloys prepared with the increase of vanadium element contribution in NiTiNbV BSMA. According to the bacterial growth tests obtained, it can be said that the Ta element increases the biocompatibility in NiTi alloys, since fewer bacterial colonies are seen in the Ta element added environments than the others.

References

  • 1. Mohammed, S., et al., A Review Study on Biocompatible Improvements of NiTi-based Shape Memory Alloys. International Journal of Innovative Engineering Applications. 5(2): p. 125-130.
  • 2. Karaca, H., et al., Effects of aging on [1 1 1] oriented NiTiHfPd single crystals under compression. Scripta Materialia, 2012. 67(7-8): p. 728-731.
  • 3. Acar, E., et al., Role of aging time on the microstructure and shape memory properties of NiTiHfPd single crystals. Materials Science and Engineering: A, 2013. 573: p. 161-165.
  • 4. Acar, E., Dynamic mechanical response of a Ni45. 7Ti29. 3Hf20Pd5 alloy. Materials Science and Engineering: A, 2015. 633: p. 169-175.
  • 5. Acar, E., et al., Compressive response of NiTiHfPd and NiTiHfPd shape-memory alloys. Journal of Materials Science, 2015. 50(4).
  • 6. Karaca, H., et al., NiTiHf-based shape memory alloys. Materials Science and Technology, 2014. 30(13): p. 1530-1544.
  • 7. Balci, E. and F. Dağdelen, Investigate of Microhardness and Microstructure of Ti-Ni-Nb-X (Ta and V) Shape Memory Alloys. International Journal of Innovative Engineering Applications. 5(2): p. 131-135.
  • 8. Balci, E., et al., Effects of substituting Nb with V on thermal analysis and biocompatibility assessment of quaternary NiTiNbV SMA. The European Physical Journal Plus, 2021. 136(2): p. 1-13.
  • 9. Balci, E. and Akpinar S., Quaternary Element Incorporation Effects on Thermal Properties and Crystal-Micro Structure of Cu-Al-Fe High Temperature Shape Memory Alloys. International Journal of Thermodynamics, 2021. 24(2): p. 119-126.
  • 10. Zhang, Y.-q., et al., Influence of cooling rate on phase transformation and microstructure of Ti-50.9% Ni shape memory alloy. Transactions of Nonferrous Metals Society of China, 2012. 22(11): p. 2685-2690.
  • 11. Mousavi, T., F. Karimzadeh, and M. Abbasi, Synthesis and characterization of nanocrystalline NiTi intermetallic by mechanical alloying. Materials Science and Engineering: A, 2008. 487(1-2): p. 46-51.
  • 12. Ying, C., et al., Mechanical behavior in NiTiNb shape memory alloys with low Nb content. Intermetallics, 2011. 19(2): p. 217-220.
  • 13. Hamilton, R.F., et al., Shape memory effect in cast versus deformation-processed NiTiNb alloys. Shape Memory and Superelasticity, 2015. 1(2): p. 117-123.
  • 14. Dagdelen, F., et al., Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. JOM, 2020. 72(4): p. 1664-1672.
  • 15. Campbell, F.C., Phase diagrams: understanding the basics. 2012: ASM international.
  • 16. Lin, H., et al., Aging effect on a Ti47. 25Ni48. 75V4 shape memory alloy. Journal of alloys and compounds, 2008. 449(1-2): p. 119-124.
  • 17. Lin, H., et al., A study of TiNiV ternary shape memory alloys. Journal of alloys and compounds, 1999. 284(1-2): p. 213-217.
  • 18. Mao, H., et al., Transformation and superelastic characteristics of large hysteresis TiNi matrix shape memory alloys reinforced by V nanowires. Materials Letters, 2018. 228: p. 391-394.
  • 19. Oymak, M.A., E. Bahçe, and İ. Gezer, Investigation of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material. International Journal of Innovative Engineering Applications. 5(2): p. 93-100.
  • 20. Standardization, I.O.f., International Standard-ISO-7405: Dentistry-Preclinical Evaluation of Biocompatibility of Medical Devices Used in Dentistry Test Methods for Dental Materials/IOS. 1997: ISO.
  • 21. Oshida, Y., Bioscience and bioengineering of titanium materials. 2010: Elsevier.
  • 22. Schmalz, G., Concepts in biocompatibility testing of dental restorative materials. Clinical oral investigations, 1998. 1(4): p. 154-162.
  • 23. Wataha, J.C., Principles of biocompatibility for dental practitioners. The Journal of prosthetic dentistry, 2001. 86(2): p. 203-209.
  • 24. Tremblay, J., et al., Self‐produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour. Environmental microbiology, 2007. 9(10): p. 2622-2630.
  • 25. Şen, A. and A.K. Halkman, Çiğ sütte Pseudomonas aeruginosa sayılması için yöntem modifikasyonları üzerine çalışmalar''. Orlab On-Line Mikrobiyoloji Dergisi, 2006. 4(2): p. 2-13.
  • 26. Rattanakul, S. and K. Oguma, Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms. Water research, 2018. 130: p. 31-37.
  • 27. Karaderi, C.C., Pseudomonas aeruginosa, escherichia coli ve enterococcus faecalis' de farklı ortam koşullarında protaz, prolin ve biofilm üretimi ile kayma hareketlerinin incelenmesi. 2016, İnönü Üniversitesi Fen Bilimleri Enstitüsü.
  • 28. Calfee, M.W., J.P. Coleman, and E.C. Pesci, Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 2001. 98(20): p. 11633-11637.
  • 29. Siriken, B. and Ö. Veli, Pseudomonas aeruginosa: Özellikleri ve Quorum Sensing Mekanizması. Gıda ve Yem Bilimi Teknolojisi Dergisi, (18): p. 42-52.
  • 30. Britigan, B.E., M.A. Railsback, and C.D. Cox, The Pseudomonas aeruginosa secretory product pyocyanin inactivates α1 protease inhibitor: implications for the pathogenesis of cystic fibrosis lung disease. Infection and immunity, 1999. 67(3): p. 1207-1212.
  • 31. Dağdelen, F., Balci E., and Ercan E., Ti-27Ni-20Nb-3V Alaşımın Faz Dönüşüm Sıcaklıkları, Korozyon Direnci ve Yapısal Özelliklerinin İncelenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 10(3): p. 796-802.
  • 32. Aydoğdu, Y., Effects of Substituting Nb with Ta on Microstructure and Thermal Properties of Novel Biocompatible TiNiNbTa Shape Memory Alloys. 2021.
  • 33. Vinoth, J., S. Murugan, and C. Stalin, Optimization of alkaline protease production and its fibrinolytic activity from the bacterium Pseudomonas fluorescens isolated from fish waste discharged soil. African Journal of Biotechnology, 2014. 13(30): p. 3052-3060.
  • 34. Kahraman, H. and C.C. Karaderi, Pyocyanine Production, Twitching Motility and Hydrophobicity of Different Wastes on Pseudomonas aeruginosa. Polish Journal of Environmental Studies, 2021. 30(2).
  • 35. Kaygili, O., et al., Sol-gel synthesis and characterization of TiO2 powder. International Journal of Innovative Engineering Applications, 2017. 1(2): p. 38-40.
  • 36. Kamaraj, P., et al., Biological activities of tin oxide nanoparticles synthesized using plant extract. World J Pharm Pharm Sci, 2014. 3(9): p. 382-388.
  • 37. Amininezhad, S.M., et al., The antibacterial activity of SnO2 nanoparticles against Escherichia coli and Staphylococcus aureus. Zahedan Journal of Research in Medical Sciences, 2015. 17(9).
  • 38. Chang, Y.-Y., et al., Antibacterial properties and cytocompatibility of tantalum oxide coatings. Surface and Coatings Technology, 2014. 259: p. 193-198.
  • 39. Ghoranneviss, M. and S. Shahidi, Effect of various metallic salts on antibacterial activity and physical properties of cotton fabrics. Journal of Industrial Textiles, 2013. 42(3): p. 193-203.
  • 40. Barbas Arribas, C. and D. Rojo Blanco, Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic Bacterium/David Rojo...[et al.]. 2015.
  • 41. Lu, Y., et al., Antibacterial activity of TiO2/Ti composite photocatalyst films treated by ultrasonic cleaning. Adv. Mater. Phys. Chem, 2012. 2(04): p. 9-12.
  • 42. Xing, Y., et al., Effect of TiO2 nanoparticles on the antibacterial and physical properties of polyethylene-based film. Progress in Organic Coatings, 2012. 73(2-3): p. 219-224.
  • 43. Kim, Y.S., et al., Antibacterial performance of TiO2 ultrafine nanopowder synthesized by a chemical vapor condensation method: Effect of synthesis temperature and precursor vapor concentration. Powder technology, 2012. 215: p. 195-199.
  • 44. Harun, A.M., et al., The toxicology properties of modified hydrothermal nanotitania extraction. Archives of Medical Science, 2021: p. 1-4.
  • 45. Marrez, D.A. and H.S. Mohamad, Biological activity and applications of pyocyanin produced by Pseudomonas aeruginosa. J Bio Sci, 2020. 1(4): p. 140-144.
  • 46. Raji El Feghali, P. and T. Nawas, Pyocyanin: A powerful inhibitor of bacterial growth and biofilm formation. Madridge J Case Rep Stud, 2018. 2(2): p. 101-107.

NiTiNbX ( X=Ta ve V) Biyouyumlu Şekil Hatırlamalı Alaşımların Yapay Vücut Sıvısı İçerisinde Hücre Kültür Testi ve Bakteri Üreme Değerlendirilmesi

Year 2022, Volume: 6 Issue: 1, 59 - 64, 28.06.2022
https://doi.org/10.46460/ijiea.1057497

Abstract

Bu çalışmada eş atomlu NiTi ve Ni27Ti50Nb23 üçlü alaşıma farklı oranlarda Ta ve V elementi katkılanarak dörtlü biyouyumlu şekil hatırlamalı alaşım (BŞHA) üretildi. Hazırlanan alaşımlar; Ni50Ti50 (EB1), Ni27Ti50Nb23 (EB2), Ni27Ti50Nb22Ta1 (E1), Ni27Ti50Nb20Ta3 (E3), Ni27Ti50Nb18Ta5 (E5), Ni27Ti50Nb22V1 (B1), Ni27Ti50Nb21V2 (B2) ve Ni27Ti50Nb18V5 (B5) şeklinde kodlandı. Daha sonra BŞHA’lar düzenli ve eş boyutta olmak üzere kesildi ve sterilizasyon işlemlerinden geçirildi. Hazırlanan alaşımların temas halinde bulunmuş olduğu yapay vücut sıvısı (SBF) laboratuvar ortamında hazırlandı ve in-vitro çalışmalarda kullanıldı. Bu çalışmada kapalı inkübatör sistemi tercih edilmiştir ve patojen bir bakteri olan Pseudomonas aeruginosa (ATCC 27853) suşu kullanılmıştır. Bakteri üretimi için, Nutrient agar besiyeri hazırlandı. Kontrol (yapay vücut sıvısı) ile numunelerin temas ettiği yapay vücut sıvısı içerisinde üreyen bakteri hücre yoğunluğu; her bir alaşım için spektrofotometre (OD600) kullanılarak belirlendi. Diğer aşamada ise; katı besi yeri içeren petri kaplarına, sıvı kültüründen (Pseudomonas aeruginosa içeren SBF) her bir alaşım için yayma yöntemi ile bakteri ekimi gerçekleştirildi. Bu süre sonunda, ultraviyole (UV) lambası ile üreyen bakteri kolonileri gözlemlendi. Biyouyumluluk derecesi incelenmesi için yapılan hücre kültür testi sonuçlarına göre değerlendirildi. Ta elementi ile katkılanmış NiTiNbTa BŞHA’ların hücre yoğunluk değerleri kontrol (SBF)’ ye göre daha düşük değerlerde olduğu gözlendi. Ayrıca, NiTiNbV BŞHA’da vanadyum elementi katkısının artması ile hazırlanan alaşımlarda çok daha düşük değerler tespit edilmiştir. Elde edilen bakteriler üreme testlerine göre, Ta elementi katkılı ortamlarda diğerlerine göre daha az bakteri kolonisi görüldüğü için NiTi alaşımlarda, Ta elementinin biyouyumluluğu arttırdığı söylenebilir.

References

  • 1. Mohammed, S., et al., A Review Study on Biocompatible Improvements of NiTi-based Shape Memory Alloys. International Journal of Innovative Engineering Applications. 5(2): p. 125-130.
  • 2. Karaca, H., et al., Effects of aging on [1 1 1] oriented NiTiHfPd single crystals under compression. Scripta Materialia, 2012. 67(7-8): p. 728-731.
  • 3. Acar, E., et al., Role of aging time on the microstructure and shape memory properties of NiTiHfPd single crystals. Materials Science and Engineering: A, 2013. 573: p. 161-165.
  • 4. Acar, E., Dynamic mechanical response of a Ni45. 7Ti29. 3Hf20Pd5 alloy. Materials Science and Engineering: A, 2015. 633: p. 169-175.
  • 5. Acar, E., et al., Compressive response of NiTiHfPd and NiTiHfPd shape-memory alloys. Journal of Materials Science, 2015. 50(4).
  • 6. Karaca, H., et al., NiTiHf-based shape memory alloys. Materials Science and Technology, 2014. 30(13): p. 1530-1544.
  • 7. Balci, E. and F. Dağdelen, Investigate of Microhardness and Microstructure of Ti-Ni-Nb-X (Ta and V) Shape Memory Alloys. International Journal of Innovative Engineering Applications. 5(2): p. 131-135.
  • 8. Balci, E., et al., Effects of substituting Nb with V on thermal analysis and biocompatibility assessment of quaternary NiTiNbV SMA. The European Physical Journal Plus, 2021. 136(2): p. 1-13.
  • 9. Balci, E. and Akpinar S., Quaternary Element Incorporation Effects on Thermal Properties and Crystal-Micro Structure of Cu-Al-Fe High Temperature Shape Memory Alloys. International Journal of Thermodynamics, 2021. 24(2): p. 119-126.
  • 10. Zhang, Y.-q., et al., Influence of cooling rate on phase transformation and microstructure of Ti-50.9% Ni shape memory alloy. Transactions of Nonferrous Metals Society of China, 2012. 22(11): p. 2685-2690.
  • 11. Mousavi, T., F. Karimzadeh, and M. Abbasi, Synthesis and characterization of nanocrystalline NiTi intermetallic by mechanical alloying. Materials Science and Engineering: A, 2008. 487(1-2): p. 46-51.
  • 12. Ying, C., et al., Mechanical behavior in NiTiNb shape memory alloys with low Nb content. Intermetallics, 2011. 19(2): p. 217-220.
  • 13. Hamilton, R.F., et al., Shape memory effect in cast versus deformation-processed NiTiNb alloys. Shape Memory and Superelasticity, 2015. 1(2): p. 117-123.
  • 14. Dagdelen, F., et al., Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. JOM, 2020. 72(4): p. 1664-1672.
  • 15. Campbell, F.C., Phase diagrams: understanding the basics. 2012: ASM international.
  • 16. Lin, H., et al., Aging effect on a Ti47. 25Ni48. 75V4 shape memory alloy. Journal of alloys and compounds, 2008. 449(1-2): p. 119-124.
  • 17. Lin, H., et al., A study of TiNiV ternary shape memory alloys. Journal of alloys and compounds, 1999. 284(1-2): p. 213-217.
  • 18. Mao, H., et al., Transformation and superelastic characteristics of large hysteresis TiNi matrix shape memory alloys reinforced by V nanowires. Materials Letters, 2018. 228: p. 391-394.
  • 19. Oymak, M.A., E. Bahçe, and İ. Gezer, Investigation of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material. International Journal of Innovative Engineering Applications. 5(2): p. 93-100.
  • 20. Standardization, I.O.f., International Standard-ISO-7405: Dentistry-Preclinical Evaluation of Biocompatibility of Medical Devices Used in Dentistry Test Methods for Dental Materials/IOS. 1997: ISO.
  • 21. Oshida, Y., Bioscience and bioengineering of titanium materials. 2010: Elsevier.
  • 22. Schmalz, G., Concepts in biocompatibility testing of dental restorative materials. Clinical oral investigations, 1998. 1(4): p. 154-162.
  • 23. Wataha, J.C., Principles of biocompatibility for dental practitioners. The Journal of prosthetic dentistry, 2001. 86(2): p. 203-209.
  • 24. Tremblay, J., et al., Self‐produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour. Environmental microbiology, 2007. 9(10): p. 2622-2630.
  • 25. Şen, A. and A.K. Halkman, Çiğ sütte Pseudomonas aeruginosa sayılması için yöntem modifikasyonları üzerine çalışmalar''. Orlab On-Line Mikrobiyoloji Dergisi, 2006. 4(2): p. 2-13.
  • 26. Rattanakul, S. and K. Oguma, Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms. Water research, 2018. 130: p. 31-37.
  • 27. Karaderi, C.C., Pseudomonas aeruginosa, escherichia coli ve enterococcus faecalis' de farklı ortam koşullarında protaz, prolin ve biofilm üretimi ile kayma hareketlerinin incelenmesi. 2016, İnönü Üniversitesi Fen Bilimleri Enstitüsü.
  • 28. Calfee, M.W., J.P. Coleman, and E.C. Pesci, Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 2001. 98(20): p. 11633-11637.
  • 29. Siriken, B. and Ö. Veli, Pseudomonas aeruginosa: Özellikleri ve Quorum Sensing Mekanizması. Gıda ve Yem Bilimi Teknolojisi Dergisi, (18): p. 42-52.
  • 30. Britigan, B.E., M.A. Railsback, and C.D. Cox, The Pseudomonas aeruginosa secretory product pyocyanin inactivates α1 protease inhibitor: implications for the pathogenesis of cystic fibrosis lung disease. Infection and immunity, 1999. 67(3): p. 1207-1212.
  • 31. Dağdelen, F., Balci E., and Ercan E., Ti-27Ni-20Nb-3V Alaşımın Faz Dönüşüm Sıcaklıkları, Korozyon Direnci ve Yapısal Özelliklerinin İncelenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 10(3): p. 796-802.
  • 32. Aydoğdu, Y., Effects of Substituting Nb with Ta on Microstructure and Thermal Properties of Novel Biocompatible TiNiNbTa Shape Memory Alloys. 2021.
  • 33. Vinoth, J., S. Murugan, and C. Stalin, Optimization of alkaline protease production and its fibrinolytic activity from the bacterium Pseudomonas fluorescens isolated from fish waste discharged soil. African Journal of Biotechnology, 2014. 13(30): p. 3052-3060.
  • 34. Kahraman, H. and C.C. Karaderi, Pyocyanine Production, Twitching Motility and Hydrophobicity of Different Wastes on Pseudomonas aeruginosa. Polish Journal of Environmental Studies, 2021. 30(2).
  • 35. Kaygili, O., et al., Sol-gel synthesis and characterization of TiO2 powder. International Journal of Innovative Engineering Applications, 2017. 1(2): p. 38-40.
  • 36. Kamaraj, P., et al., Biological activities of tin oxide nanoparticles synthesized using plant extract. World J Pharm Pharm Sci, 2014. 3(9): p. 382-388.
  • 37. Amininezhad, S.M., et al., The antibacterial activity of SnO2 nanoparticles against Escherichia coli and Staphylococcus aureus. Zahedan Journal of Research in Medical Sciences, 2015. 17(9).
  • 38. Chang, Y.-Y., et al., Antibacterial properties and cytocompatibility of tantalum oxide coatings. Surface and Coatings Technology, 2014. 259: p. 193-198.
  • 39. Ghoranneviss, M. and S. Shahidi, Effect of various metallic salts on antibacterial activity and physical properties of cotton fabrics. Journal of Industrial Textiles, 2013. 42(3): p. 193-203.
  • 40. Barbas Arribas, C. and D. Rojo Blanco, Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic Bacterium/David Rojo...[et al.]. 2015.
  • 41. Lu, Y., et al., Antibacterial activity of TiO2/Ti composite photocatalyst films treated by ultrasonic cleaning. Adv. Mater. Phys. Chem, 2012. 2(04): p. 9-12.
  • 42. Xing, Y., et al., Effect of TiO2 nanoparticles on the antibacterial and physical properties of polyethylene-based film. Progress in Organic Coatings, 2012. 73(2-3): p. 219-224.
  • 43. Kim, Y.S., et al., Antibacterial performance of TiO2 ultrafine nanopowder synthesized by a chemical vapor condensation method: Effect of synthesis temperature and precursor vapor concentration. Powder technology, 2012. 215: p. 195-199.
  • 44. Harun, A.M., et al., The toxicology properties of modified hydrothermal nanotitania extraction. Archives of Medical Science, 2021: p. 1-4.
  • 45. Marrez, D.A. and H.S. Mohamad, Biological activity and applications of pyocyanin produced by Pseudomonas aeruginosa. J Bio Sci, 2020. 1(4): p. 140-144.
  • 46. Raji El Feghali, P. and T. Nawas, Pyocyanin: A powerful inhibitor of bacterial growth and biofilm formation. Madridge J Case Rep Stud, 2018. 2(2): p. 101-107.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Esra Balci 0000-0003-0127-7602

Cennet Canan Karaderi 0000-0002-4841-4435

Hüseyin Kahraman 0000-0001-6235-5497

Fethi Dağdelen 0000-0001-9849-590X

Early Pub Date June 25, 2022
Publication Date June 28, 2022
Submission Date January 14, 2022
Published in Issue Year 2022 Volume: 6 Issue: 1

Cite

APA Balci, E., Karaderi, C. C., Kahraman, H., Dağdelen, F. (2022). NiTiNbX ( X=Ta ve V) Biyouyumlu Şekil Hatırlamalı Alaşımların Yapay Vücut Sıvısı İçerisinde Hücre Kültür Testi ve Bakteri Üreme Değerlendirilmesi. International Journal of Innovative Engineering Applications, 6(1), 59-64. https://doi.org/10.46460/ijiea.1057497
AMA Balci E, Karaderi CC, Kahraman H, Dağdelen F. NiTiNbX ( X=Ta ve V) Biyouyumlu Şekil Hatırlamalı Alaşımların Yapay Vücut Sıvısı İçerisinde Hücre Kültür Testi ve Bakteri Üreme Değerlendirilmesi. IJIEA. June 2022;6(1):59-64. doi:10.46460/ijiea.1057497
Chicago Balci, Esra, Cennet Canan Karaderi, Hüseyin Kahraman, and Fethi Dağdelen. “NiTiNbX ( X=Ta Ve V) Biyouyumlu Şekil Hatırlamalı Alaşımların Yapay Vücut Sıvısı İçerisinde Hücre Kültür Testi Ve Bakteri Üreme Değerlendirilmesi”. International Journal of Innovative Engineering Applications 6, no. 1 (June 2022): 59-64. https://doi.org/10.46460/ijiea.1057497.
EndNote Balci E, Karaderi CC, Kahraman H, Dağdelen F (June 1, 2022) NiTiNbX ( X=Ta ve V) Biyouyumlu Şekil Hatırlamalı Alaşımların Yapay Vücut Sıvısı İçerisinde Hücre Kültür Testi ve Bakteri Üreme Değerlendirilmesi. International Journal of Innovative Engineering Applications 6 1 59–64.
IEEE E. Balci, C. C. Karaderi, H. Kahraman, and F. Dağdelen, “NiTiNbX ( X=Ta ve V) Biyouyumlu Şekil Hatırlamalı Alaşımların Yapay Vücut Sıvısı İçerisinde Hücre Kültür Testi ve Bakteri Üreme Değerlendirilmesi”, IJIEA, vol. 6, no. 1, pp. 59–64, 2022, doi: 10.46460/ijiea.1057497.
ISNAD Balci, Esra et al. “NiTiNbX ( X=Ta Ve V) Biyouyumlu Şekil Hatırlamalı Alaşımların Yapay Vücut Sıvısı İçerisinde Hücre Kültür Testi Ve Bakteri Üreme Değerlendirilmesi”. International Journal of Innovative Engineering Applications 6/1 (June 2022), 59-64. https://doi.org/10.46460/ijiea.1057497.
JAMA Balci E, Karaderi CC, Kahraman H, Dağdelen F. NiTiNbX ( X=Ta ve V) Biyouyumlu Şekil Hatırlamalı Alaşımların Yapay Vücut Sıvısı İçerisinde Hücre Kültür Testi ve Bakteri Üreme Değerlendirilmesi. IJIEA. 2022;6:59–64.
MLA Balci, Esra et al. “NiTiNbX ( X=Ta Ve V) Biyouyumlu Şekil Hatırlamalı Alaşımların Yapay Vücut Sıvısı İçerisinde Hücre Kültür Testi Ve Bakteri Üreme Değerlendirilmesi”. International Journal of Innovative Engineering Applications, vol. 6, no. 1, 2022, pp. 59-64, doi:10.46460/ijiea.1057497.
Vancouver Balci E, Karaderi CC, Kahraman H, Dağdelen F. NiTiNbX ( X=Ta ve V) Biyouyumlu Şekil Hatırlamalı Alaşımların Yapay Vücut Sıvısı İçerisinde Hücre Kültür Testi ve Bakteri Üreme Değerlendirilmesi. IJIEA. 2022;6(1):59-64.