Review
BibTex RIS Cite

İnsan Endojen Retrovirüslerin Kanserle Olan İlişkisinin İncelenmesi

Year 2022, Volume: 5 Issue: 1, 110 - 130, 15.04.2022
https://doi.org/10.38001/ijlsb.1028013

Abstract

Transpozonlar, genomdaki yerlerini değiştirebilme özelliğine sahip olan hareketli DNA parçalarıdır. Transpozonlar genomdaki yer değiştirme işlemini, transpozisyon olarak adlandırılan bir mekanizma ile gerçekleştirmekte ve sahip oldukları transpozisyon mekanizmasına göre DNA ve RNA transpozonları olarak iki alt sınıfa ayrılmaktadırlar. Retrotranspozonlar olarak da adlandırılan RNA transpozonları, insanın evrim sürecinde önemli rol alan endojen retrovirüsleri (ERV) içermektedir. İnsan genomunun yaklaşık %8’ini oluşturan insan endojen retrovirüsleri (HERV) 3 sınıf altında toplanmakta olup ikinci sınıfta yer alan insan endojen retrovirüs K (HERV-K), insan genomuna yakın sayılabilecek bir zamanda entegre olan, insan genomundaki en aktif HERV’dir. HERV-K’nın gen anlatım analizleri incelendiğinde, ovaryum, meme ve deri kanseri gibi çeşitli kanser türlerinin ortaya çıkmasında HERV-K’nın rol aldığı görülmektedir. HERV’lerin kanser gelişimi ile olan ilişkisi uzun süredir araştırılmaktadır. Kanser hücrelerinde HERV proteinleri saptanmış olsa da HERV’lerin kanser gelişimindeki rolü kesin olarak anlaşılamamıştır. Son dönemde yapılan çalışmalar kanser hücrelerinde yüksek seviyede anlatım yaptığı gösterilen HERV proteinlerinin, kanser tedavisinde rol alan immün yanıt için ana hedef olarak kullanılabileceğini ortaya koymaktadır. Histon deasetilaz inhibitörleri ve kontrol noktası inhibitörlerinin kombinasyonundan oluşan yeni yaklaşımlar da kanser tedavisinde kullanılmak üzere test edilmektedir. HERV anlatımı, interferon tip 1 yanıtını etkinleştiren, sitozoldeki tek iplikli RNA’nın kalıp tanıma reseptörlerini aktive ederek immün sistem yanıtını başlatmaktadır. Bunun sonucunda CD8 T hücreleri tarafından gerçekleştirilen kanser hücresi tanınması arttırılarak kanser gelişiminin engellenebileceği öngörülmektedir. Histon deasetilaz ve kontrol noktası inhibitörlerinin kombinasyonundan meydana gelen bu yeni yaklaşım, anti-tümör aktivitesini arttırarak kanser tedavisinde yeni bir umut oluşmasına olanak sağlayacaktır.

Supporting Institution

TÜBİTAK

Project Number

1919B011900082

References

  • [1] A. Stencel and B. Crespi, “What is a genome?,” Molecular Ecology, vol. 22, no. 13. pp. 3437–3443, Jul. 2013, doi: 10.1111/mec.12355.
  • [2] E. Pennisi, “ENCODE project writes eulogy for junk DNA,” Science, vol. 337, no. 6099. American Association for the Advancement of Science, pp. 1159–1161, Sep. 07, 2012, doi: 10.1126/science.337.6099.1159.
  • [3] A. F. Palazzo and T. R. Gregory, “The Case for Junk DNA,” PLoS Genet., vol. 10, no. 5, 2014, doi: 10.1371/journal.pgen.1004351.
  • [4] N. Grandi and E. Tramontano, “Human endogenous retroviruses are ancient acquired elements still shaping innate immune responses,” Frontiers in Immunology, vol. 9, no. SEP. Frontiers Media S.A., Sep. 10, 2018, doi: 10.3389/fimmu.2018.02039.
  • [5] S. Ravindran, “Barbara McClintock and the discovery of jumping genes.,” Proc. Natl. Acad. Sci. U. S. A., vol. 109, no. 50, pp. 20198–20199, Dec. 2012, doi: 10.1073/pnas.1219372109.
  • [6] G. Bourque et al., “Ten things you should know about transposable elements 06 Biological Sciences 0604 Genetics,” Genome Biol., vol. 19, no. 1, Nov. 2018, doi: 10.1186/s13059-018-1577-z.
  • [7] S. J. Klein and R. J. O’Neill, “Transposable elements: genome innovation, chromosome diversity, and centromere conflict,” Chromosome Research, vol. 26, no. 1–2. Springer Netherlands, pp. 5–23, Mar. 01, 2018, doi: 10.1007/s10577-017-9569-5.
  • [8] W. Makałowski, V. Gotea, A. Pande, and I. Makałowska, “Transposable elements: Classification, identification, and their use as a tool for comparative genomics,” in Methods in Molecular Biology, vol. 1910, Humana Press Inc., 2019, pp. 177–207.
  • [9] R. Cordaux and M. A. Batzer, “The impact of retrotransposons on human genome evolution,” Nature Reviews Genetics, vol. 10, no. 10. pp. 691–703, Oct. 2009, doi: 10.1038/nrg2640.
  • [10] H. G. Drost, D. H. Sanchez, and A. Eyre-Walker, “Becoming a Selfish Clan: Recombination Associated to Reverse-Transcription in LTR Retrotransposons,” Genome Biol. Evol., vol. 11, no. 12, pp. 3382–3392, Nov. 2019, doi: 10.1093/gbe/evz255.
  • [11] J. A. Ågren and A. G. Clark, “Selfish genetic elements,” PLOS Genet., vol. 14, no. 11, p. e1007700, Nov. 2018, doi: 10.1371/journal.pgen.1007700.
  • [12] B. Misiak, L. Ricceri, and M. M. Sasiadek, “Transposable elements and their epigenetic regulation in mental disorders: Current evidence in the field,” Front. Genet., vol. 10, no. JUN, 2019, doi: 10.3389/fgene.2019.00580.
  • [13] M. Dixie and S. Jonathan, “Mammalian Endogenous Retroviruses,” in Mobile DNA III, vol. 3, no. 1, American Society of Microbiology, 2015, pp. 1079–1100.
  • [14] K. Ohshima and N. Okada, “SINEs and LINEs: Symbionts of eukaryotic genomes with a common tail,” Cytogenetic and Genome Research, vol. 110, no. 1–4. pp. 475–490, 2005, doi: 10.1159/000084981.
  • [15] V. Gröger and H. Cynis, “Human endogenous retroviruses and their putative role in the development of autoimmune disorders such as multiple sclerosis,” Frontiers in Microbiology, vol. 9, no. FEB. Frontiers Media S.A., p. 265, Feb. 20, 2018, doi: 10.3389/fmicb.2018.00265.
  • [16] T. P. Hurst and G. Magiorkinis, “Epigenetic control of human endogenous retrovirus expression: Focus on regulation of long-terminal repeats (LTRs),” Viruses, vol. 9, no. 6. MDPI AG, Jun. 01, 2017, doi: 10.3390/v9060130.
  • [17] A. Huda, N. J. Bowen, A. B. Conley, and I. K. Jordan, “Epigenetic regulation of transposable element derived human gene promoters,” Gene, vol. 475, no. 1, pp. 39–48, Apr. 2011, doi: 10.1016/j.gene.2010.12.010.
  • [18] M. Krzysztalowska-Wawrzyniak et al., “The distribution of human endogenous retrovirus K-113 in health and autoimmune diseases in Poland,” Rheumatology, vol. 50, no. 7, pp. 1310–1314, Jul. 2011, doi: 10.1093/rheumatology/ker022.
  • [19] F. Li and H. Karlsson, “Expression and regulation of human endogenous retrovirus W elements,” APMIS, vol. 124, no. 1–2, pp. 52–66, Jan. 2016, doi: 10.1111/apm.12478.
  • [20] R. J. Gifford et al., “Nomenclature for endogenous retrovirus (ERV) loci,” Retrovirology, vol. 15, no. 1. BioMed Central Ltd., p. 59, Aug. 28, 2018, doi: 10.1186/s12977-018-0442-1.
  • [21] Y. Sun, T. J. McCorvie, L. A. Yates, and X. Zhang, “Structural basis of homologous recombination,” Cellular and Molecular Life Sciences, vol. 77, no. 1. Springer, pp. 3–18, Jan. 01, 2020, doi: 10.1007/s00018-019-03365-1.
  • [22] G. Rigogliuso et al., “A human endogenous retrovirus encoded protease potentially cleaves numerous cellular proteins,” Mob. DNA, vol. 10, no. 1, pp. 1–22, Aug. 2019, doi: 10.1186/s13100-019-0178-z. [23] V. A. Morozov, V. L. Dao Thi, and J. Denner, “The Transmembrane Protein of the Human Endogenous Retrovirus - K (HERV-K) Modulates Cytokine Release and Gene Expression,” PLoS One, vol. 8, no. 8, p. 70399, Aug. 2013, doi: 10.1371/journal.pone.0070399.
  • [24] G. Morris, M. Maes, M. Murdjeva, and B. K. Puri, “Do Human Endogenous Retroviruses Contribute to Multiple Sclerosis, and if So, How?,” Molecular Neurobiology, vol. 56, no. 4. Humana Press Inc., pp. 2590–2605, Apr. 01, 2019, doi: 10.1007/s12035-018-1255-x.
  • [25] F. K. Geis and S. P. Goff, “Silencing and transcriptional regulation of endogenous retroviruses: An overview,” Viruses, vol. 12, no. 8. MDPI AG, Aug. 01, 2020, doi: 10.3390/v12080884.
  • [26] M. Zhang, J. Q. Liang, and S. Zheng, “Expressional activation and functional roles of human endogenous retroviruses in cancers,” Rev. Med. Virol., vol. 29, no. 2, pp. 1–11, 2019, doi: 10.1002/rmv.2025.
  • [27] K. Ahn and H. S. Kim, “Structural and quantitative expression analyses of HERV gene family in human tissues,” Mol. Cells, vol. 28, no. 2, pp. 99–103, Jul. 2009, doi: 10.1007/s10059-009-0107-y.
  • [28] K. Ahn, K. Han, and H. S. Kim, “Quantitative analysis of the HERV pol gene in human tissues,” Genes and Genomics, vol. 33, no. 4, pp. 439–443, Aug. 2011, doi: 10.1007/s13258-011-0005-5.
  • [29] L. Gagnier, V. P. Belancio, and D. L. Mager, “Mouse germ line mutations due to retrotransposon insertions,” Mobile DNA, vol. 10, no. 1. BioMed Central Ltd., Apr. 13, 2019, doi: 10.1186/s13100-019-0157-4.
  • [30] B. M. Knoppers, A. Thorogood, and R. Chadwick, “The Human Genome Organisation: Towards next-generation ethics,” Genome Medicine, vol. 5, no. 4. BioMed Central, p. 38, Apr. 29, 2013, doi: 10.1186/gm442.
  • [31] J. Mayer, J. Blomberg, and R. L. Seal, “A revised nomenclature for transcribed human endogenous retroviral loci,” Mob. DNA, vol. 2, no. 1, p. 7, 2011, doi: 10.1186/1759-8753-2-7.
  • [32] R. A. Weiss, “On the concept and elucidation of endogenous retroviruses,” Philos. Trans. R. Soc. B Biol. Sci., vol. 368, no. 1626, Sep. 2013, doi: 10.1098/rstb.2012.0494.
  • [33] A. Hayward, “Origin of the retroviruses: when, where, and how?,” Current Opinion in Virology, vol. 25. Elsevier B.V., pp. 23–27, Aug. 01, 2017, doi: 10.1016/j.coviro.2017.06.006.
  • [34] M. Escalera-Zamudio and A. D. Greenwood, “On the classification and evolution of endogenous retrovirus: Human endogenous retroviruses may not be ‘human’ after all,” APMIS, vol. 124, no. 1–2. Blackwell Munksgaard, pp. 44–51, Jan. 01, 2016, doi: 10.1111/apm.12489.
  • [35] W. Shin, J. Lee, S.-Y. Son, K. Ahn, H.-S. Kim, and K. Han, “Human-Specific HERV-K Insertion Causes Genomic Variations in the Human Genome,” PLoS One, vol. 8, no. 4, p. e60605, Apr. 2013, doi: 10.1371/journal.pone.0060605.
  • [36] O. Hohn, K. Hanke, and N. Bannert, “HERV-K(HML-2), the best preserved family of HERVs: Endogenization, expression, and implications in health and disease,” Frontiers in Oncology, vol. 3 SEP. Frontiers Media SA, 2013, doi: 10.3389/fonc.2013.00246.
  • [37] X. Wang, J. Huang, and F. Zhu, “Human endogenous retroviral envelope protein Syncytin-1 and inflammatory abnormalities in neuropsychological diseases,” Frontiers in Psychiatry, vol. 9, no. SEP. Frontiers Media S.A., Sep. 07, 2018, doi: 10.3389/fpsyt.2018.00422.
  • [38] L. Vargiu et al., “Classification and characterization of human endogenous retroviruses mosaic forms are common,” Retrovirology, vol. 13, no. 1, p. 7, Jan. 2016, doi: 10.1186/s12977-015-0232-y.
  • [39] J. Zhao et al., “Expression of Human Endogenous Retrovirus Type K Envelope Protein is a Novel Candidate Prognostic Marker for Human Breast Cancer,” Genes and Cancer, vol. 2, no. 9, pp. 914–922, Sep. 2011, doi: 10.1177/1947601911431841.
  • [40] R. P. Subramanian, J. H. Wildschutte, C. Russo, and J. M. Coffin, “Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses.,” Retrovirology, vol. 8, no. 1, p. 90, Nov. 2011, doi: 10.1186/1742-4690-8-90.
  • [41] J. Blomberg, F. Benachenhou, V. Blikstad, G. Sperber, and J. Mayer, “Classification and nomenclature of endogenous retroviral sequences (ERVs). Problems and recommendations,” Gene, vol. 448, no. 2. Gene, pp. 115–123, Dec. 15, 2009, doi: 10.1016/j.gene.2009.06.007.
  • [42] A. Aftab, A. A. Shah, and A. M. Hashmi, “Pathophysiological role of HERV-W in schizophrenia,” J. Neuropsychiatry Clin. Neurosci., vol. 28, no. 1, pp. 17–25, Dec. 2016, doi: 10.1176/appi.neuropsych.15030059.
  • [43] G. Okahara, S. Matsubara, T. Oda, J. Sugimoto, Y. Jinno, and F. Kanaya, “Expression analyses of human endogenous retroviruses (HERVs): tissue-specific and developmental stage-dependent expression of HERVs,” Genomics, vol. 84, no. 6, pp. 982–990, Dec. 2004, doi: 10.1016/j.ygeno.2004.09.004.
  • [44] S. H. Hassanpour and M. Dehghani, “Review of cancer from perspective of molecular,” J. Cancer Res. Pract., vol. 4, no. 4, pp. 127–129, Dec. 2017, doi: 10.1016/j.jcrpr.2017.07.001.
  • [45] S. Şahin, “Kanserde erken tanı ve tarama programları,” Ege Tıp Derg., vol. 54, no. 0, pp. 41–45, Sep. 2015, doi: 10.19161/etd.344147.
  • [46] L. Cegolon, C. Salata, E. Weiderpass, P. Vineis, G. Palù, and G. Mastrangelo, “Human endogenous retroviruses and cancer prevention: Evidence and prospects,” BMC Cancer, vol. 13, no. 1, p. 4, Jan. 2013, doi: 10.1186/1471-2407-13-4.
  • [47] M. Gonzalez-Cao, P. Iduma, N. Karachaliou, M. Santarpia, J. Blanco, and R. Rosell, “Human endogenous retroviruses and cancer,” Cancer Biol. Med., vol. 13, no. 4, pp. 483–488, 2016, doi: 10.20892/j.issn.2095-3941.2016.0080.
  • [48] G. Curty, J. L. Marston, M. De Mulder Rougvie, F. E. Leal, D. F. Nixon, and M. A. Soares, “Human Endogenous Retrovirus K in Cancer: A Potential Biomarker and Immunotherapeutic Target,” Viruses, vol. 12, no. 7. MDPI AG, Jul. 01, 2020, doi: 10.3390/v12070726.
  • [49] J. Krishnamurthy et al., “Genetic engineering of T cells to target HERV-K, an ancient retrovirus on melanoma,” Clin. Cancer Res., vol. 21, no. 14, pp. 3241–3251, Jul. 2015, doi: 10.1158/1078-0432.CCR-14-3197.
  • [50] D. W. Rhyu et al., “Expression of human endogenous retrovirus env genes in the blood of breast cancer patients,” Int. J. Mol. Sci., vol. 15, no. 6, pp. 9173–9183, May 2014, doi: 10.3390/ijms15069173.
  • [51] K. Rycaj et al., “Cytotoxicity of human endogenous retrovirus K-specific T cells toward autologous ovarian cancer cells,” Clin. Cancer Res., vol. 21, no. 2, pp. 471–483, Jan. 2015, doi: 10.1158/1078-0432.CCR-14-0388.
  • [52] F. Wang-Johanning et al., “Human endogenous retrovirus type K antibodies and mRNA as serum biomarkers of early-stage breast cancer,” Int. J. Cancer, vol. 134, no. 3, pp. 587–595, Feb. 2014, doi: 10.1002/ijc.28389.
  • [53] R. Contreras-Galindo et al., “Human Endogenous Retrovirus K (HML-2) Elements in the Plasma of People with Lymphoma and Breast Cancer,” J. Virol., vol. 82, no. 19, pp. 9329–9336, Oct. 2008, doi: 10.1128/jvi.00646-08.
  • [54] F. Wang-Johanning et al., “Immunotherapeutic potential of anti-human endogenous retrovirus-k envelope protein antibodies in targeting breast tumors,” J. Natl. Cancer Inst., vol. 104, no. 3, pp. 189–210, Feb. 2012, doi: 10.1093/jnci/djr540.
  • [55] R. Contreras-Galindo, P. López, R. Vélez, and Y. Yamamura, “HIV-1 infection increases the expression of human endogenous retroviruses type K (HERV-K) in vitro,” AIDS Res. Hum. Retroviruses, vol. 23, no. 1, pp. 116–122, Jan. 2007, doi: 10.1089/aid.2006.0117.
  • [56] M. T. Romanish, C. J. Cohen, and D. L. Mager, “Potential mechanisms of endogenous retroviral-mediated genomic instability in human cancer,” Seminars in Cancer Biology, vol. 20, no. 4. Semin Cancer Biol, pp. 246–253, Aug. 2010, doi: 10.1016/j.semcancer.2010.05.005.
  • [57] N. V. Fuchs, M. Kraft, C. Tondera, K.-M. Hanschmann, J. Lower, and R. Lower, “Expression of the Human Endogenous Retrovirus (HERV) Group HML-2/HERV-K Does Not Depend on Canonical Promoter Elements but Is Regulated by Transcription Factors Sp1 and Sp3,” J. Virol., vol. 85, no. 7, pp. 3436–3448, Apr. 2011, doi: 10.1128/jvi.02539-10.
  • [58] D. Roulois et al., “DNA-Demethylating Agents Target Colorectal Cancer Cells by Inducing Viral Mimicry by Endogenous Transcripts,” Cell, vol. 162, no. 5, pp. 961–973, Aug. 2015, doi: 10.1016/j.cell.2015.07.056.
  • [59] S. Szpakowski et al., “Loss of epigenetic silencing in tumors preferentially affects primate-specific retroelements,” Gene, vol. 448, no. 2, pp. 151–167, Dec. 2009, doi: 10.1016/j.gene.2009.08.006.
  • [60] J. Gimenez et al., “Custom human endogenous retroviruses dedicated microarray identifies self-induced HERV-W family elements reactivated in testicular cancer upon methylation control,” Nucleic Acids Res., vol. 38, no. 7, pp. 2229–2246, Jan. 2010, doi: 10.1093/nar/gkp1214.
  • [61] A. R. Florl, R. Löwer, B. J. Schmitz-Dräger, and W. A. Schulz, “DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas,” Br. J. Cancer, vol. 80, no. 9, pp. 1312–1321, 1999, doi: 10.1038/sj.bjc.6690524.
  • [62] H. C. Tsai et al., “Transient Low Doses of DNA-Demethylating Agents Exert Durable Antitumor Effects on Hematological and Epithelial Tumor Cells,” Cancer Cell, vol. 21, no. 3, pp. 430–446, Mar. 2012, doi: 10.1016/j.ccr.2011.12.029.
  • [63] J. H. A. Martens et al., “The profile of repeat-associated histone lysine methylation states in the mouse epigenome,” EMBO J., vol. 24, no. 4, pp. 800–812, Feb. 2005, doi: 10.1038/sj.emboj.7600545.
  • [64] I. A. Maksakova, D. L. Mager, and D. Reiss, “Endogenous retroviruses - Keeping active endogenous retroviral-like elements in check: The epigenetic perspective,” Cellular and Molecular Life Sciences, vol. 65, no. 21. Cell Mol Life Sci, pp. 3329–3347, Nov. 2008, doi: 10.1007/s00018-008-8494-3.
  • [65] T. Hurst et al., “Human endogenous retrovirus (HERV) expression is not induced by treatment with the histone deacetylase (HDAC) inhibitors in cellular models of HIV-1 latency,” Retrovirology, vol. 13, no. 1, p. 10, Dec. 2016, doi: 10.1186/s12977-016-0242-4.
  • [66] H. Ohtani, M. Liu, W. Zhou, G. Liang, and P. A. Jones, “Switching roles for DNA and histone methylation depend on evolutionary ages of human endogenous retroviruses,” Genome Res., vol. 28, no. 8, pp. 1147–1157, Aug. 2018, doi: 10.1101/gr.234229.118.
  • [67] E. Hedrick, Y. Cheng, U. H. Jin, K. Kim, and S. Safe, “Specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 are non-oncogene addiction genes in cancer cells,” Oncotarget, vol. 7, no. 16, pp. 22245–22256, Apr. 2016, doi: 10.18632/oncotarget.7925.
  • [68] M. C. Archer, “Role of sp transcription factors in the regulation of cancer cell metabolism.,” Genes Cancer, vol. 2, no. 7, pp. 712–9, Jul. 2011, doi: 10.1177/1947601911423029.
  • [69] D. Y. Lin et al., “Analysis of the interaction between Zinc finger protein 179 (Znf179) and promyelocytic leukemia zinc finger (Plzf),” J. Biomed. Sci., vol. 20, no. 1, p. 98, Dec. 2013, doi: 10.1186/1423-0127-20-98.
  • [70] I. Katoh et al., “Activation of the long terminal repeat of human endogenous retrovirus K by melanoma-specific transcription factor MITF-M,” Neoplasia, vol. 13, no. 11, pp. 1081–1092, 2011, doi: 10.1593/neo.11794.
  • [71] T. Kahyo et al., “Identification and association study with lung cancer for novel insertion polymorphisms of human endogenous retrovirus,” Carcinogenesis, vol. 34, no. 11, pp. 2531–2538, Nov. 2013, doi: 10.1093/carcin/bgt253.
  • [72] J. Denner, “Immunosuppressive properties of retroviruses,” Eur. J. Immunol., vol. 46, no. 1, pp. 253–255, Jan. 2016, doi: 10.1002/eji.201545851.
  • [73] H. Arem and E. Loftfield, “Cancer Epidemiology: A Survey of Modifiable Risk Factors for Prevention and Survivorship,” Am. J. Lifestyle Med., vol. 12, no. 3, pp. 200–210, May 2018, doi: 10.1177/1559827617700600.
  • [74] P. Yu, “The potential role of retroviruses in autoimmunity,” Immunol. Rev., vol. 269, no. 1, pp. 85–99, Jan. 2016, doi: 10.1111/imr.12371.
  • [75] S. Kelderman and P. Kvistborg, “Tumor antigens in human cancer control,” Biochim. Biophys. Acta - Rev. Cancer, vol. 1865, no. 1, pp. 83–89, Jan. 2016, doi: 10.1016/j.bbcan.2015.10.004.
  • [76] K. B. Chiappinelli et al., “Inhibiting DNA Methylation Causes an Interferon Response in Cancer via dsRNA Including Endogenous Retroviruses,” Cell, vol. 162, no. 5, pp. 974–986, Aug. 2015, doi: 10.1016/j.cell.2015.07.011.
  • [77] S. Sato et al., “The RNA Sensor RIG-I Dually Functions as an Innate Sensor and Direct Antiviral Factor for Hepatitis B Virus,” Immunity, vol. 42, no. 1, pp. 123–132, Jan. 2015, doi: 10.1016/j.immuni.2014.12.016.
  • [78] H. Feng et al., “Expression profiles of carp IRF-3/-7 correlate with the up-regulation of RIG-I/MAVS/TRAF3/TBK1, four pivotal molecules in RIG-I signaling pathway,” Fish Shellfish Immunol., vol. 30, no. 4–5, pp. 1159–1169, 2011, doi: 10.1016/j.fsi.2011.03.002.
  • [79] S. R. Gameiro, A. S. Malamas, K. Y. Tsang, S. Ferrone, and J. W. Hodge, “Inhibitors of histone deacetylase 1 reverse the immune evasion phenotype to enhance T-cell mediated lysis of prostate and breast carcinoma cells,” Oncotarget, vol. 7, no. 7, pp. 7390–7402, 2016, doi: 10.18632/oncotarget.7180.
  • [80] A. Covre et al., “Antitumor activity of epigenetic immunomodulation combined with CTLA-4 blockade in syngeneic mouse models,” Oncoimmunology, vol. 4, no. 8, Aug. 2015, doi: 10.1080/2162402X.2015.1019978.
  • [81] J. M. Redman, G. T. Gibney, and M. B. Atkins, “Advances in immunotherapy for melanoma,” BMC Medicine, vol. 14, no. 1. BioMed Central Ltd., Feb. 06, 2016, doi: 10.1186/s12916-016-0571-0.
  • [82] A. S. Attermann, A. M. Bjerregaard, S. K. Saini, K. Grønbæk, and S. R. Hadrup, “Human endogenous retroviruses and their implication for immunotherapeutics of cancer,” Annals of Oncology, vol. 29, no. 11. Oxford University Press, pp. 2183–2191, Nov. 01, 2018, doi: 10.1093/annonc/mdy413.
  • [83] M. Reck et al., “Nivolumab (NIVO) + ipilimumab (IPI) + 2 cycles of platinum-doublet chemotherapy (chemo) vs 4 cycles chemo as first-line (1L) treatment (tx) for stage IV/recurrent non-small cell lung cancer (NSCLC): CheckMate 9LA.,” J. Clin. Oncol., vol. 38, no. 15_suppl, pp. 9501–9501, May 2020, doi: 10.1200/jco.2020.38.15_suppl.9501.
  • [84] K. Weintraub, “Take two: Combining immunotherapy with epigenetic drugs to tackle cancer,” Nature Medicine, vol. 22, no. 1. Nature Publishing Group, pp. 8–10, Jan. 06, 2016, doi: 10.1038/nm0116-8.

Investigation of the Relationship of Human Endogenous Retroviruses with Cancer

Year 2022, Volume: 5 Issue: 1, 110 - 130, 15.04.2022
https://doi.org/10.38001/ijlsb.1028013

Abstract

Transposons are mobile elements of DNA that have the ability to change their locations in the genome. Transposons perform the displacement process in the genome by a mechanism called transposition and are divided into two subclasses as DNA and RNA transposons according to their transposition mechanism. RNA transposons, also called retrotransposons including endogenous retroviruses (ERVs) that play an important role in human evolution. Human endogenous retroviruses (HERV), which make up about 8% of the human genome, are grouped under 3 classes. Human endogenous retrovirus K (HERV-K), which is in the second class, is the most active HERV in the human genome considered to integrate to human genome in a close time. According to the gene expression analysis of HERV-K, it exhibited that HERV-K plays a role in the emergence of various cancer types such as ovarian, breast and skin cancer. The relationship of HERVs to cancer development has been investigated for a long time. Although HERV proteins have been detected in cancer cells, the role of HERVs in cancer development has not been clearly understood. Recent studies revealed that HERV proteins, are at high levels in cancer cells, can be used as the main target for the immune response involved in cancer therapy. New approaches, which combine histone deacetylase inhibitors and checkpoint inhibitors, are also being tested for use in cancer therapy. HERV expression initiates the immune system response by activating the pattern recognition receptors of single-stranded RNA in the cytosol, which activates the interferon type 1 response. As a result, it is predicted that cancer development can be prevented by increasing the recognition of cancer cells by CD8 T cells. This new approach consisting of a combination of histone deacetylase and checkpoint inhibitors, will increase its anti-tumor activity and will provide new hope in cancer therapy.

Project Number

1919B011900082

References

  • [1] A. Stencel and B. Crespi, “What is a genome?,” Molecular Ecology, vol. 22, no. 13. pp. 3437–3443, Jul. 2013, doi: 10.1111/mec.12355.
  • [2] E. Pennisi, “ENCODE project writes eulogy for junk DNA,” Science, vol. 337, no. 6099. American Association for the Advancement of Science, pp. 1159–1161, Sep. 07, 2012, doi: 10.1126/science.337.6099.1159.
  • [3] A. F. Palazzo and T. R. Gregory, “The Case for Junk DNA,” PLoS Genet., vol. 10, no. 5, 2014, doi: 10.1371/journal.pgen.1004351.
  • [4] N. Grandi and E. Tramontano, “Human endogenous retroviruses are ancient acquired elements still shaping innate immune responses,” Frontiers in Immunology, vol. 9, no. SEP. Frontiers Media S.A., Sep. 10, 2018, doi: 10.3389/fimmu.2018.02039.
  • [5] S. Ravindran, “Barbara McClintock and the discovery of jumping genes.,” Proc. Natl. Acad. Sci. U. S. A., vol. 109, no. 50, pp. 20198–20199, Dec. 2012, doi: 10.1073/pnas.1219372109.
  • [6] G. Bourque et al., “Ten things you should know about transposable elements 06 Biological Sciences 0604 Genetics,” Genome Biol., vol. 19, no. 1, Nov. 2018, doi: 10.1186/s13059-018-1577-z.
  • [7] S. J. Klein and R. J. O’Neill, “Transposable elements: genome innovation, chromosome diversity, and centromere conflict,” Chromosome Research, vol. 26, no. 1–2. Springer Netherlands, pp. 5–23, Mar. 01, 2018, doi: 10.1007/s10577-017-9569-5.
  • [8] W. Makałowski, V. Gotea, A. Pande, and I. Makałowska, “Transposable elements: Classification, identification, and their use as a tool for comparative genomics,” in Methods in Molecular Biology, vol. 1910, Humana Press Inc., 2019, pp. 177–207.
  • [9] R. Cordaux and M. A. Batzer, “The impact of retrotransposons on human genome evolution,” Nature Reviews Genetics, vol. 10, no. 10. pp. 691–703, Oct. 2009, doi: 10.1038/nrg2640.
  • [10] H. G. Drost, D. H. Sanchez, and A. Eyre-Walker, “Becoming a Selfish Clan: Recombination Associated to Reverse-Transcription in LTR Retrotransposons,” Genome Biol. Evol., vol. 11, no. 12, pp. 3382–3392, Nov. 2019, doi: 10.1093/gbe/evz255.
  • [11] J. A. Ågren and A. G. Clark, “Selfish genetic elements,” PLOS Genet., vol. 14, no. 11, p. e1007700, Nov. 2018, doi: 10.1371/journal.pgen.1007700.
  • [12] B. Misiak, L. Ricceri, and M. M. Sasiadek, “Transposable elements and their epigenetic regulation in mental disorders: Current evidence in the field,” Front. Genet., vol. 10, no. JUN, 2019, doi: 10.3389/fgene.2019.00580.
  • [13] M. Dixie and S. Jonathan, “Mammalian Endogenous Retroviruses,” in Mobile DNA III, vol. 3, no. 1, American Society of Microbiology, 2015, pp. 1079–1100.
  • [14] K. Ohshima and N. Okada, “SINEs and LINEs: Symbionts of eukaryotic genomes with a common tail,” Cytogenetic and Genome Research, vol. 110, no. 1–4. pp. 475–490, 2005, doi: 10.1159/000084981.
  • [15] V. Gröger and H. Cynis, “Human endogenous retroviruses and their putative role in the development of autoimmune disorders such as multiple sclerosis,” Frontiers in Microbiology, vol. 9, no. FEB. Frontiers Media S.A., p. 265, Feb. 20, 2018, doi: 10.3389/fmicb.2018.00265.
  • [16] T. P. Hurst and G. Magiorkinis, “Epigenetic control of human endogenous retrovirus expression: Focus on regulation of long-terminal repeats (LTRs),” Viruses, vol. 9, no. 6. MDPI AG, Jun. 01, 2017, doi: 10.3390/v9060130.
  • [17] A. Huda, N. J. Bowen, A. B. Conley, and I. K. Jordan, “Epigenetic regulation of transposable element derived human gene promoters,” Gene, vol. 475, no. 1, pp. 39–48, Apr. 2011, doi: 10.1016/j.gene.2010.12.010.
  • [18] M. Krzysztalowska-Wawrzyniak et al., “The distribution of human endogenous retrovirus K-113 in health and autoimmune diseases in Poland,” Rheumatology, vol. 50, no. 7, pp. 1310–1314, Jul. 2011, doi: 10.1093/rheumatology/ker022.
  • [19] F. Li and H. Karlsson, “Expression and regulation of human endogenous retrovirus W elements,” APMIS, vol. 124, no. 1–2, pp. 52–66, Jan. 2016, doi: 10.1111/apm.12478.
  • [20] R. J. Gifford et al., “Nomenclature for endogenous retrovirus (ERV) loci,” Retrovirology, vol. 15, no. 1. BioMed Central Ltd., p. 59, Aug. 28, 2018, doi: 10.1186/s12977-018-0442-1.
  • [21] Y. Sun, T. J. McCorvie, L. A. Yates, and X. Zhang, “Structural basis of homologous recombination,” Cellular and Molecular Life Sciences, vol. 77, no. 1. Springer, pp. 3–18, Jan. 01, 2020, doi: 10.1007/s00018-019-03365-1.
  • [22] G. Rigogliuso et al., “A human endogenous retrovirus encoded protease potentially cleaves numerous cellular proteins,” Mob. DNA, vol. 10, no. 1, pp. 1–22, Aug. 2019, doi: 10.1186/s13100-019-0178-z. [23] V. A. Morozov, V. L. Dao Thi, and J. Denner, “The Transmembrane Protein of the Human Endogenous Retrovirus - K (HERV-K) Modulates Cytokine Release and Gene Expression,” PLoS One, vol. 8, no. 8, p. 70399, Aug. 2013, doi: 10.1371/journal.pone.0070399.
  • [24] G. Morris, M. Maes, M. Murdjeva, and B. K. Puri, “Do Human Endogenous Retroviruses Contribute to Multiple Sclerosis, and if So, How?,” Molecular Neurobiology, vol. 56, no. 4. Humana Press Inc., pp. 2590–2605, Apr. 01, 2019, doi: 10.1007/s12035-018-1255-x.
  • [25] F. K. Geis and S. P. Goff, “Silencing and transcriptional regulation of endogenous retroviruses: An overview,” Viruses, vol. 12, no. 8. MDPI AG, Aug. 01, 2020, doi: 10.3390/v12080884.
  • [26] M. Zhang, J. Q. Liang, and S. Zheng, “Expressional activation and functional roles of human endogenous retroviruses in cancers,” Rev. Med. Virol., vol. 29, no. 2, pp. 1–11, 2019, doi: 10.1002/rmv.2025.
  • [27] K. Ahn and H. S. Kim, “Structural and quantitative expression analyses of HERV gene family in human tissues,” Mol. Cells, vol. 28, no. 2, pp. 99–103, Jul. 2009, doi: 10.1007/s10059-009-0107-y.
  • [28] K. Ahn, K. Han, and H. S. Kim, “Quantitative analysis of the HERV pol gene in human tissues,” Genes and Genomics, vol. 33, no. 4, pp. 439–443, Aug. 2011, doi: 10.1007/s13258-011-0005-5.
  • [29] L. Gagnier, V. P. Belancio, and D. L. Mager, “Mouse germ line mutations due to retrotransposon insertions,” Mobile DNA, vol. 10, no. 1. BioMed Central Ltd., Apr. 13, 2019, doi: 10.1186/s13100-019-0157-4.
  • [30] B. M. Knoppers, A. Thorogood, and R. Chadwick, “The Human Genome Organisation: Towards next-generation ethics,” Genome Medicine, vol. 5, no. 4. BioMed Central, p. 38, Apr. 29, 2013, doi: 10.1186/gm442.
  • [31] J. Mayer, J. Blomberg, and R. L. Seal, “A revised nomenclature for transcribed human endogenous retroviral loci,” Mob. DNA, vol. 2, no. 1, p. 7, 2011, doi: 10.1186/1759-8753-2-7.
  • [32] R. A. Weiss, “On the concept and elucidation of endogenous retroviruses,” Philos. Trans. R. Soc. B Biol. Sci., vol. 368, no. 1626, Sep. 2013, doi: 10.1098/rstb.2012.0494.
  • [33] A. Hayward, “Origin of the retroviruses: when, where, and how?,” Current Opinion in Virology, vol. 25. Elsevier B.V., pp. 23–27, Aug. 01, 2017, doi: 10.1016/j.coviro.2017.06.006.
  • [34] M. Escalera-Zamudio and A. D. Greenwood, “On the classification and evolution of endogenous retrovirus: Human endogenous retroviruses may not be ‘human’ after all,” APMIS, vol. 124, no. 1–2. Blackwell Munksgaard, pp. 44–51, Jan. 01, 2016, doi: 10.1111/apm.12489.
  • [35] W. Shin, J. Lee, S.-Y. Son, K. Ahn, H.-S. Kim, and K. Han, “Human-Specific HERV-K Insertion Causes Genomic Variations in the Human Genome,” PLoS One, vol. 8, no. 4, p. e60605, Apr. 2013, doi: 10.1371/journal.pone.0060605.
  • [36] O. Hohn, K. Hanke, and N. Bannert, “HERV-K(HML-2), the best preserved family of HERVs: Endogenization, expression, and implications in health and disease,” Frontiers in Oncology, vol. 3 SEP. Frontiers Media SA, 2013, doi: 10.3389/fonc.2013.00246.
  • [37] X. Wang, J. Huang, and F. Zhu, “Human endogenous retroviral envelope protein Syncytin-1 and inflammatory abnormalities in neuropsychological diseases,” Frontiers in Psychiatry, vol. 9, no. SEP. Frontiers Media S.A., Sep. 07, 2018, doi: 10.3389/fpsyt.2018.00422.
  • [38] L. Vargiu et al., “Classification and characterization of human endogenous retroviruses mosaic forms are common,” Retrovirology, vol. 13, no. 1, p. 7, Jan. 2016, doi: 10.1186/s12977-015-0232-y.
  • [39] J. Zhao et al., “Expression of Human Endogenous Retrovirus Type K Envelope Protein is a Novel Candidate Prognostic Marker for Human Breast Cancer,” Genes and Cancer, vol. 2, no. 9, pp. 914–922, Sep. 2011, doi: 10.1177/1947601911431841.
  • [40] R. P. Subramanian, J. H. Wildschutte, C. Russo, and J. M. Coffin, “Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses.,” Retrovirology, vol. 8, no. 1, p. 90, Nov. 2011, doi: 10.1186/1742-4690-8-90.
  • [41] J. Blomberg, F. Benachenhou, V. Blikstad, G. Sperber, and J. Mayer, “Classification and nomenclature of endogenous retroviral sequences (ERVs). Problems and recommendations,” Gene, vol. 448, no. 2. Gene, pp. 115–123, Dec. 15, 2009, doi: 10.1016/j.gene.2009.06.007.
  • [42] A. Aftab, A. A. Shah, and A. M. Hashmi, “Pathophysiological role of HERV-W in schizophrenia,” J. Neuropsychiatry Clin. Neurosci., vol. 28, no. 1, pp. 17–25, Dec. 2016, doi: 10.1176/appi.neuropsych.15030059.
  • [43] G. Okahara, S. Matsubara, T. Oda, J. Sugimoto, Y. Jinno, and F. Kanaya, “Expression analyses of human endogenous retroviruses (HERVs): tissue-specific and developmental stage-dependent expression of HERVs,” Genomics, vol. 84, no. 6, pp. 982–990, Dec. 2004, doi: 10.1016/j.ygeno.2004.09.004.
  • [44] S. H. Hassanpour and M. Dehghani, “Review of cancer from perspective of molecular,” J. Cancer Res. Pract., vol. 4, no. 4, pp. 127–129, Dec. 2017, doi: 10.1016/j.jcrpr.2017.07.001.
  • [45] S. Şahin, “Kanserde erken tanı ve tarama programları,” Ege Tıp Derg., vol. 54, no. 0, pp. 41–45, Sep. 2015, doi: 10.19161/etd.344147.
  • [46] L. Cegolon, C. Salata, E. Weiderpass, P. Vineis, G. Palù, and G. Mastrangelo, “Human endogenous retroviruses and cancer prevention: Evidence and prospects,” BMC Cancer, vol. 13, no. 1, p. 4, Jan. 2013, doi: 10.1186/1471-2407-13-4.
  • [47] M. Gonzalez-Cao, P. Iduma, N. Karachaliou, M. Santarpia, J. Blanco, and R. Rosell, “Human endogenous retroviruses and cancer,” Cancer Biol. Med., vol. 13, no. 4, pp. 483–488, 2016, doi: 10.20892/j.issn.2095-3941.2016.0080.
  • [48] G. Curty, J. L. Marston, M. De Mulder Rougvie, F. E. Leal, D. F. Nixon, and M. A. Soares, “Human Endogenous Retrovirus K in Cancer: A Potential Biomarker and Immunotherapeutic Target,” Viruses, vol. 12, no. 7. MDPI AG, Jul. 01, 2020, doi: 10.3390/v12070726.
  • [49] J. Krishnamurthy et al., “Genetic engineering of T cells to target HERV-K, an ancient retrovirus on melanoma,” Clin. Cancer Res., vol. 21, no. 14, pp. 3241–3251, Jul. 2015, doi: 10.1158/1078-0432.CCR-14-3197.
  • [50] D. W. Rhyu et al., “Expression of human endogenous retrovirus env genes in the blood of breast cancer patients,” Int. J. Mol. Sci., vol. 15, no. 6, pp. 9173–9183, May 2014, doi: 10.3390/ijms15069173.
  • [51] K. Rycaj et al., “Cytotoxicity of human endogenous retrovirus K-specific T cells toward autologous ovarian cancer cells,” Clin. Cancer Res., vol. 21, no. 2, pp. 471–483, Jan. 2015, doi: 10.1158/1078-0432.CCR-14-0388.
  • [52] F. Wang-Johanning et al., “Human endogenous retrovirus type K antibodies and mRNA as serum biomarkers of early-stage breast cancer,” Int. J. Cancer, vol. 134, no. 3, pp. 587–595, Feb. 2014, doi: 10.1002/ijc.28389.
  • [53] R. Contreras-Galindo et al., “Human Endogenous Retrovirus K (HML-2) Elements in the Plasma of People with Lymphoma and Breast Cancer,” J. Virol., vol. 82, no. 19, pp. 9329–9336, Oct. 2008, doi: 10.1128/jvi.00646-08.
  • [54] F. Wang-Johanning et al., “Immunotherapeutic potential of anti-human endogenous retrovirus-k envelope protein antibodies in targeting breast tumors,” J. Natl. Cancer Inst., vol. 104, no. 3, pp. 189–210, Feb. 2012, doi: 10.1093/jnci/djr540.
  • [55] R. Contreras-Galindo, P. López, R. Vélez, and Y. Yamamura, “HIV-1 infection increases the expression of human endogenous retroviruses type K (HERV-K) in vitro,” AIDS Res. Hum. Retroviruses, vol. 23, no. 1, pp. 116–122, Jan. 2007, doi: 10.1089/aid.2006.0117.
  • [56] M. T. Romanish, C. J. Cohen, and D. L. Mager, “Potential mechanisms of endogenous retroviral-mediated genomic instability in human cancer,” Seminars in Cancer Biology, vol. 20, no. 4. Semin Cancer Biol, pp. 246–253, Aug. 2010, doi: 10.1016/j.semcancer.2010.05.005.
  • [57] N. V. Fuchs, M. Kraft, C. Tondera, K.-M. Hanschmann, J. Lower, and R. Lower, “Expression of the Human Endogenous Retrovirus (HERV) Group HML-2/HERV-K Does Not Depend on Canonical Promoter Elements but Is Regulated by Transcription Factors Sp1 and Sp3,” J. Virol., vol. 85, no. 7, pp. 3436–3448, Apr. 2011, doi: 10.1128/jvi.02539-10.
  • [58] D. Roulois et al., “DNA-Demethylating Agents Target Colorectal Cancer Cells by Inducing Viral Mimicry by Endogenous Transcripts,” Cell, vol. 162, no. 5, pp. 961–973, Aug. 2015, doi: 10.1016/j.cell.2015.07.056.
  • [59] S. Szpakowski et al., “Loss of epigenetic silencing in tumors preferentially affects primate-specific retroelements,” Gene, vol. 448, no. 2, pp. 151–167, Dec. 2009, doi: 10.1016/j.gene.2009.08.006.
  • [60] J. Gimenez et al., “Custom human endogenous retroviruses dedicated microarray identifies self-induced HERV-W family elements reactivated in testicular cancer upon methylation control,” Nucleic Acids Res., vol. 38, no. 7, pp. 2229–2246, Jan. 2010, doi: 10.1093/nar/gkp1214.
  • [61] A. R. Florl, R. Löwer, B. J. Schmitz-Dräger, and W. A. Schulz, “DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas,” Br. J. Cancer, vol. 80, no. 9, pp. 1312–1321, 1999, doi: 10.1038/sj.bjc.6690524.
  • [62] H. C. Tsai et al., “Transient Low Doses of DNA-Demethylating Agents Exert Durable Antitumor Effects on Hematological and Epithelial Tumor Cells,” Cancer Cell, vol. 21, no. 3, pp. 430–446, Mar. 2012, doi: 10.1016/j.ccr.2011.12.029.
  • [63] J. H. A. Martens et al., “The profile of repeat-associated histone lysine methylation states in the mouse epigenome,” EMBO J., vol. 24, no. 4, pp. 800–812, Feb. 2005, doi: 10.1038/sj.emboj.7600545.
  • [64] I. A. Maksakova, D. L. Mager, and D. Reiss, “Endogenous retroviruses - Keeping active endogenous retroviral-like elements in check: The epigenetic perspective,” Cellular and Molecular Life Sciences, vol. 65, no. 21. Cell Mol Life Sci, pp. 3329–3347, Nov. 2008, doi: 10.1007/s00018-008-8494-3.
  • [65] T. Hurst et al., “Human endogenous retrovirus (HERV) expression is not induced by treatment with the histone deacetylase (HDAC) inhibitors in cellular models of HIV-1 latency,” Retrovirology, vol. 13, no. 1, p. 10, Dec. 2016, doi: 10.1186/s12977-016-0242-4.
  • [66] H. Ohtani, M. Liu, W. Zhou, G. Liang, and P. A. Jones, “Switching roles for DNA and histone methylation depend on evolutionary ages of human endogenous retroviruses,” Genome Res., vol. 28, no. 8, pp. 1147–1157, Aug. 2018, doi: 10.1101/gr.234229.118.
  • [67] E. Hedrick, Y. Cheng, U. H. Jin, K. Kim, and S. Safe, “Specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 are non-oncogene addiction genes in cancer cells,” Oncotarget, vol. 7, no. 16, pp. 22245–22256, Apr. 2016, doi: 10.18632/oncotarget.7925.
  • [68] M. C. Archer, “Role of sp transcription factors in the regulation of cancer cell metabolism.,” Genes Cancer, vol. 2, no. 7, pp. 712–9, Jul. 2011, doi: 10.1177/1947601911423029.
  • [69] D. Y. Lin et al., “Analysis of the interaction between Zinc finger protein 179 (Znf179) and promyelocytic leukemia zinc finger (Plzf),” J. Biomed. Sci., vol. 20, no. 1, p. 98, Dec. 2013, doi: 10.1186/1423-0127-20-98.
  • [70] I. Katoh et al., “Activation of the long terminal repeat of human endogenous retrovirus K by melanoma-specific transcription factor MITF-M,” Neoplasia, vol. 13, no. 11, pp. 1081–1092, 2011, doi: 10.1593/neo.11794.
  • [71] T. Kahyo et al., “Identification and association study with lung cancer for novel insertion polymorphisms of human endogenous retrovirus,” Carcinogenesis, vol. 34, no. 11, pp. 2531–2538, Nov. 2013, doi: 10.1093/carcin/bgt253.
  • [72] J. Denner, “Immunosuppressive properties of retroviruses,” Eur. J. Immunol., vol. 46, no. 1, pp. 253–255, Jan. 2016, doi: 10.1002/eji.201545851.
  • [73] H. Arem and E. Loftfield, “Cancer Epidemiology: A Survey of Modifiable Risk Factors for Prevention and Survivorship,” Am. J. Lifestyle Med., vol. 12, no. 3, pp. 200–210, May 2018, doi: 10.1177/1559827617700600.
  • [74] P. Yu, “The potential role of retroviruses in autoimmunity,” Immunol. Rev., vol. 269, no. 1, pp. 85–99, Jan. 2016, doi: 10.1111/imr.12371.
  • [75] S. Kelderman and P. Kvistborg, “Tumor antigens in human cancer control,” Biochim. Biophys. Acta - Rev. Cancer, vol. 1865, no. 1, pp. 83–89, Jan. 2016, doi: 10.1016/j.bbcan.2015.10.004.
  • [76] K. B. Chiappinelli et al., “Inhibiting DNA Methylation Causes an Interferon Response in Cancer via dsRNA Including Endogenous Retroviruses,” Cell, vol. 162, no. 5, pp. 974–986, Aug. 2015, doi: 10.1016/j.cell.2015.07.011.
  • [77] S. Sato et al., “The RNA Sensor RIG-I Dually Functions as an Innate Sensor and Direct Antiviral Factor for Hepatitis B Virus,” Immunity, vol. 42, no. 1, pp. 123–132, Jan. 2015, doi: 10.1016/j.immuni.2014.12.016.
  • [78] H. Feng et al., “Expression profiles of carp IRF-3/-7 correlate with the up-regulation of RIG-I/MAVS/TRAF3/TBK1, four pivotal molecules in RIG-I signaling pathway,” Fish Shellfish Immunol., vol. 30, no. 4–5, pp. 1159–1169, 2011, doi: 10.1016/j.fsi.2011.03.002.
  • [79] S. R. Gameiro, A. S. Malamas, K. Y. Tsang, S. Ferrone, and J. W. Hodge, “Inhibitors of histone deacetylase 1 reverse the immune evasion phenotype to enhance T-cell mediated lysis of prostate and breast carcinoma cells,” Oncotarget, vol. 7, no. 7, pp. 7390–7402, 2016, doi: 10.18632/oncotarget.7180.
  • [80] A. Covre et al., “Antitumor activity of epigenetic immunomodulation combined with CTLA-4 blockade in syngeneic mouse models,” Oncoimmunology, vol. 4, no. 8, Aug. 2015, doi: 10.1080/2162402X.2015.1019978.
  • [81] J. M. Redman, G. T. Gibney, and M. B. Atkins, “Advances in immunotherapy for melanoma,” BMC Medicine, vol. 14, no. 1. BioMed Central Ltd., Feb. 06, 2016, doi: 10.1186/s12916-016-0571-0.
  • [82] A. S. Attermann, A. M. Bjerregaard, S. K. Saini, K. Grønbæk, and S. R. Hadrup, “Human endogenous retroviruses and their implication for immunotherapeutics of cancer,” Annals of Oncology, vol. 29, no. 11. Oxford University Press, pp. 2183–2191, Nov. 01, 2018, doi: 10.1093/annonc/mdy413.
  • [83] M. Reck et al., “Nivolumab (NIVO) + ipilimumab (IPI) + 2 cycles of platinum-doublet chemotherapy (chemo) vs 4 cycles chemo as first-line (1L) treatment (tx) for stage IV/recurrent non-small cell lung cancer (NSCLC): CheckMate 9LA.,” J. Clin. Oncol., vol. 38, no. 15_suppl, pp. 9501–9501, May 2020, doi: 10.1200/jco.2020.38.15_suppl.9501.
  • [84] K. Weintraub, “Take two: Combining immunotherapy with epigenetic drugs to tackle cancer,” Nature Medicine, vol. 22, no. 1. Nature Publishing Group, pp. 8–10, Jan. 06, 2016, doi: 10.1038/nm0116-8.
There are 83 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Review Articles
Authors

Abdullah Karaman 0000-0001-6423-9772

Elif Karlık 0000-0003-0669-2725

Project Number 1919B011900082
Early Pub Date January 1, 2022
Publication Date April 15, 2022
Published in Issue Year 2022 Volume: 5 Issue: 1

Cite

EndNote Karaman A, Karlık E (April 1, 2022) İnsan Endojen Retrovirüslerin Kanserle Olan İlişkisinin İncelenmesi. International Journal of Life Sciences and Biotechnology 5 1 110–130.



Follow us on social networks  19277 19276 20153  22366