Sahtelikle Mücadele ve Şifreleme Uygulaması İçin Hidrotermal ve Solvotermal Yöntem ile Fluoresan Karbon Kuantum Noktalarının Sentezi
Year 2023,
Volume: 7 Issue: 1, 32 - 38, 06.07.2023
Mustafa Kavgacı
,
Hacı Veli Kalmış
,
Hasan Eskalen
Abstract
Bu çalışmanın amacı, organik bir malzemeden hidrotermal ve solvotermal yöntemle sentezlenen floresan karbon kuantum noktalarının (FCQDs) optik performanslarını karşılaştırmak ve bunları önemli bilgi şifreleme uygulamalarından biri için bir floresan mürekkep olarak kullanmaktır. Goji berry ve sakkaroz, çalışmada karbon kaynağı olarak kullanılmıştır. FCQD'ler, çözücü olarak su, izopropanol ve aseton kullanılarak hidrotermal ve solvotermal yöntemlerle elde edildi. Elde edilen karbon noktalarının kristal yapıları ve optiksel özellikleri araştırılmıştır. Elde edilen bütün FCQD'ler amorf fazdadır. FQCD'ler 386 nm'de uyarıldığında maksimum emisyonu 465 nm'de gözlenmiştir. Sentezlenmiş FCQD'lerin floresan mürekkep olarak kullanılabilme potansiyeli karşılaştırılmış ve en iyi sonuç aseton çözücüsünde solvotermal yöntemle sentezlenen karbon noktaları için bulunmuştur.
Supporting Institution
Kahramanmaraş Sütçü İmam Üniversitesi
Project Number
Project number 2021/1-7 YLS.
References
- Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., & Scrivens, W. A. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 126(40).
- Sun, Y. P., Zhou, B., Lin, Y., Wang, W., Fernando, K. A. S., Pathak, P., Meziani, M. J., Harruff, B. A., Wang, X., Wang, H., Luo, P. G., Yang, H., Kose, M. E., Chen, B., Veca, L. M., & Xie, S. Y. (2006). Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of the American Chemical Society, 128(24), 7756–7757.
- Bhartiya, P., Singh, A., Kumar, H., Jain, T., Singh, B. K., & Dutta, P. K. (2016). Carbon dots: Chemistry, properties and applications. Journal of the Indian Chemical Society, 93(7), 759–766.
- Zhang, J., & Yu, S. H. (2016). Carbon dots: large-scale synthesis, sensing and bioimaging. Materials Today, 19(7), 382–393.
- Wang, T., Wang, A., Wang, R., Liu, Z., Sun, Y., Shan, G., Chen, Y., & Liu, Y. (2019). Carbon dots with molecular fluorescence and their application as a “turn-off” fluorescent probe for ferricyanide detection. Scientific Reports, 9(1), 1–9.
- Wang, Y., & Hu, A. (2014). Carbon quantum dots: Synthesis, properties and applications. Journal of Materials Chemistry C, 2(34), 6921–6939.
- Xu, Y., Liu, J., Gao, C., & Wang, E. (2014). Applications of carbon quantum dots in electrochemiluminescence: A mini review. Electrochemistry Communications, 48, 151–154.
- Ibrayev, N., Dzhanabekova, R., Seliverstova, E., & Amanzholova, G. (2022). Optical properties of N- and S-doped carbon dots based on citric acid and L-cysteine. Fullerenes, Nanotubes and Carbon Nanostructures, 30(1), 22–26.
- Dinc, S., & Kara, M. (2018). Synthesis and Applications of Carbon Dots from Food and Natural Products. Journal of Apitherapy and Nature/Apiterapi ve Doğa Dergisi, 1(1), 33–37.
- Bag, P., Maurya, R. K., Dadwal, A., Sarkar, M., Chawla, P. A., Narang, R. K., & Kumar, B. (2021). Recent Development in Synthesis of Carbon Dots from Natural Resources and Their Applications in Biomedicine and Multi-Sensing Platform. ChemistrySelect, 6(11), 2774–2789.
- Baskaya, S. K., & Cesme, M. (2021). Synthesis of N-Doped Carbon Quantum Dots by Hydrothermal Synthesis Method and Investigation of Optical Properties. Türk Doğa ve Fen Dergisi, 10(2), 206–211.
- Eskalen, H., & Çeşme, M. (2021). Carbon Dots from Turnip Juice: Synthesis, Characterization and Investigation of pH-Dependent Optical Properties. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(2), 924–930.
- Eskalen, H., Çeşme, M., Kerli, S., & Özğan, Ş. (2021). Green synthesis of water-soluble fluorescent carbon dots from rosemary leaves: Applications in food storage capacity, fingerprint detection, and antibacterial activity. Journal of Chemical Research, 45(5–6), 428–435.
- Başkaya, S. K., Tahta, B. ·, Uruş, ·Serhan, Eskalen, ·Hasan, Çeşme, · Mustafa, & Özğan, · Şükrü. (2022). Multifunctional B, N, P, and S-doped fluorescent carbon quantum dot synthesis from pigeon manure: highly effective Hg (II) sensor and fluorescent ink properties. Biomass Conversion and Biorefinery, 1, 1–15.
- Potterat, O. (2010). Goji (Lycium barbarum and L. chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Medica, 76(1), 7–19.
- Amagase, H., & Farnsworth, N. R. (2011). A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji). Food Research International, 44(7), 1702–1717.
- Donno, D., Beccaro, G. L., Mellano, M. G., Cerutti, A. K., & Bounous, G. (2015). Goji berry fruit (Lycium spp.): Antioxidant compound fingerprint and bioactivity evaluation. Journal of Functional Foods, 18, 1070–1085.
- Montesano, D., Cossignani, L., Giua, L., Urbani, E., Simonetti, M. S., & Blasi, F. (2016). A Simple HPLC-ELSD Method for Sugar Analysis in Goji Berry. Journal of Chemistry, 1–5.
- Eskalen, H., Kavgacı, M., Kayış, A., & Özğan, Ş. (2021). One-Pot Synthesis of Carbon Quantum Dots and Their Application As a Fluorescent Inks. Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering, 22(4), 366–377.
- Rai, S., Singh, B. K., Bhartiya, P., Singh, A., Kumar, H., Dutta, P. K., & Mehrotra, G. K. (2017). Lignin derived reduced fluorescence carbon dots with theranostic approaches: Nano-drug-carrier and bioimaging. Journal of Luminescence, 190(April), 492–503.
- Das, P., Bhattacharyya, S. K., Banerji, P., & Das, N. C. (2021). Acoustic cavitation assisted synthesis and characterization of photoluminescent carbon quantum dots for biological applications and their future prospective. Nano-Structures and Nano-Objects, 25, 100641.
- Swapna, M. S., & Sankararaman, S. (2017). Carbon Nanonecklaces with Carbon Nanotubes and Carbon Dots. International Journal of Materials Science, 12(4), 541–548.
- Sivanandhan, M., Parasuraman, A., Surya, C., Lakshminarayanan, K., Krishnakumar, B., Mani, D., & Ahn, Y. H. (2022). Facile approach for green synthesis of fluorescent carbon dots from Manihot esculenta and their potential applications as sensor and bio-imaging agents. Inorganic Chemistry Communications, 137, 109219.
- Eskalen, H., Yaykaşlı, H., Kavgacı, M., & Kayış, A. (2022). Investigating the PVA/TiO2/CDs polymer nanocomposites: effect of carbon dots for photocatalytic degradation of Rhodamine B. Journal of Materials Science: Materials in Electronics, 33(7), 4643–4658.
- Xu, D., Lei, F., Chen, H., Yin, L., Shi, Y., & Xie, J. (2019). One-step hydrothermal synthesis and optical properties of self-quenching-resistant carbon dots towards fluorescent ink and as nanosensors for Fe3+ detection. RSC Advances, 9(15), 8290–8299.
- Taspika, M., Permatasari, F. A., Nuryadin, B. W., Mayangsari, T. R., Aimon, A. H., & Iskandar, F. (2019). Simultaneous ultraviolet and first near-infrared window absorption of luminescent carbon dots/PVA composite film. RSC Advances, 9(13), 7375–7381.
- Kayış, A., Kavgacı, M., Yaykaşlı, H., Kerli, S., & Eskalen, H. (2021). Investigation of Structural, Morphological, Mechanical, Thermal and Optical Properties of PVA-ZnO Nanocomposites. Glass Physics and Chemistry, 47(5), 451–461.
- Beker, S. A., Truskewycz, A., Cole, I., & Ball, A. S. (2020). Green synthesis of: Opuntia-derived carbon nanodots for the catalytic decolourization of cationic dyes. New Journal of Chemistry, 44(46), 20001–20012.
- Huang, Z.-Y., Wu, W.-Z., Li, Z.-X., Wu, Y., Wu, C.-B., Gao, J., Guo, J., Chen, Y., Hu, Y., & Huang, C. (2022). Solvothermal production of tea residue derived carbon dots by the pretreatment of choline chloride/urea and its application for cadmium detection. Industrial Crops and Products, 184(January), 115085.
- Marouzi, S., Darroudi, M., Hekmat, A., Sadri, K., & Kazemi Oskuee, R. (2021). One-pot hydrothermal synthesis of carbon quantum dots from Salvia hispanica L. seeds and investigation of their biodistribution, and cytotoxicity effects. Journal of Environmental Chemical Engineering, 9(4), 105461.
- Ge, L., Hu, G., Zhao, F., Wang, X., Ma, Z., & Liu, R. (2021). Carbon dots prepared by thermal reactions and selective detections of copper and mercury ions in visible spectrum. Applied Physics A: Materials Science and Processing, 127(5), 388.
- Wang, H. yong, Zhou, L., Yu, H. mei, Tang, X. dan, Xing, C., Nie, G., Akafzade, H., Wang, S. yan, & Chen, W. (2022). Exploration of Room-Temperature Phosphorescence and New Mechanism on Carbon Dots in a Polyacrylamide Platform and their Applications for Anti-Counterfeiting and Information Encryption. Advanced Optical Materials, 2200678, 1–11.
- Şen, F. B., Beğiç, N., Bener, M., & Apak, R. (2022). Fluorescence turn-off sensing of TNT by polyethylenimine capped carbon quantum dots. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 271, 120884.
- Kilic, B., Dogan, V., Kilic, V., & Kahyaoglu, L. N. (2022). Colorimetric food spoilage monitoring with carbon dot and UV light reinforced fish gelatin films using a smartphone application. International Journal of Biological Macromolecules, 209(PA), 1562–1572.
Synthesis of Fluorescent Carbon Quantum Dots with Hydrothermal and Solvothermal Method Application for Anticounterfeiting and Encryption
Year 2023,
Volume: 7 Issue: 1, 32 - 38, 06.07.2023
Mustafa Kavgacı
,
Hacı Veli Kalmış
,
Hasan Eskalen
Abstract
The objective of this work was comparing the optical performance of hydrothermally and solvothermal synthesized unique florescent carbon quantum dots (FCQDs) from organic material and use it as a fluorescent ink for one of the significant information encryption applications. The goji berry and sucrose were used as a carbon source of experiment. FCQDs obtained by simple hydrothermal and solvothermal methods by using water, isopropanol and acetone as a solvent. The crystal structure and optical properties of the obtained carbon dots are investigated. The obtained all FCQDs are amorphous phases. The maximum emission of the obtained CDs was found at 465 nm when excited at 386 nm. The fluorescent ink potential of the synthesized FCQDs were compared and the best result found at carbon dot that synthesized from solvothermal methods with acetone solution.
Project Number
Project number 2021/1-7 YLS.
References
- Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., & Scrivens, W. A. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 126(40).
- Sun, Y. P., Zhou, B., Lin, Y., Wang, W., Fernando, K. A. S., Pathak, P., Meziani, M. J., Harruff, B. A., Wang, X., Wang, H., Luo, P. G., Yang, H., Kose, M. E., Chen, B., Veca, L. M., & Xie, S. Y. (2006). Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of the American Chemical Society, 128(24), 7756–7757.
- Bhartiya, P., Singh, A., Kumar, H., Jain, T., Singh, B. K., & Dutta, P. K. (2016). Carbon dots: Chemistry, properties and applications. Journal of the Indian Chemical Society, 93(7), 759–766.
- Zhang, J., & Yu, S. H. (2016). Carbon dots: large-scale synthesis, sensing and bioimaging. Materials Today, 19(7), 382–393.
- Wang, T., Wang, A., Wang, R., Liu, Z., Sun, Y., Shan, G., Chen, Y., & Liu, Y. (2019). Carbon dots with molecular fluorescence and their application as a “turn-off” fluorescent probe for ferricyanide detection. Scientific Reports, 9(1), 1–9.
- Wang, Y., & Hu, A. (2014). Carbon quantum dots: Synthesis, properties and applications. Journal of Materials Chemistry C, 2(34), 6921–6939.
- Xu, Y., Liu, J., Gao, C., & Wang, E. (2014). Applications of carbon quantum dots in electrochemiluminescence: A mini review. Electrochemistry Communications, 48, 151–154.
- Ibrayev, N., Dzhanabekova, R., Seliverstova, E., & Amanzholova, G. (2022). Optical properties of N- and S-doped carbon dots based on citric acid and L-cysteine. Fullerenes, Nanotubes and Carbon Nanostructures, 30(1), 22–26.
- Dinc, S., & Kara, M. (2018). Synthesis and Applications of Carbon Dots from Food and Natural Products. Journal of Apitherapy and Nature/Apiterapi ve Doğa Dergisi, 1(1), 33–37.
- Bag, P., Maurya, R. K., Dadwal, A., Sarkar, M., Chawla, P. A., Narang, R. K., & Kumar, B. (2021). Recent Development in Synthesis of Carbon Dots from Natural Resources and Their Applications in Biomedicine and Multi-Sensing Platform. ChemistrySelect, 6(11), 2774–2789.
- Baskaya, S. K., & Cesme, M. (2021). Synthesis of N-Doped Carbon Quantum Dots by Hydrothermal Synthesis Method and Investigation of Optical Properties. Türk Doğa ve Fen Dergisi, 10(2), 206–211.
- Eskalen, H., & Çeşme, M. (2021). Carbon Dots from Turnip Juice: Synthesis, Characterization and Investigation of pH-Dependent Optical Properties. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(2), 924–930.
- Eskalen, H., Çeşme, M., Kerli, S., & Özğan, Ş. (2021). Green synthesis of water-soluble fluorescent carbon dots from rosemary leaves: Applications in food storage capacity, fingerprint detection, and antibacterial activity. Journal of Chemical Research, 45(5–6), 428–435.
- Başkaya, S. K., Tahta, B. ·, Uruş, ·Serhan, Eskalen, ·Hasan, Çeşme, · Mustafa, & Özğan, · Şükrü. (2022). Multifunctional B, N, P, and S-doped fluorescent carbon quantum dot synthesis from pigeon manure: highly effective Hg (II) sensor and fluorescent ink properties. Biomass Conversion and Biorefinery, 1, 1–15.
- Potterat, O. (2010). Goji (Lycium barbarum and L. chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Medica, 76(1), 7–19.
- Amagase, H., & Farnsworth, N. R. (2011). A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji). Food Research International, 44(7), 1702–1717.
- Donno, D., Beccaro, G. L., Mellano, M. G., Cerutti, A. K., & Bounous, G. (2015). Goji berry fruit (Lycium spp.): Antioxidant compound fingerprint and bioactivity evaluation. Journal of Functional Foods, 18, 1070–1085.
- Montesano, D., Cossignani, L., Giua, L., Urbani, E., Simonetti, M. S., & Blasi, F. (2016). A Simple HPLC-ELSD Method for Sugar Analysis in Goji Berry. Journal of Chemistry, 1–5.
- Eskalen, H., Kavgacı, M., Kayış, A., & Özğan, Ş. (2021). One-Pot Synthesis of Carbon Quantum Dots and Their Application As a Fluorescent Inks. Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering, 22(4), 366–377.
- Rai, S., Singh, B. K., Bhartiya, P., Singh, A., Kumar, H., Dutta, P. K., & Mehrotra, G. K. (2017). Lignin derived reduced fluorescence carbon dots with theranostic approaches: Nano-drug-carrier and bioimaging. Journal of Luminescence, 190(April), 492–503.
- Das, P., Bhattacharyya, S. K., Banerji, P., & Das, N. C. (2021). Acoustic cavitation assisted synthesis and characterization of photoluminescent carbon quantum dots for biological applications and their future prospective. Nano-Structures and Nano-Objects, 25, 100641.
- Swapna, M. S., & Sankararaman, S. (2017). Carbon Nanonecklaces with Carbon Nanotubes and Carbon Dots. International Journal of Materials Science, 12(4), 541–548.
- Sivanandhan, M., Parasuraman, A., Surya, C., Lakshminarayanan, K., Krishnakumar, B., Mani, D., & Ahn, Y. H. (2022). Facile approach for green synthesis of fluorescent carbon dots from Manihot esculenta and their potential applications as sensor and bio-imaging agents. Inorganic Chemistry Communications, 137, 109219.
- Eskalen, H., Yaykaşlı, H., Kavgacı, M., & Kayış, A. (2022). Investigating the PVA/TiO2/CDs polymer nanocomposites: effect of carbon dots for photocatalytic degradation of Rhodamine B. Journal of Materials Science: Materials in Electronics, 33(7), 4643–4658.
- Xu, D., Lei, F., Chen, H., Yin, L., Shi, Y., & Xie, J. (2019). One-step hydrothermal synthesis and optical properties of self-quenching-resistant carbon dots towards fluorescent ink and as nanosensors for Fe3+ detection. RSC Advances, 9(15), 8290–8299.
- Taspika, M., Permatasari, F. A., Nuryadin, B. W., Mayangsari, T. R., Aimon, A. H., & Iskandar, F. (2019). Simultaneous ultraviolet and first near-infrared window absorption of luminescent carbon dots/PVA composite film. RSC Advances, 9(13), 7375–7381.
- Kayış, A., Kavgacı, M., Yaykaşlı, H., Kerli, S., & Eskalen, H. (2021). Investigation of Structural, Morphological, Mechanical, Thermal and Optical Properties of PVA-ZnO Nanocomposites. Glass Physics and Chemistry, 47(5), 451–461.
- Beker, S. A., Truskewycz, A., Cole, I., & Ball, A. S. (2020). Green synthesis of: Opuntia-derived carbon nanodots for the catalytic decolourization of cationic dyes. New Journal of Chemistry, 44(46), 20001–20012.
- Huang, Z.-Y., Wu, W.-Z., Li, Z.-X., Wu, Y., Wu, C.-B., Gao, J., Guo, J., Chen, Y., Hu, Y., & Huang, C. (2022). Solvothermal production of tea residue derived carbon dots by the pretreatment of choline chloride/urea and its application for cadmium detection. Industrial Crops and Products, 184(January), 115085.
- Marouzi, S., Darroudi, M., Hekmat, A., Sadri, K., & Kazemi Oskuee, R. (2021). One-pot hydrothermal synthesis of carbon quantum dots from Salvia hispanica L. seeds and investigation of their biodistribution, and cytotoxicity effects. Journal of Environmental Chemical Engineering, 9(4), 105461.
- Ge, L., Hu, G., Zhao, F., Wang, X., Ma, Z., & Liu, R. (2021). Carbon dots prepared by thermal reactions and selective detections of copper and mercury ions in visible spectrum. Applied Physics A: Materials Science and Processing, 127(5), 388.
- Wang, H. yong, Zhou, L., Yu, H. mei, Tang, X. dan, Xing, C., Nie, G., Akafzade, H., Wang, S. yan, & Chen, W. (2022). Exploration of Room-Temperature Phosphorescence and New Mechanism on Carbon Dots in a Polyacrylamide Platform and their Applications for Anti-Counterfeiting and Information Encryption. Advanced Optical Materials, 2200678, 1–11.
- Şen, F. B., Beğiç, N., Bener, M., & Apak, R. (2022). Fluorescence turn-off sensing of TNT by polyethylenimine capped carbon quantum dots. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 271, 120884.
- Kilic, B., Dogan, V., Kilic, V., & Kahyaoglu, L. N. (2022). Colorimetric food spoilage monitoring with carbon dot and UV light reinforced fish gelatin films using a smartphone application. International Journal of Biological Macromolecules, 209(PA), 1562–1572.