Kesirli stokastik diferansiyel denklemler, çok çeşitli mühendislik ve bilimsel olguları simüle etmek için yaygın olarak kullanılan araçlardır. Bu makalede, belirsiz katsayılar yaklaşımının çeşitli kesirli stokastik modellere uygulanabilirliği incelenmiştir. Bu modeller kesirli beyaz gürültü terimine sahiptir ve çoğunlukla kesirli dereceli türev operatörleri tarafından üretilir. Ayrıca polinom kaos algoritmasının stokastik Lotka-Volterra ve Benney sistemlerine uygulamalarını da araştırıyoruz. Kesirli stokastik denklemler, çok çeşitli bilimsel ve mühendislik problemleri için model olarak işlev görme potansiyeline sahip tamamen yeni sistemlerdir. Bu makalede Galerkin tipi yaklaşımların etkin kullanımından ve belirsizlik veya gürültü terimi içeren kesirli dereceli sistemlere uygulanabilirliği araştırılmıştır.
Fractional-stochastic differential equations are widely used tools to simulate a wide - range of engineering and scientific phenomena. In this paper, the applicability of the approach of indeterminate coefficients to various fractional-stochastic models is examined. These models have a fractional white noise term and are mostly produced by fractional-order derivative operators. We also investigate applications of a polynomial chaos algorithm to stochastic Lotka-Volterra and Benney systems. Fractional-stochastic equations are entirely novel systems that have the potential to function as models for a wide range of scientific and engineering phenomena. It is noted that fractional-order systems with uncertainty or a noise term can benefit from the effective use of Galerkin-type approaches in this article.
Ethics committee approval document is not required for this study.
Primary Language | English |
---|---|
Subjects | Numerical Methods in Mechanical Engineering |
Journal Section | Articles |
Authors | |
Early Pub Date | June 29, 2024 |
Publication Date | June 29, 2024 |
Submission Date | March 27, 2024 |
Acceptance Date | May 20, 2024 |
Published in Issue | Year 2024 Volume: 8 Issue: 1 |