Research Article
BibTex RIS Cite

Removal of Chrysoidine Y from Aqueous Solutions by Agricultural Waste Material

Year 2020, Volume: 4 Issue: 1, 18 - 28, 31.07.2020

Abstract

The aim of this study was to search the adsorption of Chrysoidine Y azo dye onto pistachio shell as an adsorbent. The influence on the sorption of contact time, pH, particle size, initial dye concentration and adsorbent dosage, ionic strength, as well as the efficiency of the regeneration and reuse of adsorbent have been searched. The maximum sorption was found at -0.212 to +0.106 mm, at pH 5, at 2.5 hours contact time, at 1.0-1.25 g/100 mL adsorbent dosage. The adsorption kinetic studies revealed that the pseudo-second-order model provided the best correlation, and the rate-limiting step might be chemical sorption. And the Freundlich isotherm was feasible to identify the adsorption process. Pistachio shell demonstrated a well performance for the removal of Chrysoidine Y from aqueous solution with an adsorption capacity of 79.37 mg/g. It was observed that the adsorbent material could be regenerated with 1.2 M CH3COOH in 43% yield. After regeneration, it was determined that adsorbent can be used for a few more repetitions without losing much efficiency. This work shows that pistachio shell can be used as a favorable and effective adsorbent for the removal of Chrysoidine Y azo dye from aqueous solution.

Project Number

M-661

References

  • [1] Mittal, A., Mittal, J., Malviya, A., and Gupta, V. K., Removal and Recovery of Chrysoidine Y from Aqueous Solutions by Waste Materials, Journal of Colloid and Interface Science, 2010, 344, 2, 497–507.
  • [2] Sponza, D. T., Işik, M., Decolorization and azo dye degradation by anaerobic/aerobic sequential process, Enzyme and Microbial Technology, 2002, 31, 102–110.
  • [3] Sarioglu (Cebeci) M., Aşkal M., Biosorption of Azo Dye (Maxilon Red and Everzol Red) on to Natural and Modified Waste Sludge, Global NEST Journal, 2017, 20, 1, 25–32.
  • [4] Franco, D. S. P., Georgin, J., Drumm, F. C., Netto, M. S., Allasia, D., Oliveira, M. L. S., and Dotto, G. L., Araticum (Annona Crassiflora) Seed Powder (ASP) for the Treatment of Colored Effluents by Biosorption, Environmental Science and Pollution Research, 2020, 27, 10, 11184–11194.
  • [5] de Souza, P. R., do Carmo Ribeiro, T. M., Lôbo, A. P., Tokumoto, M. S., de Jesus, R. M., and Lôbo, I. P., Removal of Bromophenol Blue Anionic Dye from Water Using a Modified Exuviae of Hermetia Illucens Larvae as Biosorbent, Environmental Monitoring and Assessment, 2020, 192, 3, 197.
  • [6] Jahanban-Esfahlan, A., Jahanban-Esfahlan, R., Tabibiazar, M., Roufegarinejad, L., and Amarowicz, R., Recent Advances in the Use of Walnut (Juglans Regia L.) Shell as a Valuable Plant-Based Bio-Sorbent for the Removal of Hazardous Materials, RSC Advances, 2020, 10, 12, 7026–7047.
  • [7] Potgieter, J. H., Pardesi, C., and Pearson, S., A Kinetic and Thermodynamic Investigation into the Removal of Methyl Orange from Wastewater Utilizing Fly Ash in Different Process Configurations, Environmental Geochemistry and Health, 2020, https://doi.org/10.1007/s10653-020-00567-6.
  • [8] Afshin, S., Rashtbari, Y., Vosoughi, M., Rehman, R., Ramavandi, B., Behzad, A., and Mitu, L., Removal of Basic Blue-41 Dye from Water by Stabilized Magnetic Iron Nanoparticles on Clinoptilolite Zeolite, Revista de Chimie, 2020, 71, 2, 218–229.
  • [9] Hamzezadeh, A., Rashtbari, Y., Afshin, S., Morovati, M., and Vosoughi, M., Application of Low-Cost Material for Adsorption of Dye from Aqueous Solution, International Journal of Environmental Analytical Chemistry, 2020, 1–16.
  • [10] Kumar, D., and Ameta, R., Use of Photo-Fenton Reagent for the Degradation of Basic Orange 2 in Aqueous Medium, Journal of Chemical and Pharmaceutical Research, 2013, 5, 1, 68-74.
  • [11] Yang, T., and Lua, A. C., Textural and Chemical Properties of Zinc Chloride Activated Carbons Prepared from Pistachio-Nut Shells, Materials Chemistry and Physics, 2006, 100, 2–3, 438–444.
  • [12] Şentürk, İ., and Alzein, M., H2SO4 ile Aktive Edilen Fıstık Kabuğu Kullanılarak Sürekli Sistem Kolonda Sucul Çözeltiden Asidik Boya Giderimi, Afyon Kocatepe University Journal of Sciences and Engineering (AKU-J. Sci. Eng.), 2019, 19, 697–708.
  • [13] Köklü, R., and Özer, Ç., Maliyetsiz bir adsorban olan sigara külü kullanılarak boyarmadde giderimi, SAÜ Fen Bilimleri Enstitüsü Dergisi, 2018, 22, 2, 174-180.
  • [14] Lagergren, S. Y., Zur Theorie der sogenannten Adsorption gelöster Stoffe. 1898.
  • [15] Ho, Y. S., and Mckay, G., The Kinetics of Sorption of Basic Dyes from Aqueous Solution by Sphagnum Moss Peat, The Canadian Journal of Chemical Engineering, 1998, 76, 4, 822–827.
  • [16] Weber, W. J., and Morris, J. C., Kinetics of Adsorption on Carbon from Solution, Journal of the Sanitary Engineering Division, 1963, 89, 2, 31–60.
  • [17] Rajabi, M., Mahanpoor, K., and Moradi, O., Preparation of PMMA/GO and PMMA/GO-Fe3O4 Nanocomposites for Malachite Green Dye Adsorption: Kinetic and Thermodynamic Studies, Composites Part B: Engineering, 2019, 167, 544–555.
  • [18] Aydın, H., and Baysal, G., Adsorption of Acid Dyes in Aqueous Solutions by Shells of Bittim (Pistacia Khinjuk Stocks), Desalination, 2006, 196, 1–3, 248–259.
  • [19] Nadavala, S. K., Swayampakula, K., Boddu, V. M., and Abburi, K., Biosorption of Phenol and O-Chlorophenol from Aqueous Solutions on to Chitosan–Calcium Alginate Blended Beads, Journal of Hazardous Materials, 2009, 162, 1, 482–489.
  • [20] Aksu, Z., and Yener, J., A Comparative Adsorption/Biosorption Study of Mono-Chlorinated Phenols onto Various Sorbents, Waste Management, 2001, 21, 8, 695–702.
  • [21] Langmuir, I. “The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum, Journal of the American Chemical Society, 1918, 40, 9, 1361–1403.
  • [22] Hamdaoui, O., and Naffrechoux, E., Modeling of Adsorption Isotherms of Phenol and Chlorophenols onto Granular Activated Carbon Part I. Two-Parameter Models and Equations Allowing Determination of Thermodynamic Parameters, Journal of Hazardous Materials, 2007, 147, 1–2, 381–394.
  • [23] Özüdoğru, Y., and Merdi̇van, M., Metilen Mavisinin Modifiye Edilmiş Cystoseira barbata (STACKHOUSE) C. Agardh Kullanılarak Biyosorpsiyonu, Trakya University Journal of Natural Sciences, 2017, 18, 2, 81-87.
  • [24] Jianlong, W., Yi, Q., Horan, N., and Stentiford, E., Bioadsorption of Pentachlorophenol (PCP) from Aqueous Solution by Activated Sludge Biomass, Bioresource Technology, 2000, 75, 2, 157–161.
  • [25] Moussavi, G., and Barikbin, B., Biosorption of Chromium(VI) from Industrial Wastewater onto Pistachio Hull Waste Biomass, Chemical Engineering Journal, 2010, 162, 3, 893–900.
  • [26] Senturk, I., Buyukgungor, H., and Geyikci, F., Biosorption of Phenol from Aqueous Solutions by the Aspergillus Niger Biomass: Comparison of Linear and Non-Linear Regression Analysis, Desalination and Water Treatment, 2016, 57, 41, 19529–19539.
  • [27] Radhika, M., and Palanivelu, K., Adsorptive Removal of Chlorophenols from Aqueous Solution by Low Cost Adsorbent—Kinetics and Isotherm Analysis, Journal of Hazardous Materials, 2006, 138, 1, 116–124.
  • [28] Kaykıoğlu, G., Kolemanit ve Üleksit Atığı ile Sulu Çözeltilerden Metilen Mavisi Giderimi: Kinetik ve İzoterm Değerlendirmesi, CBÜ Fen Bil. Dergi., 2016, 12, 3, 499-509.
  • [29] Nurchi, V. M., Crespo-Alonso, M., Biesuz, R., Alberti, G., Pilo, M. I., Spano, N., and Sanna, G., Sorption of Chrysoidine by Row Cork and Cork Entrapped in Calcium Alginate Beads, Arabian Journal of Chemistry, 2014, 7, 1, 133–138.
  • [30] Nurchi, V. M., Crespo-Alonso, M., Pilo, M. I., Spano, N., Sanna, G., and Toniolo, R., Sorption of Ofloxacin and Chrysoidine by Grape Stalk. A Representative Case of Biomass Removal of Emerging Pollutants from Wastewater, Arabian Journal of Chemistry, 2019, 12, 7, 1141–1147.
  • [31] Hao, Y., Wang, Z., Gou, J., and Dong, S., Highly Efficient Adsorption and Removal of Chrysoidine Y from Aqueous Solution by Magnetic Graphene Oxide Nanocomposite, Arabian Journal of Chemistry, 2019, 12, 8, 3064–3074.
  • [32] Şentürk, İ., and Alzein, M., Adsorptive Removal of Basic Blue 41 Using Pistachio Shell Adsorbent - Performance in Batch and Column System, Sustainable Chemistry and Pharmacy, 2020, 16, 100254.
  • [33] Aksu, Z., Ertuğrul, S., and Dönmez, G., Methylene Blue Biosorption by Rhizopus Arrhizus: Effect of SDS (Sodium Dodecylsulfate) Surfactant on Biosorption Properties, Chemical Engineering Journal, 2010, 158, 3, 474–481.

Tarımsal Atık Materyal Kullanılarak Sucul Çözeltiden Chrysoidine Y Boyasının Giderimi

Year 2020, Volume: 4 Issue: 1, 18 - 28, 31.07.2020

Abstract

Bu çalışmanın amacı, adsorbent olarak Antep fıstığı kabuğu kullanılarak Chrysoidine Y azo boyasının adsorpsiyonunu araştırmaktır. Temas süresi, pH, partikül boyutu, başlangıç boya ve adsorbent dozajı, iyonik yükün sorpsiyona etkisi ve ayrıca adsorbentin rejenerasyon ve yeniden kullanım verimliliği araştırılmıştır. Maksimum sorpsiyon -0,212 +0,106 mm partikül boyutu, pH 5, 2,5 saat denge süresi ve 1,0-1,25 g/100 mL adsorbent dozajında elde edilmiştir. Adsorpsiyon kinetik çalışmaları verilerin yalancı ikinci derece kinetik modelle en iyi korelasyonu sağladığını, bu durumda kimyasal sorpsiyonun hız sınırlayıcı aşama olabileceği belirlenmiştir. Korelasyon katsayılarına göre adsorpsiyon prosesinin Freundlich izotermine daha çok uyduğu görülmektedir. Fıstık kabukları 79,37 mg/g adsorpsiyon kapasitesi ile sucul çözeltiden Chrysoidine Y’nin giderimi için iyi bir performans göstermiştir. Adsorbent materyalin 1,2 molar CH3COOH ile %43 verimle rejenere edilebildiği, rejenerasyondan sonra verimde çok fazla kayıp olmaksızın birkaç tekrar şeklinde adsorbentin yeniden kullanılabileceği belirlenmiştir. Bu çalışma sonuçları sucul çözeltiden Chrysoidine Y azo boyasının gideriminde verimli ve uygun bir adsorbent olarak fıstık kabuklarının kullanılabileceğini göstermiştir.

Supporting Institution

Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

M-661

Thanks

Bu çalışma Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından desteklenen M-661 nolu proje kapsamında yapılmıştır. Bu çalışmanın ortaya çıkmasında verdiği destekten ötürü Bilimsel Araştırma Projeleri Birimine teşekkür ederiz.

References

  • [1] Mittal, A., Mittal, J., Malviya, A., and Gupta, V. K., Removal and Recovery of Chrysoidine Y from Aqueous Solutions by Waste Materials, Journal of Colloid and Interface Science, 2010, 344, 2, 497–507.
  • [2] Sponza, D. T., Işik, M., Decolorization and azo dye degradation by anaerobic/aerobic sequential process, Enzyme and Microbial Technology, 2002, 31, 102–110.
  • [3] Sarioglu (Cebeci) M., Aşkal M., Biosorption of Azo Dye (Maxilon Red and Everzol Red) on to Natural and Modified Waste Sludge, Global NEST Journal, 2017, 20, 1, 25–32.
  • [4] Franco, D. S. P., Georgin, J., Drumm, F. C., Netto, M. S., Allasia, D., Oliveira, M. L. S., and Dotto, G. L., Araticum (Annona Crassiflora) Seed Powder (ASP) for the Treatment of Colored Effluents by Biosorption, Environmental Science and Pollution Research, 2020, 27, 10, 11184–11194.
  • [5] de Souza, P. R., do Carmo Ribeiro, T. M., Lôbo, A. P., Tokumoto, M. S., de Jesus, R. M., and Lôbo, I. P., Removal of Bromophenol Blue Anionic Dye from Water Using a Modified Exuviae of Hermetia Illucens Larvae as Biosorbent, Environmental Monitoring and Assessment, 2020, 192, 3, 197.
  • [6] Jahanban-Esfahlan, A., Jahanban-Esfahlan, R., Tabibiazar, M., Roufegarinejad, L., and Amarowicz, R., Recent Advances in the Use of Walnut (Juglans Regia L.) Shell as a Valuable Plant-Based Bio-Sorbent for the Removal of Hazardous Materials, RSC Advances, 2020, 10, 12, 7026–7047.
  • [7] Potgieter, J. H., Pardesi, C., and Pearson, S., A Kinetic and Thermodynamic Investigation into the Removal of Methyl Orange from Wastewater Utilizing Fly Ash in Different Process Configurations, Environmental Geochemistry and Health, 2020, https://doi.org/10.1007/s10653-020-00567-6.
  • [8] Afshin, S., Rashtbari, Y., Vosoughi, M., Rehman, R., Ramavandi, B., Behzad, A., and Mitu, L., Removal of Basic Blue-41 Dye from Water by Stabilized Magnetic Iron Nanoparticles on Clinoptilolite Zeolite, Revista de Chimie, 2020, 71, 2, 218–229.
  • [9] Hamzezadeh, A., Rashtbari, Y., Afshin, S., Morovati, M., and Vosoughi, M., Application of Low-Cost Material for Adsorption of Dye from Aqueous Solution, International Journal of Environmental Analytical Chemistry, 2020, 1–16.
  • [10] Kumar, D., and Ameta, R., Use of Photo-Fenton Reagent for the Degradation of Basic Orange 2 in Aqueous Medium, Journal of Chemical and Pharmaceutical Research, 2013, 5, 1, 68-74.
  • [11] Yang, T., and Lua, A. C., Textural and Chemical Properties of Zinc Chloride Activated Carbons Prepared from Pistachio-Nut Shells, Materials Chemistry and Physics, 2006, 100, 2–3, 438–444.
  • [12] Şentürk, İ., and Alzein, M., H2SO4 ile Aktive Edilen Fıstık Kabuğu Kullanılarak Sürekli Sistem Kolonda Sucul Çözeltiden Asidik Boya Giderimi, Afyon Kocatepe University Journal of Sciences and Engineering (AKU-J. Sci. Eng.), 2019, 19, 697–708.
  • [13] Köklü, R., and Özer, Ç., Maliyetsiz bir adsorban olan sigara külü kullanılarak boyarmadde giderimi, SAÜ Fen Bilimleri Enstitüsü Dergisi, 2018, 22, 2, 174-180.
  • [14] Lagergren, S. Y., Zur Theorie der sogenannten Adsorption gelöster Stoffe. 1898.
  • [15] Ho, Y. S., and Mckay, G., The Kinetics of Sorption of Basic Dyes from Aqueous Solution by Sphagnum Moss Peat, The Canadian Journal of Chemical Engineering, 1998, 76, 4, 822–827.
  • [16] Weber, W. J., and Morris, J. C., Kinetics of Adsorption on Carbon from Solution, Journal of the Sanitary Engineering Division, 1963, 89, 2, 31–60.
  • [17] Rajabi, M., Mahanpoor, K., and Moradi, O., Preparation of PMMA/GO and PMMA/GO-Fe3O4 Nanocomposites for Malachite Green Dye Adsorption: Kinetic and Thermodynamic Studies, Composites Part B: Engineering, 2019, 167, 544–555.
  • [18] Aydın, H., and Baysal, G., Adsorption of Acid Dyes in Aqueous Solutions by Shells of Bittim (Pistacia Khinjuk Stocks), Desalination, 2006, 196, 1–3, 248–259.
  • [19] Nadavala, S. K., Swayampakula, K., Boddu, V. M., and Abburi, K., Biosorption of Phenol and O-Chlorophenol from Aqueous Solutions on to Chitosan–Calcium Alginate Blended Beads, Journal of Hazardous Materials, 2009, 162, 1, 482–489.
  • [20] Aksu, Z., and Yener, J., A Comparative Adsorption/Biosorption Study of Mono-Chlorinated Phenols onto Various Sorbents, Waste Management, 2001, 21, 8, 695–702.
  • [21] Langmuir, I. “The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum, Journal of the American Chemical Society, 1918, 40, 9, 1361–1403.
  • [22] Hamdaoui, O., and Naffrechoux, E., Modeling of Adsorption Isotherms of Phenol and Chlorophenols onto Granular Activated Carbon Part I. Two-Parameter Models and Equations Allowing Determination of Thermodynamic Parameters, Journal of Hazardous Materials, 2007, 147, 1–2, 381–394.
  • [23] Özüdoğru, Y., and Merdi̇van, M., Metilen Mavisinin Modifiye Edilmiş Cystoseira barbata (STACKHOUSE) C. Agardh Kullanılarak Biyosorpsiyonu, Trakya University Journal of Natural Sciences, 2017, 18, 2, 81-87.
  • [24] Jianlong, W., Yi, Q., Horan, N., and Stentiford, E., Bioadsorption of Pentachlorophenol (PCP) from Aqueous Solution by Activated Sludge Biomass, Bioresource Technology, 2000, 75, 2, 157–161.
  • [25] Moussavi, G., and Barikbin, B., Biosorption of Chromium(VI) from Industrial Wastewater onto Pistachio Hull Waste Biomass, Chemical Engineering Journal, 2010, 162, 3, 893–900.
  • [26] Senturk, I., Buyukgungor, H., and Geyikci, F., Biosorption of Phenol from Aqueous Solutions by the Aspergillus Niger Biomass: Comparison of Linear and Non-Linear Regression Analysis, Desalination and Water Treatment, 2016, 57, 41, 19529–19539.
  • [27] Radhika, M., and Palanivelu, K., Adsorptive Removal of Chlorophenols from Aqueous Solution by Low Cost Adsorbent—Kinetics and Isotherm Analysis, Journal of Hazardous Materials, 2006, 138, 1, 116–124.
  • [28] Kaykıoğlu, G., Kolemanit ve Üleksit Atığı ile Sulu Çözeltilerden Metilen Mavisi Giderimi: Kinetik ve İzoterm Değerlendirmesi, CBÜ Fen Bil. Dergi., 2016, 12, 3, 499-509.
  • [29] Nurchi, V. M., Crespo-Alonso, M., Biesuz, R., Alberti, G., Pilo, M. I., Spano, N., and Sanna, G., Sorption of Chrysoidine by Row Cork and Cork Entrapped in Calcium Alginate Beads, Arabian Journal of Chemistry, 2014, 7, 1, 133–138.
  • [30] Nurchi, V. M., Crespo-Alonso, M., Pilo, M. I., Spano, N., Sanna, G., and Toniolo, R., Sorption of Ofloxacin and Chrysoidine by Grape Stalk. A Representative Case of Biomass Removal of Emerging Pollutants from Wastewater, Arabian Journal of Chemistry, 2019, 12, 7, 1141–1147.
  • [31] Hao, Y., Wang, Z., Gou, J., and Dong, S., Highly Efficient Adsorption and Removal of Chrysoidine Y from Aqueous Solution by Magnetic Graphene Oxide Nanocomposite, Arabian Journal of Chemistry, 2019, 12, 8, 3064–3074.
  • [32] Şentürk, İ., and Alzein, M., Adsorptive Removal of Basic Blue 41 Using Pistachio Shell Adsorbent - Performance in Batch and Column System, Sustainable Chemistry and Pharmacy, 2020, 16, 100254.
  • [33] Aksu, Z., Ertuğrul, S., and Dönmez, G., Methylene Blue Biosorption by Rhizopus Arrhizus: Effect of SDS (Sodium Dodecylsulfate) Surfactant on Biosorption Properties, Chemical Engineering Journal, 2010, 158, 3, 474–481.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Meltem Sarıoğlu Cebeci

İlknur Şentürk 0000-0002-8217-2281

Project Number M-661
Publication Date July 31, 2020
Submission Date July 2, 2020
Published in Issue Year 2020 Volume: 4 Issue: 1

Cite

IEEE M. S. Cebeci and İ. Şentürk, “Tarımsal Atık Materyal Kullanılarak Sucul Çözeltiden Chrysoidine Y Boyasının Giderimi”, IJMSIT, vol. 4, no. 1, pp. 18–28, 2020.