Notes on Surfaces with Constant Gauss Curvature along a Curve in the Lie Group
Year 2022,
Volume: 6 Issue: 2, 272 - 275, 30.12.2022
Zuhal Kucukarslan Yuzbasi
,
Gamze Köse Şahin
Abstract
In this study, sufficient conditions are derived and examples are created to derive surfaces with constant Gauss curvature along a given curve in terms of the linear combination of its Frenet frame in the 3-dimensional Lie group.
References
- [1] Wang, G.J, Tang, K., & Tai, C. L. (2004). Parametric representation of a surface pencil with a common spatial geodesic. Comput. Aided Des., 36, 447–459.
- [2] Li, C. Y., Wang, R. H., & Zhu, C. G. (2011). Parametric representation of a surface pencil with a common line of curvature. Comput. Aided Des., 43(9), 1110-1117.
- [3] Ergün, E., Bayram, & Kasap, E., (2014). Surface pencil with a common line of curvature in Minkowski 3-space. Acta Math. Sin. (Engl. Ser.), 30(12), 2103-2118.
- [4] Kasap, E., & Akyildiz, F. T. (2006). Surfaces with a common geodesic in Minkowski 3-space., Appl. Math. Comp. , 177, 260–270.
- [5] Yoon, D. W., Yüzbaşi, Z. K., & Bektaş, M. (2017). An approach for surfaces using an asymptotic curve in Lie group. J. Advan. Phys., 6(4), 586-590.
- [6] Yoon, D. W., & Yüzbaşi, Z. K. (2019). On constructions of surfaces using a geodesic in Lie group, J. Geo., 110(2), 1-10.
- [7] Bayram, E. (2022). Construction of surfaces with constant mean curvature along a timelike curve. Politeknik Dergisi, 1-1.
- [8] Bayram, E. (2020). Verilen Bir Eğri Boyunca Gauss Eğriliği Sabit Olan Yüzeyler. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 20(5), 819-823.
- [9] Çiftçi, Ü. (2009). A generalization of Lancret’s theorem, J. Geom. Phys., 59(12) , 1597-1603.
- [10] Okuyucu, O. Z., Gök, İ, Yaylı Y., & Ekmekci N. (2013) Slant helices in three dimensional Lie groups, Appl. Math. Comput., 221, 672-683.
- [11] Yoon, D.W. (2012). General helices of AW (k)-type in the Lie group, J. Appl. Math., Article ID 535123, 10 pages.
- [12] Abbena, E., Salamon, S., & Gray, A. Modern differential geometry of curves and surfaces with mathematica. Third Edition, 1998.
Lie Grubunda Bir Eğri Boyunca Sabit Gauss Eğrilikli Yüzeyler Üzeine Notlar
Year 2022,
Volume: 6 Issue: 2, 272 - 275, 30.12.2022
Zuhal Kucukarslan Yuzbasi
,
Gamze Köse Şahin
Abstract
Bu çalışmada, 3-boyutlu Lie grupta verilen eğrinin Frenet çatısının lineer kombinasyonuna göre verilen bir eğri boyunca sabit Gauss eğriliğine sahip yüzeyleri bulmak için yeterli koşullar üretilmiş ve örnekler oluşturulmuştur.
References
- [1] Wang, G.J, Tang, K., & Tai, C. L. (2004). Parametric representation of a surface pencil with a common spatial geodesic. Comput. Aided Des., 36, 447–459.
- [2] Li, C. Y., Wang, R. H., & Zhu, C. G. (2011). Parametric representation of a surface pencil with a common line of curvature. Comput. Aided Des., 43(9), 1110-1117.
- [3] Ergün, E., Bayram, & Kasap, E., (2014). Surface pencil with a common line of curvature in Minkowski 3-space. Acta Math. Sin. (Engl. Ser.), 30(12), 2103-2118.
- [4] Kasap, E., & Akyildiz, F. T. (2006). Surfaces with a common geodesic in Minkowski 3-space., Appl. Math. Comp. , 177, 260–270.
- [5] Yoon, D. W., Yüzbaşi, Z. K., & Bektaş, M. (2017). An approach for surfaces using an asymptotic curve in Lie group. J. Advan. Phys., 6(4), 586-590.
- [6] Yoon, D. W., & Yüzbaşi, Z. K. (2019). On constructions of surfaces using a geodesic in Lie group, J. Geo., 110(2), 1-10.
- [7] Bayram, E. (2022). Construction of surfaces with constant mean curvature along a timelike curve. Politeknik Dergisi, 1-1.
- [8] Bayram, E. (2020). Verilen Bir Eğri Boyunca Gauss Eğriliği Sabit Olan Yüzeyler. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 20(5), 819-823.
- [9] Çiftçi, Ü. (2009). A generalization of Lancret’s theorem, J. Geom. Phys., 59(12) , 1597-1603.
- [10] Okuyucu, O. Z., Gök, İ, Yaylı Y., & Ekmekci N. (2013) Slant helices in three dimensional Lie groups, Appl. Math. Comput., 221, 672-683.
- [11] Yoon, D.W. (2012). General helices of AW (k)-type in the Lie group, J. Appl. Math., Article ID 535123, 10 pages.
- [12] Abbena, E., Salamon, S., & Gray, A. Modern differential geometry of curves and surfaces with mathematica. Third Edition, 1998.