BibTex RIS Cite

Fusion of Target Detection Algorithms in Hyperspectral Images

Year 2016, Volume: 4 Issue: 4, 103 - 110, 06.12.2016

Abstract

Target detection in hyperspectral images is important in many applications including search and rescue operations, defence systems, mineral exploration and border security. For this purpose, several target detection algorithms have been proposed over the years, however, it is not clear which of these algorithms perform best on real data and on sub-pixel targets, and moreover, which of these algorithms have complementary information and should be fused together. The goal of this study is to detect the nine arbitrarily placed sub-pixel targets, from seven different materials from a 1.4km altitude. For this purpose, eight signature-based hyperspectral target detection algorithms, namely the GLRT, ACE, SACE, CEM, MF, AMSD, OSP and HUD, and three anomaly detectors, namely RX, Maxmin and Diffdet, were tested and compared. Among the signature-based target detectors, the three best performing algorithms that have complementary information were identified. Finally these algorithms were fused together using four different fusion algorithms. Our results indicate that with a proper fusion strategy, five of the nine targets could be found with no false alarms.

References

  • Dimitris Manolakis, Eric Truslow, Michael Pieper, Thomas Cooley, Michael Brueggeman, “Detection Algorithms in Hyperspectral Imaging Systems: An Overview of Practical Algorithms,” IEEE Signal Processing Magazine, vol. 31, no. 1, 2014.
  • Michael Theodore Eismann, Hyperspectral Remote Sensing, 2012.
  • B. Datt, T.R. McVicar, T.G. Van Niel, D.L.B. Jupp, J.S. Pearlman, “Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes”, Geoscience and Remote Sensing, IEEE Transactions, vol. 41, no. 6, pp. 1246 - 1259, 2003.
  • Stefania Matteoli, Marco Diani, Giovanni Corsini, “A Tutorial Overview of Anomaly Detection in Hyperspectral Images”, IEEE A&E Systems Magazine, 2010.
  • Gürcan Lokman and Güray Yılmaz. "Anomaly detection and target recognition with hyperspectral images." In 2014 22nd Signal Processing and Communications Applications Conference (SIU), pp. 1019-1022. IEEE, 2014.
  • Seniha Esen Yuksel, Thierry Dubroca, Rolf E. Hummel, and Paul D. Gader. "Differential reflection spectroscopy: A novel method for explosive detection." Acta Phys. Pol. A 123, no. 2 (2013): 263-264.
  • Hilal Soydan, Alper Koz, H. Şebnem Düzgün, and A. Aydın Alatan. "Oil spill determination with hyperspectral imagery: A comparative study." In 2015 23nd Signal Processing and Communications Applications Conference (SIU), pp. 2404-2407. IEEE, 2015.
  • S. E. Yuksel, T. Dubroca, R.E. Hummel, and P.D. Gader, "An automatic detection software for differential reflection spectroscopy." In SPIE Defense, Security, and Sensing, pp. 83900B-83900B. International Society for Optics and Photonics, 2012.
  • Dimitris Manolakis, David Marden, Gary Shaw, “Hyperspectral Image Processing For Automatic Target Detection Applications”, Lincoln Laboratory Journal, 2003.
  • David Stein, Scott Beaven, Lawrence Hoff, Edwin Winter, Alan Schaum, Alan Stocker, “Anomaly Detection from Hyperspectral Imagery”, IEEE Signal Processing Magazine, 2002.
  • Randall B. Smith, Introduction to Hyperspectral Imaging, 2010.
  • Taylor Glenn, “Context-Dependent Detection in Hyperspectral Imagery,” University of Florida, 2013.
  • M. S. Alam, M. I. Elbakary, and M. S. Aslan. "Object detection in hyperspectral imagery by using K-means clustering algorithm with pre-processing." In Defense and Security Symposium, pp. 65740M-65740M. International Society for Optics and Photonics, 2007.
  • Özgür Murat Polat, and Yakup S. Özkazanç. "Material clustering and band reduction in spectral libraries with unsupervised hierarchical classification methods." In 2011 IEEE 19th Signal Processing and Communications Applications Conference (SIU), pp. 1081-1084. IEEE, 2011.
  • Emrecan Bati, Akın Çalışkan, Alper Koz, and A. Aydın Alatan. "Hyperspectral anomaly detection method based on auto-encoder." In SPIE Remote Sensing, pp. 96430N-96430N. International Society for Optics and Photonics, 2015.
  • Erdinç Acar and Selim Aksoy. "Anomaly detection with sparse unmixing and gaussian mixture modeling of hyperspectral images." In 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 5035-5038. IEEE, 2015.
  • Alp Ertürk, Davut Çeşmeci, Deniz Gerçek, Mehmet Kemal Güllü, Sarp Ertürk, Integrating Anomaly Detection to Spatial Preprocessing for Endmember Extraction of Hyperspectral Images, 2013.
  • Tareq F. Ayoub, Alexander M. Haimovich, “Modified GLRT Signal Detection Algorithm”, Aerospace and Electronic Systems, IEEE Transactions, vol. 36, no. 3, pp. 810 - 818, 2000, 2000.
  • Cohen Yuval, August Yitzhak, Blumberg Dan G., Rotman Stanley R., “Evaluating Subpixel Target Detection Algorithms in Hyperspectral Imagery,” Journal of Electrical and Computer Engineering, vol. 2012, pp. 1-15, 2012.
  • E.J. Kelly, “Adaptive Detection in Non-Stationary Interference,” 1987.
  • Edward J. Kelly, Keith M. Forsythe, “Adaptive Detection and Parameter Estimation for Multidimensional Signal Models,” 1989.
  • Sylvia S. Shen, Xiaoying Jin, Scott Paswaters, Harold Cline, Paul E. Lewis, “A Comparative Study of Target Detection Algorithms for Hyperspectral Imagery,” vol. 7334, pp. 73341W-73341W-12, 2009.
  • Qian Du, Hsuan Ren, Chein-I Chang, “A Comparative Study for Orthogonal Subspace Projection and Constrained Energy Minimization,” IEEE Transactions on Geoscience and Remote Sensing, vol. VOL 41, 2003.
  • Nasser M. Nasrabadi, “Hyperspectral Target Detection Overview”, IEEE Signal Processing Magazine, 2014.
  • Lianru Gao, Bin Yang, Qian Du, Bing Zhang, “Adjusted Spectral Matched Filter for Target Detection in Hyperspectral Imagery”, Remote Sensing, vol. 7, no. 6, pp. 6611-6634, 2015.
  • Cohen Yuval, Dan G. Blumberg, and Stanley R. Rotman. "Subpixel hyperspectral target detection using local spectral and spatial information." Journal of Applied Remote Sensing 6.1 (2012): 063508-1.
  • Dimitris Manolakis, Gary Shaw, “Detection Algorithms for Hyperspectral Imagery Applications,” IEEE Signal Processing Magazine, 2002.
  • Joshua Broadwater, Rama Chellappa, “Hybrid Detectors For Subpixel Targets,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. VOL 29, 2007.
  • Joshua Broadwater, Reuven Meth, Rama Chellappa, “A Hybrid Algorithm for Subpixel Detection in Hyperspectral Imagery,” 2004.
  • Irving S. Reed, and Xiaoli Yu. "Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution." IEEE Transactions on Acoustics, Speech, and Signal Processing 38, no. 10 (1990): 1760-1770.
  • D. Borghys, V. Achard, S.R. Rotman, N. Gorelik, C.Perneel, E. Schweicher, “Hyperspectral Anomaly Detection: A Comparative Evaluation of Methods”, 2011.
  • Guo-Liang Zhang, Chun-Ling Yang, “Anomaly Detection for Hyperspectral Imagery Using Analytical Fusion and RX,” Journal of Information Hiding and Multimedia Signal Processing, 2014.
  • Dirk Borghys, Ingebjorg Kasen, Veronique Achard, Christiaan Perneel, “Hyperspectral Anomaly Detection: Comparative Evaluation in Scenes with Diverse Complexity,” Journal of Electrical and Computer Engineering, pp. 1-16, 2012.
  • Mohsen Zare Baghbidi, Saeid Homayouni, “Fast Hyperspectral Anomaly Detection for Environmental Applications,” Journal of Applied Remote Sensing, vol. 7, no. 1, pp. 073489, 2013.
  • Adam Cisz, Performance Comparison of Hyperspectral Target Detection Algorithms, 2006.
  • Bill Basener, "An automated method for identification and ranking of hyperspectral target detections." SPIE Defense, Security, and Sensing. International Society for Optics and Photonics, 2011.
  • A. Karakaya, S.E. Yuksel. "Target detection in hyperspectral images." In 2016 24th Signal Processing and Communication Application Conference (SIU), pp. 1501-1504. IEEE, 2016.
  • A. Zare, P. Gader, J. Bolton, S. Yuksel, T. Dubroca, R. Close, and R. Hummel. "Sub-pixel target spectra estimation and detection using functions of multiple instances." In 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), pp. 1-4. IEEE, 2011.
  • Rochester Institute of Technology, Chooke City Hyperspectral Image, http://dirsapps.cis.rit.edu/blindtest/. (Accessed: April, 2016).
  • Kerekes, John P., and David K. Snyder. "Unresolved target detection blind test project overview." SPIE Defense, Security, and Sensing. International Society for Optics and Photonics, 2010.
  • D. Snyder, J. Kerekes I, Fairweather, R. Crabtree, J. Shive, S. Hager, “Development of a Web-based Application to Evaluate Target Finding Algorithms,” Proceedings of the 2008 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), vol. 2, pp. 915-918, Boston, MA, 2008.
  • Sylvia S Shen, John P Kerekes, David K Snyder, Paul E Lewis, “Unresolved Target Detection Blind Test Project Overview,” vol. 7695, pp. 769521-769521-8, 2010.
  • Yang, Shuo, and Zhenwei Shi. "SparseCEM and SparseACE for hyperspectral image target detection." IEEE Geoscience and Remote Sensing Letters 11.12 (2014): 2135-2139.
  • Vincent Roy, “Hybrid Algorithm for Hyperspectral Target Detection,” 2010.
  • Steven Adler-Golden, Patrick Conforti, “Robust Hyperspectral Detection with Algorithm Fusion,” in IEEE International Geoscience and Remote Sensing Symposium, 2010.
  • Broadwater, Joshua, and Rama Chellappa. "Hybrid detectors for subpixel targets." IEEE transactions on pattern analysis and machine intelligence 29.11 (2007): 1891-1903.
  • Steven Adler-Golden, Patrick Conforti, “Robust Hyperspectral Detection with Algorithm Fusion”, in IEEE International Geoscience and Remote Sensing Symposium, 2010.
Year 2016, Volume: 4 Issue: 4, 103 - 110, 06.12.2016

Abstract

References

  • Dimitris Manolakis, Eric Truslow, Michael Pieper, Thomas Cooley, Michael Brueggeman, “Detection Algorithms in Hyperspectral Imaging Systems: An Overview of Practical Algorithms,” IEEE Signal Processing Magazine, vol. 31, no. 1, 2014.
  • Michael Theodore Eismann, Hyperspectral Remote Sensing, 2012.
  • B. Datt, T.R. McVicar, T.G. Van Niel, D.L.B. Jupp, J.S. Pearlman, “Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes”, Geoscience and Remote Sensing, IEEE Transactions, vol. 41, no. 6, pp. 1246 - 1259, 2003.
  • Stefania Matteoli, Marco Diani, Giovanni Corsini, “A Tutorial Overview of Anomaly Detection in Hyperspectral Images”, IEEE A&E Systems Magazine, 2010.
  • Gürcan Lokman and Güray Yılmaz. "Anomaly detection and target recognition with hyperspectral images." In 2014 22nd Signal Processing and Communications Applications Conference (SIU), pp. 1019-1022. IEEE, 2014.
  • Seniha Esen Yuksel, Thierry Dubroca, Rolf E. Hummel, and Paul D. Gader. "Differential reflection spectroscopy: A novel method for explosive detection." Acta Phys. Pol. A 123, no. 2 (2013): 263-264.
  • Hilal Soydan, Alper Koz, H. Şebnem Düzgün, and A. Aydın Alatan. "Oil spill determination with hyperspectral imagery: A comparative study." In 2015 23nd Signal Processing and Communications Applications Conference (SIU), pp. 2404-2407. IEEE, 2015.
  • S. E. Yuksel, T. Dubroca, R.E. Hummel, and P.D. Gader, "An automatic detection software for differential reflection spectroscopy." In SPIE Defense, Security, and Sensing, pp. 83900B-83900B. International Society for Optics and Photonics, 2012.
  • Dimitris Manolakis, David Marden, Gary Shaw, “Hyperspectral Image Processing For Automatic Target Detection Applications”, Lincoln Laboratory Journal, 2003.
  • David Stein, Scott Beaven, Lawrence Hoff, Edwin Winter, Alan Schaum, Alan Stocker, “Anomaly Detection from Hyperspectral Imagery”, IEEE Signal Processing Magazine, 2002.
  • Randall B. Smith, Introduction to Hyperspectral Imaging, 2010.
  • Taylor Glenn, “Context-Dependent Detection in Hyperspectral Imagery,” University of Florida, 2013.
  • M. S. Alam, M. I. Elbakary, and M. S. Aslan. "Object detection in hyperspectral imagery by using K-means clustering algorithm with pre-processing." In Defense and Security Symposium, pp. 65740M-65740M. International Society for Optics and Photonics, 2007.
  • Özgür Murat Polat, and Yakup S. Özkazanç. "Material clustering and band reduction in spectral libraries with unsupervised hierarchical classification methods." In 2011 IEEE 19th Signal Processing and Communications Applications Conference (SIU), pp. 1081-1084. IEEE, 2011.
  • Emrecan Bati, Akın Çalışkan, Alper Koz, and A. Aydın Alatan. "Hyperspectral anomaly detection method based on auto-encoder." In SPIE Remote Sensing, pp. 96430N-96430N. International Society for Optics and Photonics, 2015.
  • Erdinç Acar and Selim Aksoy. "Anomaly detection with sparse unmixing and gaussian mixture modeling of hyperspectral images." In 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 5035-5038. IEEE, 2015.
  • Alp Ertürk, Davut Çeşmeci, Deniz Gerçek, Mehmet Kemal Güllü, Sarp Ertürk, Integrating Anomaly Detection to Spatial Preprocessing for Endmember Extraction of Hyperspectral Images, 2013.
  • Tareq F. Ayoub, Alexander M. Haimovich, “Modified GLRT Signal Detection Algorithm”, Aerospace and Electronic Systems, IEEE Transactions, vol. 36, no. 3, pp. 810 - 818, 2000, 2000.
  • Cohen Yuval, August Yitzhak, Blumberg Dan G., Rotman Stanley R., “Evaluating Subpixel Target Detection Algorithms in Hyperspectral Imagery,” Journal of Electrical and Computer Engineering, vol. 2012, pp. 1-15, 2012.
  • E.J. Kelly, “Adaptive Detection in Non-Stationary Interference,” 1987.
  • Edward J. Kelly, Keith M. Forsythe, “Adaptive Detection and Parameter Estimation for Multidimensional Signal Models,” 1989.
  • Sylvia S. Shen, Xiaoying Jin, Scott Paswaters, Harold Cline, Paul E. Lewis, “A Comparative Study of Target Detection Algorithms for Hyperspectral Imagery,” vol. 7334, pp. 73341W-73341W-12, 2009.
  • Qian Du, Hsuan Ren, Chein-I Chang, “A Comparative Study for Orthogonal Subspace Projection and Constrained Energy Minimization,” IEEE Transactions on Geoscience and Remote Sensing, vol. VOL 41, 2003.
  • Nasser M. Nasrabadi, “Hyperspectral Target Detection Overview”, IEEE Signal Processing Magazine, 2014.
  • Lianru Gao, Bin Yang, Qian Du, Bing Zhang, “Adjusted Spectral Matched Filter for Target Detection in Hyperspectral Imagery”, Remote Sensing, vol. 7, no. 6, pp. 6611-6634, 2015.
  • Cohen Yuval, Dan G. Blumberg, and Stanley R. Rotman. "Subpixel hyperspectral target detection using local spectral and spatial information." Journal of Applied Remote Sensing 6.1 (2012): 063508-1.
  • Dimitris Manolakis, Gary Shaw, “Detection Algorithms for Hyperspectral Imagery Applications,” IEEE Signal Processing Magazine, 2002.
  • Joshua Broadwater, Rama Chellappa, “Hybrid Detectors For Subpixel Targets,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. VOL 29, 2007.
  • Joshua Broadwater, Reuven Meth, Rama Chellappa, “A Hybrid Algorithm for Subpixel Detection in Hyperspectral Imagery,” 2004.
  • Irving S. Reed, and Xiaoli Yu. "Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution." IEEE Transactions on Acoustics, Speech, and Signal Processing 38, no. 10 (1990): 1760-1770.
  • D. Borghys, V. Achard, S.R. Rotman, N. Gorelik, C.Perneel, E. Schweicher, “Hyperspectral Anomaly Detection: A Comparative Evaluation of Methods”, 2011.
  • Guo-Liang Zhang, Chun-Ling Yang, “Anomaly Detection for Hyperspectral Imagery Using Analytical Fusion and RX,” Journal of Information Hiding and Multimedia Signal Processing, 2014.
  • Dirk Borghys, Ingebjorg Kasen, Veronique Achard, Christiaan Perneel, “Hyperspectral Anomaly Detection: Comparative Evaluation in Scenes with Diverse Complexity,” Journal of Electrical and Computer Engineering, pp. 1-16, 2012.
  • Mohsen Zare Baghbidi, Saeid Homayouni, “Fast Hyperspectral Anomaly Detection for Environmental Applications,” Journal of Applied Remote Sensing, vol. 7, no. 1, pp. 073489, 2013.
  • Adam Cisz, Performance Comparison of Hyperspectral Target Detection Algorithms, 2006.
  • Bill Basener, "An automated method for identification and ranking of hyperspectral target detections." SPIE Defense, Security, and Sensing. International Society for Optics and Photonics, 2011.
  • A. Karakaya, S.E. Yuksel. "Target detection in hyperspectral images." In 2016 24th Signal Processing and Communication Application Conference (SIU), pp. 1501-1504. IEEE, 2016.
  • A. Zare, P. Gader, J. Bolton, S. Yuksel, T. Dubroca, R. Close, and R. Hummel. "Sub-pixel target spectra estimation and detection using functions of multiple instances." In 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), pp. 1-4. IEEE, 2011.
  • Rochester Institute of Technology, Chooke City Hyperspectral Image, http://dirsapps.cis.rit.edu/blindtest/. (Accessed: April, 2016).
  • Kerekes, John P., and David K. Snyder. "Unresolved target detection blind test project overview." SPIE Defense, Security, and Sensing. International Society for Optics and Photonics, 2010.
  • D. Snyder, J. Kerekes I, Fairweather, R. Crabtree, J. Shive, S. Hager, “Development of a Web-based Application to Evaluate Target Finding Algorithms,” Proceedings of the 2008 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), vol. 2, pp. 915-918, Boston, MA, 2008.
  • Sylvia S Shen, John P Kerekes, David K Snyder, Paul E Lewis, “Unresolved Target Detection Blind Test Project Overview,” vol. 7695, pp. 769521-769521-8, 2010.
  • Yang, Shuo, and Zhenwei Shi. "SparseCEM and SparseACE for hyperspectral image target detection." IEEE Geoscience and Remote Sensing Letters 11.12 (2014): 2135-2139.
  • Vincent Roy, “Hybrid Algorithm for Hyperspectral Target Detection,” 2010.
  • Steven Adler-Golden, Patrick Conforti, “Robust Hyperspectral Detection with Algorithm Fusion,” in IEEE International Geoscience and Remote Sensing Symposium, 2010.
  • Broadwater, Joshua, and Rama Chellappa. "Hybrid detectors for subpixel targets." IEEE transactions on pattern analysis and machine intelligence 29.11 (2007): 1891-1903.
  • Steven Adler-Golden, Patrick Conforti, “Robust Hyperspectral Detection with Algorithm Fusion”, in IEEE International Geoscience and Remote Sensing Symposium, 2010.
There are 47 citations in total.

Details

Journal Section Research Article
Authors

Seniha Esen Yuksel

Ahmet Karakaya This is me

Publication Date December 6, 2016
Published in Issue Year 2016 Volume: 4 Issue: 4

Cite

APA Yuksel, S. E., & Karakaya, A. (2016). Fusion of Target Detection Algorithms in Hyperspectral Images. International Journal of Intelligent Systems and Applications in Engineering, 4(4), 103-110.
AMA Yuksel SE, Karakaya A. Fusion of Target Detection Algorithms in Hyperspectral Images. International Journal of Intelligent Systems and Applications in Engineering. December 2016;4(4):103-110.
Chicago Yuksel, Seniha Esen, and Ahmet Karakaya. “Fusion of Target Detection Algorithms in Hyperspectral Images”. International Journal of Intelligent Systems and Applications in Engineering 4, no. 4 (December 2016): 103-10.
EndNote Yuksel SE, Karakaya A (December 1, 2016) Fusion of Target Detection Algorithms in Hyperspectral Images. International Journal of Intelligent Systems and Applications in Engineering 4 4 103–110.
IEEE S. E. Yuksel and A. Karakaya, “Fusion of Target Detection Algorithms in Hyperspectral Images”, International Journal of Intelligent Systems and Applications in Engineering, vol. 4, no. 4, pp. 103–110, 2016.
ISNAD Yuksel, Seniha Esen - Karakaya, Ahmet. “Fusion of Target Detection Algorithms in Hyperspectral Images”. International Journal of Intelligent Systems and Applications in Engineering 4/4 (December 2016), 103-110.
JAMA Yuksel SE, Karakaya A. Fusion of Target Detection Algorithms in Hyperspectral Images. International Journal of Intelligent Systems and Applications in Engineering. 2016;4:103–110.
MLA Yuksel, Seniha Esen and Ahmet Karakaya. “Fusion of Target Detection Algorithms in Hyperspectral Images”. International Journal of Intelligent Systems and Applications in Engineering, vol. 4, no. 4, 2016, pp. 103-10.
Vancouver Yuksel SE, Karakaya A. Fusion of Target Detection Algorithms in Hyperspectral Images. International Journal of Intelligent Systems and Applications in Engineering. 2016;4(4):103-10.