Metal İçerikli Asit Çözeltisi ile Muamele Edilmiş Atık Asfaltın Hidrojen Üretiminde Katalizör Olarak Kullanımı
Year 2022,
Volume: 6 Issue: 2, 326 - 333, 30.12.2022
Saliha Özarslan
,
Mustafa Durgun
,
Mustafa Kaya
Abstract
Orijinal Bilimsel Makale
Bu çalışmada, asetik asit ile muamele edilmiş metal katkılı atık asfalt katalizörü kullanılarak sodyum bor hidrürün metanolizinde hidrojen sentezi gerçekleştirilmiştir. Farklı metal türleri denenerek en verimli metal türü belirlenmesinin ardından farklı oranlarda metal kullanılmış ve en etkin katalizör üretilmiştir. En verimli katalizör, 3M asetik asit ve % 30 Cu ile muamele edilmiş atık asfalt katalizörüdür. Seçilen katalizör varlığında, en yüksek hidrojen verimini elde etmek için farklı katalizör miktarları, farklı sodyum bor hidrür konsantrasyonları ve farklı sıcaklıklar kullanılarak deneyler yapılmış ve sonuçlar yorumlanmıştır. Maksimum hidrojen üretimi verimi 9518,3 mLdk-1g-1 ve katalizörün aktivasyon enerjisi 38,2 kj/mol olarak belirlenmiştir.
References
- [1] Dawood, F., Anda, M., & Shafiullah, G. (2020). Hydrogen production for energy: An overview. International Journal of Hydrogen Energy, 45(7), 3847-3869.
- [2] Najjar, Y.S. (2011). Gaseous pollutants formation and their harmful effects on health and environment. Innovative energy policies, 1, 1-9.
- [3] Slezakova, K., Pires, J., Martins, F., Pereira, M., & Alvim-Ferraz, M. (2011). Identification of tobacco smoke components in indoor breathable particles by sem–eds. Atmospheric Environment, 45(4), 863-872.
- [4] Thellufsen, J.Z., Lund, H., Sorknæs, P., Østergaard, P., Chang, M., Drysdale, D., Nielsen, S., Djørup, S., & Sperling, K. (2020). Smart energy cities in a 100% renewable energy context. Renewable and Sustainable Energy Reviews, 129, 109922.
- [5] Bull, S.R. (2001). Renewable energy today and tomorrow. Proceedings of the IEEE, 89(8), 1216-1226.
- [6] Amrouche, S.O., Rekioua, D., Rekioua, T., & Bacha, S. (2016). Overview of energy storage in renewable energy systems. International journal of hydrogen energy, 41(45), 20914-20927.
- [7] Zhang, F., Zhao, P., Niu, M., & Maddy, J. (2016). The survey of key technologies in hydrogen energy storage. International journal of hydrogen energy, 41(33), 14535-14552.
- [8] Sürmen, Y. and Demrbas, A. (2002). Thermochemical conversion of residual biomass to hydrogen for turkey. Energy Sources, 24(5), 403-411.
- [9] Demirbas, A. and Arin, G. (2004). Hydrogen from biomass via pyrolysis: Relationships between yield of hydrogen and temperature. Energy Sources, 26(11), 1061-1069.
- [10] Yao, Q., Ding, Y., & Lu, Z.-H. (2020). Noble-metal-free nanocatalysts for hydrogen generation from boron-and nitrogen-based hydrides. Inorganic Chemistry Frontiers, 7(20), 3837-3874.
- [11] Hamilton, C.W., Baker, R.T., Staubitz, A., & Manners, I. (2009). B–n compounds for chemical hydrogen storage. Chemical Society Reviews, 38(1), 279-293.
- [12] Lang, C., Jia, Y., & Yao, X. (2020). Recent advances in liquid-phase chemical hydrogen storage. Energy Storage Materials, 26, 290-312.
- [13] Xu, D., Zhao, L., Dai, P., & Ji, S. (2012). Hydrogen generation from methanolysis of sodium borohydride over co/al2o3 catalyst. Journal of natural gas chemistry, 21(5), 488-494.
- [14] Demirci, S., Sunol, A.K., & Sahiner, N. (2020). Catalytic activity of amine functionalized titanium dioxide nanoparticles in methanolysis of sodium borohydride for hydrogen generation. Applied Catalysis B: Environmental, 261, 118242.
- [15] Duman, F., Atelge, M., Kaya, M., Atabani, A., Kumar, G., Sahin, U., & Unalan, S. (2020). A novel microcystis aeruginosa supported manganese catalyst for hydrogen generation through methanolysis of sodium borohydride. International Journal of Hydrogen Energy, 45(23), 12755-12765.
- [16] Kaya, M. (2020). Evaluating organic waste sources (spent coffee ground) as metal-free catalyst for hydrogen generation by the methanolysis of sodium borohydride. International Journal of Hydrogen Energy, 45(23), 12743-12754.
- [17] Karakaş, D.E., Akdemir, M., Atabani, A., & Kaya, M. (2021). A dual functional material: Spirulina platensis waste-supported pd-co catalyst as a novel promising supercapacitor electrode. Fuel, 304, 121334.
- [18] Inal, I.I.G., Akdemir, M., & Kaya, M. (2021). Microcystis aeruginosa supported-mn catalyst as a new promising supercapacitor electrode: A dual functional material. International Journal of Hydrogen Energy, 46(41), 21534-21541.
- [19] Akdemir, M., Avci Hansu, T., Caglar, A., Kaya, M., & Demir Kivrak, H. (2021). Ruthenium modified defatted spent coffee catalysts for supercapacitor and methanolysis application. Energy Storage, 3(4), e243.
- [20] Fangaj, E. and Ceyhan, A.A. (2020). Apricot kernel shell waste treated with phosphoric acid used as a green, metal-free catalyst for hydrogen generation from hydrolysis of sodium borohydride. International Journal of Hydrogen Energy, 45(35), 17104-17117.
- [21] Bolat, M., Yavuz, C., & Kaya, M. (2021). Investigation of dual-functionalized novel carbon supported sn material from corn stalk for energy storage and fuel cell systems on distributed generations. Journal of Materials Science: Materials in Electronics, 32(13), 18123-18137.
- [22] Ali, F., Khan, S.B., & Asiri, A.M. (2019). Chitosan coated cellulose cotton fibers as catalyst for the h2 production from nabh4 methanolysis. International journal of hydrogen energy, 44(8), 4143-4155.
- [23] Özarslan, S., Atelge, M.R., Kaya, M., & Ünalan, S. (2021). Production of dual functional carbon material from biomass treated with naoh for supercapacitor and catalyst. Energy Storage, 3(5), e257.
- [24] Akdemir, M., Karakaş, D.E., & Kaya, M. (2022). Synthesis of a dual‐functionalized carbon‐based material as catalyst and supercapacitor for efficient hydrogen production and energy storage: Pd‐supported pomegranate peel. Energy Storage, 4(1), e284.
- [25] Bekirogullari, M., Abut, S., Duman, F., & Hansu, T.A. (2021). Lake sediment based catalyst for hydrogen generation via methanolysis of sodium borohydride: An optimization study with artificial neural network modelling. Reaction Kinetics, Mechanisms and Catalysis, 134(1), 57-74.
- [26] Fangaj, E., Ali, A.A., Güngör, F., Bektaş, S., & Ceyhan, A.A. (2020). The use of metallurgical waste sludge as a catalyst in hydrogen production from sodium borohydride. International Journal of Hydrogen Energy, 45(24), 13322-13329.
- [27] Karakaş, D.E. (2021). A novel cost-effective catalyst from orange peel waste protonated with phosphoric acid for hydrogen generation from methanolysis of nabh4. International Journal of Hydrogen Energy.
- [28] Şeref, O., Yılmaz, B., & Mazlum, M.S. (2018). Geri kazanılan asfalt kaplamaların sıcak asfalt karışımlarda yeniden kullanabilirliğinin araştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30(1), 87-93.
- [29] Özarslan, S., Atelge, M., Kıvrak, H.D., Horoz, S., Yavuz, C., Kaya, M., & Ünalan, S. (2021). A double-functional carbon material as a supercapacitor electrode and hydrogen production: Cu-doped tea factory waste catalyst. Journal of Materials Science: Materials in Electronics, 32(24), 28909-28918.
- [30] Xu, D., Lai, X., Guo, W., Zhang, X., Wang, C., & Dai, P. (2018). Efficient catalytic properties of so42−/mxoy (m= cu, co, fe) catalysts for hydrogen generation by methanolysis of sodium borohydride. International Journal of Hydrogen Energy, 43(13), 6594-6602.
- [31] Saka, C., Kaya, M., & Bekiroğullari, M. (2020). Chlorella vulgaris microalgae strain modified with zinc chloride as a new support material for hydrogen production from nabh4 methanolysis using cub, nib, and feb metal catalysts. International journal of hydrogen energy, 45(3), 1959-1968.
- [32] Bekirogullari, M. (2019). Catalytic activities of non-noble metal catalysts (cub, feb, and nib) with c. Vulgaris microalgal strain support modified by using phosphoric acid for hydrogen generation from sodium borohydride methanolysis. International Journal of Hydrogen Energy, 44(29), 14981-14991.
- [33] Kaya, M. and Bekiroğulları, M. (2019). Tarımsal atıktan elde edilen aktif karbon destekli co-b katalizörü varlığında sodyum borhidrürün metanolizi. Türkiye Tarımsal Araştırmalar Dergisi, 6(1), 80-86.
- [34] Su, C.-C., Lu, M.-C., Wang, S.-L., & Huang, Y.-H. (2012). Ruthenium immobilized on al 2 o 3 pellets as a catalyst for hydrogen generation from hydrolysis and methanolysis of sodium borohydride. RSC advances, 2(5), 2073-2079.
- [35] Kaya, M. (2020). Production of metal-free catalyst from defatted spent coffee ground for hydrogen generation by sodium borohyride methanolysis. International journal of hydrogen energy, 45(23), 12731-12742.
- [36] Karakaş, D.E. (2021). Nar kabuğu destekli nh2/pdmnag katalizörü varlığında sodyum bor hidrürün metanolizinin araştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(1), 72-83.
- [37] Demirci, S., Yildiz, M., Inger, E., & Sahiner, N. (2020). Porous carbon particles as metal-free superior catalyst for hydrogen release from methanolysis of sodium borohydride. Renewable Energy, 147, 69-76.
Usage Of Waste Asphalt Treated with Metal Contained Acid Solution as a Catalyst in Hydrogen Production
Year 2022,
Volume: 6 Issue: 2, 326 - 333, 30.12.2022
Saliha Özarslan
,
Mustafa Durgun
,
Mustafa Kaya
Abstract
In this study, hydrogen synthesis was carried out in the methanolysis of sodium borohydride using a metal added waste asphalt catalyst treated with acetic acid. After trying different metal types and determining the most efficient metal type, different ratios of metal were used and the most effective catalyst was produced. The most efficient catalyst is waste asphalt catalyst treated with 3M acetic acid and 30% Cu. In the presence of the selected catalyst, experiments were carried out using different catalyst amounts, different sodium boron hydride concentrations and different temperatures to obtain the highest hydrogen yield, and the results were interpreted. The maximum hydrogen generation efficiency was determined as 9518.3 ml min-1 g-1 and the activation energy of the catalyst was determined as 38.2 kj/mol.
References
- [1] Dawood, F., Anda, M., & Shafiullah, G. (2020). Hydrogen production for energy: An overview. International Journal of Hydrogen Energy, 45(7), 3847-3869.
- [2] Najjar, Y.S. (2011). Gaseous pollutants formation and their harmful effects on health and environment. Innovative energy policies, 1, 1-9.
- [3] Slezakova, K., Pires, J., Martins, F., Pereira, M., & Alvim-Ferraz, M. (2011). Identification of tobacco smoke components in indoor breathable particles by sem–eds. Atmospheric Environment, 45(4), 863-872.
- [4] Thellufsen, J.Z., Lund, H., Sorknæs, P., Østergaard, P., Chang, M., Drysdale, D., Nielsen, S., Djørup, S., & Sperling, K. (2020). Smart energy cities in a 100% renewable energy context. Renewable and Sustainable Energy Reviews, 129, 109922.
- [5] Bull, S.R. (2001). Renewable energy today and tomorrow. Proceedings of the IEEE, 89(8), 1216-1226.
- [6] Amrouche, S.O., Rekioua, D., Rekioua, T., & Bacha, S. (2016). Overview of energy storage in renewable energy systems. International journal of hydrogen energy, 41(45), 20914-20927.
- [7] Zhang, F., Zhao, P., Niu, M., & Maddy, J. (2016). The survey of key technologies in hydrogen energy storage. International journal of hydrogen energy, 41(33), 14535-14552.
- [8] Sürmen, Y. and Demrbas, A. (2002). Thermochemical conversion of residual biomass to hydrogen for turkey. Energy Sources, 24(5), 403-411.
- [9] Demirbas, A. and Arin, G. (2004). Hydrogen from biomass via pyrolysis: Relationships between yield of hydrogen and temperature. Energy Sources, 26(11), 1061-1069.
- [10] Yao, Q., Ding, Y., & Lu, Z.-H. (2020). Noble-metal-free nanocatalysts for hydrogen generation from boron-and nitrogen-based hydrides. Inorganic Chemistry Frontiers, 7(20), 3837-3874.
- [11] Hamilton, C.W., Baker, R.T., Staubitz, A., & Manners, I. (2009). B–n compounds for chemical hydrogen storage. Chemical Society Reviews, 38(1), 279-293.
- [12] Lang, C., Jia, Y., & Yao, X. (2020). Recent advances in liquid-phase chemical hydrogen storage. Energy Storage Materials, 26, 290-312.
- [13] Xu, D., Zhao, L., Dai, P., & Ji, S. (2012). Hydrogen generation from methanolysis of sodium borohydride over co/al2o3 catalyst. Journal of natural gas chemistry, 21(5), 488-494.
- [14] Demirci, S., Sunol, A.K., & Sahiner, N. (2020). Catalytic activity of amine functionalized titanium dioxide nanoparticles in methanolysis of sodium borohydride for hydrogen generation. Applied Catalysis B: Environmental, 261, 118242.
- [15] Duman, F., Atelge, M., Kaya, M., Atabani, A., Kumar, G., Sahin, U., & Unalan, S. (2020). A novel microcystis aeruginosa supported manganese catalyst for hydrogen generation through methanolysis of sodium borohydride. International Journal of Hydrogen Energy, 45(23), 12755-12765.
- [16] Kaya, M. (2020). Evaluating organic waste sources (spent coffee ground) as metal-free catalyst for hydrogen generation by the methanolysis of sodium borohydride. International Journal of Hydrogen Energy, 45(23), 12743-12754.
- [17] Karakaş, D.E., Akdemir, M., Atabani, A., & Kaya, M. (2021). A dual functional material: Spirulina platensis waste-supported pd-co catalyst as a novel promising supercapacitor electrode. Fuel, 304, 121334.
- [18] Inal, I.I.G., Akdemir, M., & Kaya, M. (2021). Microcystis aeruginosa supported-mn catalyst as a new promising supercapacitor electrode: A dual functional material. International Journal of Hydrogen Energy, 46(41), 21534-21541.
- [19] Akdemir, M., Avci Hansu, T., Caglar, A., Kaya, M., & Demir Kivrak, H. (2021). Ruthenium modified defatted spent coffee catalysts for supercapacitor and methanolysis application. Energy Storage, 3(4), e243.
- [20] Fangaj, E. and Ceyhan, A.A. (2020). Apricot kernel shell waste treated with phosphoric acid used as a green, metal-free catalyst for hydrogen generation from hydrolysis of sodium borohydride. International Journal of Hydrogen Energy, 45(35), 17104-17117.
- [21] Bolat, M., Yavuz, C., & Kaya, M. (2021). Investigation of dual-functionalized novel carbon supported sn material from corn stalk for energy storage and fuel cell systems on distributed generations. Journal of Materials Science: Materials in Electronics, 32(13), 18123-18137.
- [22] Ali, F., Khan, S.B., & Asiri, A.M. (2019). Chitosan coated cellulose cotton fibers as catalyst for the h2 production from nabh4 methanolysis. International journal of hydrogen energy, 44(8), 4143-4155.
- [23] Özarslan, S., Atelge, M.R., Kaya, M., & Ünalan, S. (2021). Production of dual functional carbon material from biomass treated with naoh for supercapacitor and catalyst. Energy Storage, 3(5), e257.
- [24] Akdemir, M., Karakaş, D.E., & Kaya, M. (2022). Synthesis of a dual‐functionalized carbon‐based material as catalyst and supercapacitor for efficient hydrogen production and energy storage: Pd‐supported pomegranate peel. Energy Storage, 4(1), e284.
- [25] Bekirogullari, M., Abut, S., Duman, F., & Hansu, T.A. (2021). Lake sediment based catalyst for hydrogen generation via methanolysis of sodium borohydride: An optimization study with artificial neural network modelling. Reaction Kinetics, Mechanisms and Catalysis, 134(1), 57-74.
- [26] Fangaj, E., Ali, A.A., Güngör, F., Bektaş, S., & Ceyhan, A.A. (2020). The use of metallurgical waste sludge as a catalyst in hydrogen production from sodium borohydride. International Journal of Hydrogen Energy, 45(24), 13322-13329.
- [27] Karakaş, D.E. (2021). A novel cost-effective catalyst from orange peel waste protonated with phosphoric acid for hydrogen generation from methanolysis of nabh4. International Journal of Hydrogen Energy.
- [28] Şeref, O., Yılmaz, B., & Mazlum, M.S. (2018). Geri kazanılan asfalt kaplamaların sıcak asfalt karışımlarda yeniden kullanabilirliğinin araştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30(1), 87-93.
- [29] Özarslan, S., Atelge, M., Kıvrak, H.D., Horoz, S., Yavuz, C., Kaya, M., & Ünalan, S. (2021). A double-functional carbon material as a supercapacitor electrode and hydrogen production: Cu-doped tea factory waste catalyst. Journal of Materials Science: Materials in Electronics, 32(24), 28909-28918.
- [30] Xu, D., Lai, X., Guo, W., Zhang, X., Wang, C., & Dai, P. (2018). Efficient catalytic properties of so42−/mxoy (m= cu, co, fe) catalysts for hydrogen generation by methanolysis of sodium borohydride. International Journal of Hydrogen Energy, 43(13), 6594-6602.
- [31] Saka, C., Kaya, M., & Bekiroğullari, M. (2020). Chlorella vulgaris microalgae strain modified with zinc chloride as a new support material for hydrogen production from nabh4 methanolysis using cub, nib, and feb metal catalysts. International journal of hydrogen energy, 45(3), 1959-1968.
- [32] Bekirogullari, M. (2019). Catalytic activities of non-noble metal catalysts (cub, feb, and nib) with c. Vulgaris microalgal strain support modified by using phosphoric acid for hydrogen generation from sodium borohydride methanolysis. International Journal of Hydrogen Energy, 44(29), 14981-14991.
- [33] Kaya, M. and Bekiroğulları, M. (2019). Tarımsal atıktan elde edilen aktif karbon destekli co-b katalizörü varlığında sodyum borhidrürün metanolizi. Türkiye Tarımsal Araştırmalar Dergisi, 6(1), 80-86.
- [34] Su, C.-C., Lu, M.-C., Wang, S.-L., & Huang, Y.-H. (2012). Ruthenium immobilized on al 2 o 3 pellets as a catalyst for hydrogen generation from hydrolysis and methanolysis of sodium borohydride. RSC advances, 2(5), 2073-2079.
- [35] Kaya, M. (2020). Production of metal-free catalyst from defatted spent coffee ground for hydrogen generation by sodium borohyride methanolysis. International journal of hydrogen energy, 45(23), 12731-12742.
- [36] Karakaş, D.E. (2021). Nar kabuğu destekli nh2/pdmnag katalizörü varlığında sodyum bor hidrürün metanolizinin araştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(1), 72-83.
- [37] Demirci, S., Yildiz, M., Inger, E., & Sahiner, N. (2020). Porous carbon particles as metal-free superior catalyst for hydrogen release from methanolysis of sodium borohydride. Renewable Energy, 147, 69-76.