Research Article
BibTex RIS Cite

Design of Conical Channel in Joining of AA7075/AZ91 Materials by Mechanical Locking Method

Year 2023, Volume: 7 Issue: 1, 128 - 134, 06.07.2023
https://doi.org/10.46460/ijiea.1209427

Abstract

ABSTRACT
Material types with different chemical and physical properties are employed by being joined in industrial applications. The major objective is to generate high-performance prochannels by bringing outstanding properties of materials together. Many conventional methods, primarily welding method such as casting, adhesion, rivet weld, and bolts are employed in joining procedures. Among the joining methods, mechanical locking, a novel and ecologically friendly method, stands out as a successful method, particularly when joining dissimilar metal types. Within the scope of this study, the optimization of the channel geometry was performed on the AZ91 mold part, out of AA7075/AZ91 material pairs joined by using the mechanical locking method. The channel design was paid attention to ensure that it do not adversely affect the stress values and facilitates material flow. Fixed joint angle and fixed channel depth were used in accordance with the data received from previous research results and employed in the analysis. The analyses were completed using the finite element method and the Static Structural Module of the Workbench 18.2 version of the ANSYS software. The whole study was carried out on 3D geometric models. As a result, it was determined that the mechanical properties of the samples joined by MLM significantly changed depending on the channel design. The mechanical properties of the joint improved by roughly 3% with the optimal joint design, while the joint design that will facilitate material flow was achieved.

References

  • [1] Göz, M. (2017). Improvement of strength in areas locked with Hot Press Joining Method. J. of Machine Design and Manufacturing, 15, 75-83.
  • [2] Mercan S. (2017). Mechanical locking method, Turkish Patent and Trademark Office, No: TR 2015 03256 B 2017/05/22.
  • [3] Taylor, C. A., DeLorenzi, H.G., & Kazmer, D. O. (1992). Experimental and Numerical Investigations of the Vacuum Forming Process. Polymer Eng. and Sci., 32, 1163-1173.
  • [4] Altan, T., Ngaile, G., & Shen, G. (Eds.). (2004). Cold and hot forging: fundamentals and applications (Vol. 1). ASM International.
  • [5] Başdemir V., Baygut A., & Çulh O. (2018). Plastic forming technologies used in fastener manufacturıng with cold forming technique. J. of Adv. Technology Sci,. 7, 18-28.
  • [6] Kodippili T., Lambert S., & Arami A. (2022). Data-driven prediction of forging outcome: Effect of preform shape on plastic strain in a magnesium alloy forging. Mater. Today Communications, 31, 1-7.
  • [7] Danesh Manesh H., & Shabani H. S. (2009). Effective parameters on bonding strength of roll bonded Al/St/Al multilayer strips. J. Alloys Compounds, 476 292-299.
  • [8] Raju, I.S., & Newman, J. C. (1979). Stress-Intensity factors for a wide range of semieliptical surface crack in finite-thickness plates. Eng. Fracture Mech., 11 817-829.
  • [9] Liu P., Li Y., Geng H., & Wang J. (2007). Microstructure characteristics in TIG welded joint of Mg/Al dissimilar materials. Mater. Letters, 61, 1288–1291.
  • [10] Bannour S., Abderrazak K., Mattei S., Masse J.E., Autric M., & Mhiri H. (2013). The influence of position in overlap joints of Mg and Al alloys on microstructure and hardness of laser welds. J. of Laser Appl., 25, 32001-32008.
  • [11] Mohammadi J., Behnamian Y., Mostafaei A., Izadi H., Saeid T., Kokabi A.H., & Gerlich A. P. (2015). Friction stir welding joint of dissimilar materials between AZ31B magnesium and 6061 aluminum alloys: Microstructure studies and mechanical characterizations. Mater. Characterization, 101, 189–207.
  • [12] Masoudian A., Tahaei A., Shakiba A., Sharifianjazi F., & Mohandesi J. A. (2014). Microstructure and mechanical properties of friction stir weld of dissimilar AZ31-O magnesium alloy to 6061-T6 aluminum alloy. Trans. Nonferrous Met. Soc. China, 24, 1317−1322.
  • [13] Dorbane A., Mansoor B., Ayoub G., Shunmugasamy V.C., & Imad A. (2016). Mechanical, microstructural and fracture properties of dissimilar welds produced by friction stir welding of AZ31B and Al6061. Mater. Sci. Eng. A., 651, 720–733.
  • [14] Liu L., Ren D., & Liu F. (2014). A review of dissimilar welding techniques for magnesium alloys to aluminum alloys. Materials, 7, 3735–3757.
  • [15] Lu P., Zhao G., Guan Y., & Wu X. (2008). Bulk Metal Forming Process Simulation Based on Rigid-Plastic/Viscoplastic Element Free Galerkin Method. Materials. Sci. and Eng.:A, 479 197-212.
  • [16] Hou Z., Sheikh-Ahmad J., Jarrar F., & Ozturk F. (2018). Residual stresses in dissimilar friction stir welding of AA2024 and AZ31: experimental and numerical study. J. Manufactoring. Sci. Eng., 140, 51015-51025.
  • [17] Mercan S. (2021, October). Computer-Aided Analysis of Joint Design in Materials Joining by Mechanical Locking Method (MLM), IATS'21 9th International Advanced Technologies Symposium (pp. 359-367).
  • [18] Nalawade R.S., Puranik A.J., Balachandran G., Mahadik K.N., Balasubramanian V. (2013). Simulation of hot rolling deformation at intermediate passes and its industrial validity, International J. of Mechanical Sci. 77, 8-16.
  • [19] Mercan S., & Özkavak H. V. (2022). Joining of AISI 1040 and AA6013 material pairs by mechanical locking method (MLM) using different connection angle. Journal of Faculty of Eng. And Arch. of Gazi University, 37, 2309-2322.
  • [20] Mercan S. (2021). Joining Dissimilar Materials Pairs by Mechanical Locking Method. International J. of Precision Eng. and Manufacturing. 22, 1975-1987.
  • [21] Mercan S. (2019). Joining of Dissimilar Metal Pairs by Mechanical Locking Method. GU J Sci, Part C, 7, 25-36.
  • [22] Kurt G., Yaşar N. (2020). Comparison of Experimental and Simulation Results for Hot Rolling of HEA 240 Profile, Manufacturing Technologies and Applications, 1, 25-31.

Mekanik Kilitleme Yöntemi ile Birleştirilen AA7075/AZ91 Malzemelerin Konik Kanal Tasarımı

Year 2023, Volume: 7 Issue: 1, 128 - 134, 06.07.2023
https://doi.org/10.46460/ijiea.1209427

Abstract

Özet
Endüstriyel uygulamalarda, farklı kimyasal ve fiziksel özelliklere sahip malzeme türleri birleştirilerek kullanılmaktadır. Temel amaç malzemelerin üstün özelliklerini bir araya getirerek, yüksek performanslı ürünler elde edilmesidir. Birleştirme işlemlerinde kaynak yöntemi başta olmak üzere döküm, yapıştırma, perçin ve civata ile birleştirme gibi geleneksel birçok metod kullanılmaktadır. Birleştirme yöntemleri arasında yeni ve çevreci bir yöntem olan mekanik kilitleme yöntemi de özellikle farklı metal türlerinin birleştirilmesinde başarılı bir yöntem olarak öne çıkmaktadır. Bu çalışma kapsamında, mekanik kilitleme yöntemi ile birleştirilen AA7075/AZ91 malzeme çiftlerinden kalıp parçası AZ91 üzerindeki, kanal geometrisinin optimizasyonu yapılmıştır. Kanal tasarımının gerilme değerlerini olumsuz etkilemeden, ve malzeme akışını kolaylaşıracak biçimde olmasına dikkat edilmiştir. Analizlerde daha önce yapılan araştırma sonuçlarından elde edilen verilere uygun olarak belirlenen sabit bağlantı açısı, sabit kanal derinliği kullanılmıştır. Analizler sonlu elemanlar yöntemini kullanan ANSYS paket programının Workbench 18.2 sürümü, Static Structural Modülü kullanılarak tamamlanmıştır. Tüm çalışma 3 boyutlu geometrik modeler üzerinden gerçekleştirilmiştir. Sonuçta MLM ile birleştirilen numunelerde kanal tasarımına bağlı olarak mekanik özelliklerin önemli oranda değiştiği tespit edilmiştir. Optimum bağlantı tasarımı ile bağlantı mekanik özellikleri yaklaşık %3 oranında artarken, malzeme akışını kolaylaştıracak bağlantı tasarımı elde edilmiştir.

References

  • [1] Göz, M. (2017). Improvement of strength in areas locked with Hot Press Joining Method. J. of Machine Design and Manufacturing, 15, 75-83.
  • [2] Mercan S. (2017). Mechanical locking method, Turkish Patent and Trademark Office, No: TR 2015 03256 B 2017/05/22.
  • [3] Taylor, C. A., DeLorenzi, H.G., & Kazmer, D. O. (1992). Experimental and Numerical Investigations of the Vacuum Forming Process. Polymer Eng. and Sci., 32, 1163-1173.
  • [4] Altan, T., Ngaile, G., & Shen, G. (Eds.). (2004). Cold and hot forging: fundamentals and applications (Vol. 1). ASM International.
  • [5] Başdemir V., Baygut A., & Çulh O. (2018). Plastic forming technologies used in fastener manufacturıng with cold forming technique. J. of Adv. Technology Sci,. 7, 18-28.
  • [6] Kodippili T., Lambert S., & Arami A. (2022). Data-driven prediction of forging outcome: Effect of preform shape on plastic strain in a magnesium alloy forging. Mater. Today Communications, 31, 1-7.
  • [7] Danesh Manesh H., & Shabani H. S. (2009). Effective parameters on bonding strength of roll bonded Al/St/Al multilayer strips. J. Alloys Compounds, 476 292-299.
  • [8] Raju, I.S., & Newman, J. C. (1979). Stress-Intensity factors for a wide range of semieliptical surface crack in finite-thickness plates. Eng. Fracture Mech., 11 817-829.
  • [9] Liu P., Li Y., Geng H., & Wang J. (2007). Microstructure characteristics in TIG welded joint of Mg/Al dissimilar materials. Mater. Letters, 61, 1288–1291.
  • [10] Bannour S., Abderrazak K., Mattei S., Masse J.E., Autric M., & Mhiri H. (2013). The influence of position in overlap joints of Mg and Al alloys on microstructure and hardness of laser welds. J. of Laser Appl., 25, 32001-32008.
  • [11] Mohammadi J., Behnamian Y., Mostafaei A., Izadi H., Saeid T., Kokabi A.H., & Gerlich A. P. (2015). Friction stir welding joint of dissimilar materials between AZ31B magnesium and 6061 aluminum alloys: Microstructure studies and mechanical characterizations. Mater. Characterization, 101, 189–207.
  • [12] Masoudian A., Tahaei A., Shakiba A., Sharifianjazi F., & Mohandesi J. A. (2014). Microstructure and mechanical properties of friction stir weld of dissimilar AZ31-O magnesium alloy to 6061-T6 aluminum alloy. Trans. Nonferrous Met. Soc. China, 24, 1317−1322.
  • [13] Dorbane A., Mansoor B., Ayoub G., Shunmugasamy V.C., & Imad A. (2016). Mechanical, microstructural and fracture properties of dissimilar welds produced by friction stir welding of AZ31B and Al6061. Mater. Sci. Eng. A., 651, 720–733.
  • [14] Liu L., Ren D., & Liu F. (2014). A review of dissimilar welding techniques for magnesium alloys to aluminum alloys. Materials, 7, 3735–3757.
  • [15] Lu P., Zhao G., Guan Y., & Wu X. (2008). Bulk Metal Forming Process Simulation Based on Rigid-Plastic/Viscoplastic Element Free Galerkin Method. Materials. Sci. and Eng.:A, 479 197-212.
  • [16] Hou Z., Sheikh-Ahmad J., Jarrar F., & Ozturk F. (2018). Residual stresses in dissimilar friction stir welding of AA2024 and AZ31: experimental and numerical study. J. Manufactoring. Sci. Eng., 140, 51015-51025.
  • [17] Mercan S. (2021, October). Computer-Aided Analysis of Joint Design in Materials Joining by Mechanical Locking Method (MLM), IATS'21 9th International Advanced Technologies Symposium (pp. 359-367).
  • [18] Nalawade R.S., Puranik A.J., Balachandran G., Mahadik K.N., Balasubramanian V. (2013). Simulation of hot rolling deformation at intermediate passes and its industrial validity, International J. of Mechanical Sci. 77, 8-16.
  • [19] Mercan S., & Özkavak H. V. (2022). Joining of AISI 1040 and AA6013 material pairs by mechanical locking method (MLM) using different connection angle. Journal of Faculty of Eng. And Arch. of Gazi University, 37, 2309-2322.
  • [20] Mercan S. (2021). Joining Dissimilar Materials Pairs by Mechanical Locking Method. International J. of Precision Eng. and Manufacturing. 22, 1975-1987.
  • [21] Mercan S. (2019). Joining of Dissimilar Metal Pairs by Mechanical Locking Method. GU J Sci, Part C, 7, 25-36.
  • [22] Kurt G., Yaşar N. (2020). Comparison of Experimental and Simulation Results for Hot Rolling of HEA 240 Profile, Manufacturing Technologies and Applications, 1, 25-31.
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Serdar Mercan 0000-0002-1225-8290

Early Pub Date June 30, 2023
Publication Date July 6, 2023
Submission Date November 26, 2022
Published in Issue Year 2023 Volume: 7 Issue: 1

Cite

APA Mercan, S. (2023). Design of Conical Channel in Joining of AA7075/AZ91 Materials by Mechanical Locking Method. International Journal of Innovative Engineering Applications, 7(1), 128-134. https://doi.org/10.46460/ijiea.1209427
AMA Mercan S. Design of Conical Channel in Joining of AA7075/AZ91 Materials by Mechanical Locking Method. IJIEA. July 2023;7(1):128-134. doi:10.46460/ijiea.1209427
Chicago Mercan, Serdar. “Design of Conical Channel in Joining of AA7075/AZ91 Materials by Mechanical Locking Method”. International Journal of Innovative Engineering Applications 7, no. 1 (July 2023): 128-34. https://doi.org/10.46460/ijiea.1209427.
EndNote Mercan S (July 1, 2023) Design of Conical Channel in Joining of AA7075/AZ91 Materials by Mechanical Locking Method. International Journal of Innovative Engineering Applications 7 1 128–134.
IEEE S. Mercan, “Design of Conical Channel in Joining of AA7075/AZ91 Materials by Mechanical Locking Method”, IJIEA, vol. 7, no. 1, pp. 128–134, 2023, doi: 10.46460/ijiea.1209427.
ISNAD Mercan, Serdar. “Design of Conical Channel in Joining of AA7075/AZ91 Materials by Mechanical Locking Method”. International Journal of Innovative Engineering Applications 7/1 (July 2023), 128-134. https://doi.org/10.46460/ijiea.1209427.
JAMA Mercan S. Design of Conical Channel in Joining of AA7075/AZ91 Materials by Mechanical Locking Method. IJIEA. 2023;7:128–134.
MLA Mercan, Serdar. “Design of Conical Channel in Joining of AA7075/AZ91 Materials by Mechanical Locking Method”. International Journal of Innovative Engineering Applications, vol. 7, no. 1, 2023, pp. 128-34, doi:10.46460/ijiea.1209427.
Vancouver Mercan S. Design of Conical Channel in Joining of AA7075/AZ91 Materials by Mechanical Locking Method. IJIEA. 2023;7(1):128-34.