Research Article
BibTex RIS Cite

Evaluation of the Cytotoxic Efficacy of Thymoquinone and Capsaicin in the SH-SY5Y Neuroblastoma Cell Line

Year 2022, Volume: 6 Issue: 2, 118 - 128, 01.12.2022
https://doi.org/10.47947/ijnls.1103372

Abstract

In our study, it was aimed to examine the effects of thymoquinone, the active ingredient of Nigella sativa, which has known anticancer activities, and capsaicin, which is an important part of the endocannabinoid system, on the neuroblastoma cell line SH-SY5Y cells. SH-SY5Y cells were grown in culture in conventional culture flasks in DMEM medium at 37 °C and 5% CO2. When the cells were 70-80% confluent, morphological changes were examined under an inverted microscope. The cells were passaged into 96 microplates, and after passage, different concentrations of thymoquinone (2.5; 5; 10; 25; 50; 100; 200; 300 µM/ml) and capsaicin (0.675; 1.25; 2.5; 5; 10; 20; 50; 100 µM/ml) were applied to the cells. After administration, cytotoxic effect and proliferation rates/cell proliferation were analyzed by the MTT method. When compared to the control group, cultured cells treated with 200 and 300 μM thymoquinone and 5 and 100 μM capsaicin had reduced cell proliferation at statistically significant levels (p<0.05). Demonstration of antiproliferative activity of thymoquinone and capsaicin on neuroblastoma shows that phytotherapeutic approaches can be evaluated in cancer.

Supporting Institution

Bolu Abant Izzet Baysal University

References

  • Adinew, G. M., Taka, E., Mochona, B., Badisa, R. B., Mazzio, E. A., Elhag, R., & Soliman, K. F. A. (2021). Therapeutic potential of thymoquinone in triple-negative breast cancer prevention and progression through the modulation of the tumor microenvironment. Nutrients, 14, 79. https://doi.org/10.3390/nu14010079
  • Akter, Z., Ahmed, F. R., Tania, M., & Khan, M. A. (2021). Targeting inflammatory mediators: an anticancer mechanism of thymoquinone action. Current Medicinal Chemistry, 28, 80-92. https://doi.org/10.2174/0929867326666191011143642
  • Alshyarba, M., Otifi, H., Al Fayi, M., A Dera, A., & Rajagopalan, P. (2021). Thymoquinone inhibits IL-7-induced tumor progression and metastatic invasion in prostate cancer cells by attenuating matrix metalloproteinase activity and Akt/NF-κB signaling. Biotechnology and Applied Biochemistry, 68, 1403-1411. https://doi.org/10.1002/bab.2062
  • Ames, B. N., Shigenaga, M. K., & Gold, L. S. (1993). DNA lesions, inducible DNA repair, and cell division: three key factors in mutagenesis and carcinogenesis. Environmental Health Perspectives, 101, 35-44. https://doi.org/10.1289/ehp.93101s535
  • Amin, B., & Hosseinzadeh, H. (2016). Black cumin (Nigella sativa) and its active constituent, thymoquinone: an overview on the analgesic and anti-inflammatory effects. Planta Medica, 82, 8-16. https://doi.org/10.1055/s-0035-1557838
  • Aslan, M., Afşar, E., Kırımlıoglu, E., Çeker, T., & Yılmaz, Ç. (2021). Antiproliferative effects of thymoquinone in MCF-7 breast and HepG2 liver cancer cells: possible role of ceramide and ER stress. Nutrition and Cancer, 73, 460-472. https://doi.org/10.1080/01635581.2020.1751216
  • Baek, Y. M., Hwang, H. J, Kim, S. W., Hwang, H. S., Lee, S. H., Kim, J. A., & Yun, J. W. (2008) A comparative proteomic analysis for capsaicin-induced apoptosis between human hepatocarcinoma (HepG2) and human neuroblastoma (SK-N-SH) cells. Proteomics, 8, 4748-67. https://doi.org/10.1002/pmic.200800094
  • Beyazcicek, E., Ankarali, S., Beyazcicek, O., Ankarali, H., Demir, S., & Ozmerdivenli, R. (2016). Effects of thymoquinone, the major constituent of Nigella sativa seeds, on penicillin-induced epileptiform activity in rats. Neurosciences (Riyadh), 21, 131-137. https://doi.org/10.17712/nsj.2016.2.20150781
  • Bujak, J. K., Kosmala, D., Szopa, I. M., Majchrzak, K. & Bednarczyk, P. (2019). Inflammation, Cancer and Immunity-Implication of TRPV1 Channel. Frontiers in Oncology, 9, 1087. https://doi.org/10.3389/fonc.2019.01087
  • Chang, C. F., Islam, A., Liu, P. F., Zhan, J. H., & Chueh, P. J. (2020). Capsaicin acts through tNOX (ENOX2) to induce autophagic apoptosis in p53-mutated HSC-3 cells but autophagy in p53-functional SAS oral cancer cells. American Journal of Cancer Research, 10, 3230-3247. https://doi.org/10.1016/j.jff.2022.104934
  • Chaudhary, A., Gour, J. K. & Rizvi, S. I. (2019). Capsaicin has potent anti-oxidative effects in vivo through a mechanism which is nonreceptor mediated. Archives of Physiology and Biochemistry, 128, 141-147. https://doi.org/10.1080/13813455.2019.1669056
  • Chen, M., Xiao, C., Jiang, W., Yang, W., Qin, Q., Tan, Q., Lian, B., Liang, Z., & Wei, C. (2021). Capsaicin inhibits proliferation and induces apoptosis in breast cancer by down-regulating FBI-1-Mediated NF-κB pathway. Drug Design, Development and Therapy, 15, 125-140. https://doi.org/10.2147/DDDT.S269901
  • Chung, C., Boterberg, T., Lucas, J., Panoff, J., Valteau-Couanet, D., Hero, B., Bagatell, R., & Hill-Kayser, C. E. (2021). Neuroblastoma. Pediatric Blood & Cancer, 2, 28473. https://doi.org/10.1002/pbc.28473
  • Cordell, G. A., & Araujo, O. E. (1993). Capsaicin: identification, nomenclature, and pharmacotherapy. The Annals of Pharmacotherapy, 27, 330-336. https://doi.org/10.1177/106002809302700316
  • Dupoiron, D., Jubier-Hamon, S., Seegers, V., Bienfait, F., Pluchon, Y. M., Lebrec, N., Jaoul, V., & Delorme, T. (2022). Peripheral neuropathic pain following breast cancer: Effectiveness and tolerability of high-concentration capsaicin patch. Journal of Pain Research, 15, 241-255. https://doi.org/10.2147/JPR.S341378
  • Efferth, T., Zacchino, S., Georgiev, M. I., Liu, L., Wagner, H., & Panossian, A. (2015). Nobel Prize for artemisinin brings phytotherapy into the spotlight. Phytomedicine, 22, 1-3. https://doi.org/10.1016/j.phymed.2015.10.003
  • Elibol, B., Beker, M., Terzioglu-Usak, S., Dalli, T., & Kilic, U. (2020). Thymoquinone administration ameliorates Alzheimer's disease-like phenotype by promoting cell survival in the hippocampus of amyloid beta1-42 infused rat model. Phytomedicine, 79, 153324. https://doi.org/10.1016/j.phymed.2020.153324
  • Encinas, M., Iglesias, M., Liu, Y., Wang, H., Muhaisen, A., Cena, V., Gallego, C., & Comella, J. X. (2000). Sequential treatment of SH‐ SY5Y cells with retinoic acid and brain‐derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor‐dependent, human neuron‐like cells. Journal of Neurochemistry, 75, 991-1003. https://doi.org/10.1046/j.1471-4159.2000.0750991.x
  • Falzon, C. C., & Balabanova, A. (2017). Phytotherapy: An introduction to herbal medicine. Primary Care, 44, 217-227. https://doi.org/10.1016/j.pop.2017.02.001
  • Firdaus, F., Zafeer, M. F., Anis, E., Ahmad, F., Hossain, M., Ali, A., & Afzal, M. (2018). Evaluation of phyto-medicinal efficacy of thymo- quinone against Arsenic induced mitochondrial dysfunction and cytotoxicity in SH-SY5Y cells. Phytomedicine, 15, 224-230, https://doi.org/10.1016/j.phymed.2018.09.197
  • Hail, N., & Lotan, R. (2002). Examining the role of mitochondrial respiration in vanilloid- induced apoptosis. Journal of the National Cancer Institute, 94, 1281-1292. https://doi.org/10.1093/jnci/94.17.1281
  • Hansen, J. T., Benghuzzi, H., Tucci, M., & Cason, Z. (2003). The role of black seed in the proliferation and biochemical marker levels of Hep-2 cells. Biomedical Sciences Instrumentation, 39, 371-376.
  • Hou, N., He, X., Yang, Y., Fu, J., Zhang, W., Guo, Z., Hu, Y., Liang, L., Xie, W., Xiong, H., Wang, K., & Pang, M. (2019). TRPV1 induced apoptosis of colorectal cancer cells by activating Calcineurin-NFAT2-p53 signaling pathway. Biomed Research International, 30, 6712536. https://doi.org/10.1155/2019/6712536
  • Ilie, M. A., Caruntu C., Tampa M., Georgescu S. R., Matei C., Negrei C., Ion R. M., Constantin C., Neagu M., & Boda D. (2019). Capsaicin: physicochemical properties, cutaneous reactions and potential applications in painful and inflammatory conditions. Experimental and Therapeutic Medicine, 18, 916-925 https://doi.org/10.3892/etm.2019.7513
  • Imran, M., Rauf, A., Khan, I. A., Shahbaz, M., Qaisrani, T. B., Fatmawati, S., Abu-Izneid, T., Imran, A., Rahman, K. U., & Gondal, T. A. (2018). Thymoquinone: A novel strategy to combat cancer: A review. Biomedicine & Pharmacotheraphy, 106, 390-402. https://doi.org/10.1016/j.biopha.2018.06.159
  • Karim, S., Burzangi, A. S., Ahmad, A., Siddiqui, N. A., Ibrahim, I. M., Sharma, P., Abualsunun, W. A., & Gabr, G. A. (2022). PI3K-AKT pathway modulation by thymoquinone limits tumor growth and glycolytic metabolism in colorectal cancer. International Journal of Molecular Sciences, 23, 2305. https://doi.org/10.3390/ijms23042305
  • Kolli-Bouhafs, K., Boukhari, A., Abusnina, A., Velot, E., Gies, J. P., Lugnier, C., & Rond, P. (2012). Thymoquinone reduces migration and invasion of human glioblastoma cells associated with FAK, MMP-2 and MMP-9 down-regulation. Investigational New Drugs, 30, 2121-2131. https://doi.org/10.1007/s10637-011-9777-3
  • Kuete, V., & Efferth, T. (2011). Pharmacogenomics of Cameroonian traditional herbal medicine for cancer therapy. Journal of Ethnopharmacology, 137, 752-766. https://doi.org/10.1016/j.jep.2011.06.035
  • Lei, X., Lv, X., Liu, M., Yang, Z., Ji, M., Guo, X., Dong, W. (2012). Thymoquinone inhibits growth and augments 5-fluorouracil-induced apoptosis in gastric cancer cells both in vitro and in vivo. Biochemical and Biophysical Research Communication, 417, 864-868. https://doi.org/10.1016/j.bbrc.2011.12.063
  • Marengo, B., Monti, P., Miele, M., Menichini, P., Ottaggio, L., Foggetti, G., Pulliero, A., Izzotti A., Speciale, A., Garbarino, O., Traverso, N., Fronza, G., & Domenicotti, C. (2018). Etoposide-resistance in a neuroblastoma model cell line is associated with 13q14. 3 mono-allelic deletion and miRNA-15a/16-1 down-regulation. Scientific Reports, 8, 1-15. https://doi.org/10.1038/s41598-018-32195-7
  • Maris, J. M. (2010). Recent advances in neuroblastoma. The New England Journal of Medicine, 362, 2202-2211 https://doi.org/10.1056/NEJMra0804577
  • Molina-Jimenez, M. F., Sanchez-Reus, M. I., & Benedi, J. (2003). Effect of fraxetin and myricetin on rotenone-induced cytotoxicity in SH-SY5Y cells: comparison with N-acetylcysteine. European Journal of Pharmacology, 472, 81-87. https://doi.org/10.1016/s0014-2999(03)01902-2
  • Nisari, M., & Eröz, R. (2020). Does capsaicin have therapeutic benefits in human colon adenocarcinoma? Selection of the most reliable dose via AgNOR. Turkish Journal of Medical Sciences, 50, 1076-1081. https://doi.org/10.3906/sag-2003-251
  • Park, J. R., Kreissman, S. G., London, W. B., Naranjo, A., Cohn, S. L., Hogarty, M. D. et al. (2016). A phase III randomized clinical trial (RCT) of tandem myeloablative autologous stem cell transplant (ASCT) using peripheral blood stem cell (PBSC) as consolidation therapy for high risk neuroblastoma (HR-NB): a Children’s Oncology Group (COG) study. Journal of Clinical Oncology, 34, LBA3-LBA. https://doi.org/10.1200/JCO.2016.34.18_suppl.LBA3
  • Park, J. A., & Cheung, N. V. (2020). Targets and antibody formats for immunotherapy of neuroblastoma. Journal of Clinical Oncology, 38, 1836-1848. https://doi.org/10.1200/JCO.19.01410
  • Rajput, S., & Mandal, M. (2012). Antitumor promoting potential of selected phytochemicals derived from spices. European Journal of Cancer Prevention, 21, 205-215. https://doi.org/10.1097/CEJ.0b013e32834a7f0c
  • Safhi, M. M., Qumayri, H. M., Masmali, A. U. M., Siddiqui, R., Alam, M. F., Khan, G., & Anwer, T. (2019). Thymoquinone and fluoxetine alleviate depression via attenuating oxidative damage and inflammatory markers in type-2 diabetic rats. Archives of Physiology and Biochemistry, 125, 150-155. https://doi.org/10.1080/13813455.2018.1443141
  • Samarghandian, S., Farkhondeh, T., & Samini, F. (2018). A review on possible therapeutic effect of Nigella sativa and thymoquinone in neurodegenerative diseases. CNS & Neurological Disorders-Drug Targets, 17, 412-420. https://doi.org/10.2174/1871527317666180702101455
  • Sánchez, B. G., Bort, A., Mora-Rodríguez, J. M., & Díaz-Laviada, I. (2022). The natural chemotherapeutic capsaicin activates AMPK through LKB1 Kinase and TRPV1 receptors in prostate cancer cells. Pharmaceutics, 14, 329. https://doi.org/10.3390/pharmaceutics14020329
  • Shipley, M.M., Mangold, C.A., & Szpara, M.L. (2016). Differentiation of the SH-SY5Y human neuroblastoma cell line. Journal of Visualized Experiments, 108, 53193 https://doi.org/10.3791/53193
  • Siddique, Y. H., Naz, F., & Jyoti, S. (2018). Effect of capsaicin on the oxidative stress and dopamine content in the transgenic Drosophila model of Parkinson's disease. Acta Biologica Hungarica, 69, 115-124. https://doi.org/10.1556/018.69.2018.2.1
  • Talib W. H. (2017). Regressions of breast carcinoma syngraft following treatment with piperine in combination with thymoquinone. Journal of Environmental Sciences, 3, 85. https://doi.org/10.3390/scipharm85030027
  • Thummuri, D., Jeengar, M. K., Shrivastava, S., Nemani, H., Ramavat, R. N., Chaudhari, P., & Naidu, V. G. (2015). Thymoquinone prevents RANKL-induced osteoclastogenesis activation and osteolysis in an in vivo model of inflammation by suppressing NF-KB and MAPK signalling. Pharmacological Research, 99, 63-73. https://doi.org/10.1016/j.phrs.2015.05.006
  • Tolbert, V. P., & Matthay, K. K. (2018). Neuroblastoma: clinical and biological approach to risk stratification and treatment. Cell and Tissue Research, 372, 195-209. https://doi.org/10.1007/s00441-018-2821-2
  • Uddin, M. N., Hoq, M. I., Jahan, I., Siddiqui, S. A., Clinton, C. D., Ibrahim, M., Islam, M. S., & Jakaria, M. (2021). The mechanistic role of thymoquinone in parkinson's disease: Focus on neuroprotection in pre-clinical studies. Current Molecular Pharmacology, 14, 1083-1092. https://doi.org/10.2174/1874467214666210105140944
  • Wang, J., Sun, B. L., Xiang, Y., Tian, D. Y., Zhu, C., Li, W. W., Liu, Y. H., Bu, X. L., Shen, L. L., Jin, W. S., Wang, Z., Zeng, G. H., Xu, W., Chen, L. Y., Chen, X. W., Hu, Z., Zhu, Z. M., Song, W., Zhou, H. D., Yu, J. T., & Wang, Y. J. (2020). Capsaicin consumption reduces brain amyloid-beta generation and attenuates Alzheimer's disease-type pathology and cognitive deficits in APP/PS1 mice. Translational Psychiatry, 10, 230. https://doi.org/10.1038/s41398-020-00918-y
  • Ward, E., De Santis, C., Robbins, A., Kohler, B., & Jemal, A. (2014). Childhood and adolescent cancer statistics. CA: Cancer Journal for Clinicians, 64, 83-103. https://doi.org/10.3322/caac.21219
  • Xie, L., Xiang, G. H., Tang, T., Tang, Y., Zhao, L. Y., Liu, D., Zhang, Y. R., Tang, J. T., Zhou, S. & Wu, D. H. (2016). Capsaicin and dihydrocapsaicin induce apoptosis in human glioma cells via ROS and Ca2+ mediated mitochondrial pathway. Molecular Medicine Reports, 14, 4198-4208. https://doi.org/10.3892/mmr.2016.5784
  • Zhang, S., Wang, D., Huang, J., Hu, Y. & Xu, Y. (2019). Application of capsaicin as a potential new therapeutic drug in human cancers. Journal of clinical pharmacy and therapeutics. Journal of Clinical Pharmacy and Therapeutics, 45, 16-28. https://doi.org/10.3892/mmr.2016.5784
  • Zhu, M., Yu, X., Zheng, Z., Huang, J., Yang, X., Shi, H. (2020). Capsaicin suppressed activity of prostate cancer stem cells by inhibition of Wnt/β-catenin pathway. Phytotherapy Research, 34, 817-824. https://doi.org/10.1002/ptr.6563
Year 2022, Volume: 6 Issue: 2, 118 - 128, 01.12.2022
https://doi.org/10.47947/ijnls.1103372

Abstract

References

  • Adinew, G. M., Taka, E., Mochona, B., Badisa, R. B., Mazzio, E. A., Elhag, R., & Soliman, K. F. A. (2021). Therapeutic potential of thymoquinone in triple-negative breast cancer prevention and progression through the modulation of the tumor microenvironment. Nutrients, 14, 79. https://doi.org/10.3390/nu14010079
  • Akter, Z., Ahmed, F. R., Tania, M., & Khan, M. A. (2021). Targeting inflammatory mediators: an anticancer mechanism of thymoquinone action. Current Medicinal Chemistry, 28, 80-92. https://doi.org/10.2174/0929867326666191011143642
  • Alshyarba, M., Otifi, H., Al Fayi, M., A Dera, A., & Rajagopalan, P. (2021). Thymoquinone inhibits IL-7-induced tumor progression and metastatic invasion in prostate cancer cells by attenuating matrix metalloproteinase activity and Akt/NF-κB signaling. Biotechnology and Applied Biochemistry, 68, 1403-1411. https://doi.org/10.1002/bab.2062
  • Ames, B. N., Shigenaga, M. K., & Gold, L. S. (1993). DNA lesions, inducible DNA repair, and cell division: three key factors in mutagenesis and carcinogenesis. Environmental Health Perspectives, 101, 35-44. https://doi.org/10.1289/ehp.93101s535
  • Amin, B., & Hosseinzadeh, H. (2016). Black cumin (Nigella sativa) and its active constituent, thymoquinone: an overview on the analgesic and anti-inflammatory effects. Planta Medica, 82, 8-16. https://doi.org/10.1055/s-0035-1557838
  • Aslan, M., Afşar, E., Kırımlıoglu, E., Çeker, T., & Yılmaz, Ç. (2021). Antiproliferative effects of thymoquinone in MCF-7 breast and HepG2 liver cancer cells: possible role of ceramide and ER stress. Nutrition and Cancer, 73, 460-472. https://doi.org/10.1080/01635581.2020.1751216
  • Baek, Y. M., Hwang, H. J, Kim, S. W., Hwang, H. S., Lee, S. H., Kim, J. A., & Yun, J. W. (2008) A comparative proteomic analysis for capsaicin-induced apoptosis between human hepatocarcinoma (HepG2) and human neuroblastoma (SK-N-SH) cells. Proteomics, 8, 4748-67. https://doi.org/10.1002/pmic.200800094
  • Beyazcicek, E., Ankarali, S., Beyazcicek, O., Ankarali, H., Demir, S., & Ozmerdivenli, R. (2016). Effects of thymoquinone, the major constituent of Nigella sativa seeds, on penicillin-induced epileptiform activity in rats. Neurosciences (Riyadh), 21, 131-137. https://doi.org/10.17712/nsj.2016.2.20150781
  • Bujak, J. K., Kosmala, D., Szopa, I. M., Majchrzak, K. & Bednarczyk, P. (2019). Inflammation, Cancer and Immunity-Implication of TRPV1 Channel. Frontiers in Oncology, 9, 1087. https://doi.org/10.3389/fonc.2019.01087
  • Chang, C. F., Islam, A., Liu, P. F., Zhan, J. H., & Chueh, P. J. (2020). Capsaicin acts through tNOX (ENOX2) to induce autophagic apoptosis in p53-mutated HSC-3 cells but autophagy in p53-functional SAS oral cancer cells. American Journal of Cancer Research, 10, 3230-3247. https://doi.org/10.1016/j.jff.2022.104934
  • Chaudhary, A., Gour, J. K. & Rizvi, S. I. (2019). Capsaicin has potent anti-oxidative effects in vivo through a mechanism which is nonreceptor mediated. Archives of Physiology and Biochemistry, 128, 141-147. https://doi.org/10.1080/13813455.2019.1669056
  • Chen, M., Xiao, C., Jiang, W., Yang, W., Qin, Q., Tan, Q., Lian, B., Liang, Z., & Wei, C. (2021). Capsaicin inhibits proliferation and induces apoptosis in breast cancer by down-regulating FBI-1-Mediated NF-κB pathway. Drug Design, Development and Therapy, 15, 125-140. https://doi.org/10.2147/DDDT.S269901
  • Chung, C., Boterberg, T., Lucas, J., Panoff, J., Valteau-Couanet, D., Hero, B., Bagatell, R., & Hill-Kayser, C. E. (2021). Neuroblastoma. Pediatric Blood & Cancer, 2, 28473. https://doi.org/10.1002/pbc.28473
  • Cordell, G. A., & Araujo, O. E. (1993). Capsaicin: identification, nomenclature, and pharmacotherapy. The Annals of Pharmacotherapy, 27, 330-336. https://doi.org/10.1177/106002809302700316
  • Dupoiron, D., Jubier-Hamon, S., Seegers, V., Bienfait, F., Pluchon, Y. M., Lebrec, N., Jaoul, V., & Delorme, T. (2022). Peripheral neuropathic pain following breast cancer: Effectiveness and tolerability of high-concentration capsaicin patch. Journal of Pain Research, 15, 241-255. https://doi.org/10.2147/JPR.S341378
  • Efferth, T., Zacchino, S., Georgiev, M. I., Liu, L., Wagner, H., & Panossian, A. (2015). Nobel Prize for artemisinin brings phytotherapy into the spotlight. Phytomedicine, 22, 1-3. https://doi.org/10.1016/j.phymed.2015.10.003
  • Elibol, B., Beker, M., Terzioglu-Usak, S., Dalli, T., & Kilic, U. (2020). Thymoquinone administration ameliorates Alzheimer's disease-like phenotype by promoting cell survival in the hippocampus of amyloid beta1-42 infused rat model. Phytomedicine, 79, 153324. https://doi.org/10.1016/j.phymed.2020.153324
  • Encinas, M., Iglesias, M., Liu, Y., Wang, H., Muhaisen, A., Cena, V., Gallego, C., & Comella, J. X. (2000). Sequential treatment of SH‐ SY5Y cells with retinoic acid and brain‐derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor‐dependent, human neuron‐like cells. Journal of Neurochemistry, 75, 991-1003. https://doi.org/10.1046/j.1471-4159.2000.0750991.x
  • Falzon, C. C., & Balabanova, A. (2017). Phytotherapy: An introduction to herbal medicine. Primary Care, 44, 217-227. https://doi.org/10.1016/j.pop.2017.02.001
  • Firdaus, F., Zafeer, M. F., Anis, E., Ahmad, F., Hossain, M., Ali, A., & Afzal, M. (2018). Evaluation of phyto-medicinal efficacy of thymo- quinone against Arsenic induced mitochondrial dysfunction and cytotoxicity in SH-SY5Y cells. Phytomedicine, 15, 224-230, https://doi.org/10.1016/j.phymed.2018.09.197
  • Hail, N., & Lotan, R. (2002). Examining the role of mitochondrial respiration in vanilloid- induced apoptosis. Journal of the National Cancer Institute, 94, 1281-1292. https://doi.org/10.1093/jnci/94.17.1281
  • Hansen, J. T., Benghuzzi, H., Tucci, M., & Cason, Z. (2003). The role of black seed in the proliferation and biochemical marker levels of Hep-2 cells. Biomedical Sciences Instrumentation, 39, 371-376.
  • Hou, N., He, X., Yang, Y., Fu, J., Zhang, W., Guo, Z., Hu, Y., Liang, L., Xie, W., Xiong, H., Wang, K., & Pang, M. (2019). TRPV1 induced apoptosis of colorectal cancer cells by activating Calcineurin-NFAT2-p53 signaling pathway. Biomed Research International, 30, 6712536. https://doi.org/10.1155/2019/6712536
  • Ilie, M. A., Caruntu C., Tampa M., Georgescu S. R., Matei C., Negrei C., Ion R. M., Constantin C., Neagu M., & Boda D. (2019). Capsaicin: physicochemical properties, cutaneous reactions and potential applications in painful and inflammatory conditions. Experimental and Therapeutic Medicine, 18, 916-925 https://doi.org/10.3892/etm.2019.7513
  • Imran, M., Rauf, A., Khan, I. A., Shahbaz, M., Qaisrani, T. B., Fatmawati, S., Abu-Izneid, T., Imran, A., Rahman, K. U., & Gondal, T. A. (2018). Thymoquinone: A novel strategy to combat cancer: A review. Biomedicine & Pharmacotheraphy, 106, 390-402. https://doi.org/10.1016/j.biopha.2018.06.159
  • Karim, S., Burzangi, A. S., Ahmad, A., Siddiqui, N. A., Ibrahim, I. M., Sharma, P., Abualsunun, W. A., & Gabr, G. A. (2022). PI3K-AKT pathway modulation by thymoquinone limits tumor growth and glycolytic metabolism in colorectal cancer. International Journal of Molecular Sciences, 23, 2305. https://doi.org/10.3390/ijms23042305
  • Kolli-Bouhafs, K., Boukhari, A., Abusnina, A., Velot, E., Gies, J. P., Lugnier, C., & Rond, P. (2012). Thymoquinone reduces migration and invasion of human glioblastoma cells associated with FAK, MMP-2 and MMP-9 down-regulation. Investigational New Drugs, 30, 2121-2131. https://doi.org/10.1007/s10637-011-9777-3
  • Kuete, V., & Efferth, T. (2011). Pharmacogenomics of Cameroonian traditional herbal medicine for cancer therapy. Journal of Ethnopharmacology, 137, 752-766. https://doi.org/10.1016/j.jep.2011.06.035
  • Lei, X., Lv, X., Liu, M., Yang, Z., Ji, M., Guo, X., Dong, W. (2012). Thymoquinone inhibits growth and augments 5-fluorouracil-induced apoptosis in gastric cancer cells both in vitro and in vivo. Biochemical and Biophysical Research Communication, 417, 864-868. https://doi.org/10.1016/j.bbrc.2011.12.063
  • Marengo, B., Monti, P., Miele, M., Menichini, P., Ottaggio, L., Foggetti, G., Pulliero, A., Izzotti A., Speciale, A., Garbarino, O., Traverso, N., Fronza, G., & Domenicotti, C. (2018). Etoposide-resistance in a neuroblastoma model cell line is associated with 13q14. 3 mono-allelic deletion and miRNA-15a/16-1 down-regulation. Scientific Reports, 8, 1-15. https://doi.org/10.1038/s41598-018-32195-7
  • Maris, J. M. (2010). Recent advances in neuroblastoma. The New England Journal of Medicine, 362, 2202-2211 https://doi.org/10.1056/NEJMra0804577
  • Molina-Jimenez, M. F., Sanchez-Reus, M. I., & Benedi, J. (2003). Effect of fraxetin and myricetin on rotenone-induced cytotoxicity in SH-SY5Y cells: comparison with N-acetylcysteine. European Journal of Pharmacology, 472, 81-87. https://doi.org/10.1016/s0014-2999(03)01902-2
  • Nisari, M., & Eröz, R. (2020). Does capsaicin have therapeutic benefits in human colon adenocarcinoma? Selection of the most reliable dose via AgNOR. Turkish Journal of Medical Sciences, 50, 1076-1081. https://doi.org/10.3906/sag-2003-251
  • Park, J. R., Kreissman, S. G., London, W. B., Naranjo, A., Cohn, S. L., Hogarty, M. D. et al. (2016). A phase III randomized clinical trial (RCT) of tandem myeloablative autologous stem cell transplant (ASCT) using peripheral blood stem cell (PBSC) as consolidation therapy for high risk neuroblastoma (HR-NB): a Children’s Oncology Group (COG) study. Journal of Clinical Oncology, 34, LBA3-LBA. https://doi.org/10.1200/JCO.2016.34.18_suppl.LBA3
  • Park, J. A., & Cheung, N. V. (2020). Targets and antibody formats for immunotherapy of neuroblastoma. Journal of Clinical Oncology, 38, 1836-1848. https://doi.org/10.1200/JCO.19.01410
  • Rajput, S., & Mandal, M. (2012). Antitumor promoting potential of selected phytochemicals derived from spices. European Journal of Cancer Prevention, 21, 205-215. https://doi.org/10.1097/CEJ.0b013e32834a7f0c
  • Safhi, M. M., Qumayri, H. M., Masmali, A. U. M., Siddiqui, R., Alam, M. F., Khan, G., & Anwer, T. (2019). Thymoquinone and fluoxetine alleviate depression via attenuating oxidative damage and inflammatory markers in type-2 diabetic rats. Archives of Physiology and Biochemistry, 125, 150-155. https://doi.org/10.1080/13813455.2018.1443141
  • Samarghandian, S., Farkhondeh, T., & Samini, F. (2018). A review on possible therapeutic effect of Nigella sativa and thymoquinone in neurodegenerative diseases. CNS & Neurological Disorders-Drug Targets, 17, 412-420. https://doi.org/10.2174/1871527317666180702101455
  • Sánchez, B. G., Bort, A., Mora-Rodríguez, J. M., & Díaz-Laviada, I. (2022). The natural chemotherapeutic capsaicin activates AMPK through LKB1 Kinase and TRPV1 receptors in prostate cancer cells. Pharmaceutics, 14, 329. https://doi.org/10.3390/pharmaceutics14020329
  • Shipley, M.M., Mangold, C.A., & Szpara, M.L. (2016). Differentiation of the SH-SY5Y human neuroblastoma cell line. Journal of Visualized Experiments, 108, 53193 https://doi.org/10.3791/53193
  • Siddique, Y. H., Naz, F., & Jyoti, S. (2018). Effect of capsaicin on the oxidative stress and dopamine content in the transgenic Drosophila model of Parkinson's disease. Acta Biologica Hungarica, 69, 115-124. https://doi.org/10.1556/018.69.2018.2.1
  • Talib W. H. (2017). Regressions of breast carcinoma syngraft following treatment with piperine in combination with thymoquinone. Journal of Environmental Sciences, 3, 85. https://doi.org/10.3390/scipharm85030027
  • Thummuri, D., Jeengar, M. K., Shrivastava, S., Nemani, H., Ramavat, R. N., Chaudhari, P., & Naidu, V. G. (2015). Thymoquinone prevents RANKL-induced osteoclastogenesis activation and osteolysis in an in vivo model of inflammation by suppressing NF-KB and MAPK signalling. Pharmacological Research, 99, 63-73. https://doi.org/10.1016/j.phrs.2015.05.006
  • Tolbert, V. P., & Matthay, K. K. (2018). Neuroblastoma: clinical and biological approach to risk stratification and treatment. Cell and Tissue Research, 372, 195-209. https://doi.org/10.1007/s00441-018-2821-2
  • Uddin, M. N., Hoq, M. I., Jahan, I., Siddiqui, S. A., Clinton, C. D., Ibrahim, M., Islam, M. S., & Jakaria, M. (2021). The mechanistic role of thymoquinone in parkinson's disease: Focus on neuroprotection in pre-clinical studies. Current Molecular Pharmacology, 14, 1083-1092. https://doi.org/10.2174/1874467214666210105140944
  • Wang, J., Sun, B. L., Xiang, Y., Tian, D. Y., Zhu, C., Li, W. W., Liu, Y. H., Bu, X. L., Shen, L. L., Jin, W. S., Wang, Z., Zeng, G. H., Xu, W., Chen, L. Y., Chen, X. W., Hu, Z., Zhu, Z. M., Song, W., Zhou, H. D., Yu, J. T., & Wang, Y. J. (2020). Capsaicin consumption reduces brain amyloid-beta generation and attenuates Alzheimer's disease-type pathology and cognitive deficits in APP/PS1 mice. Translational Psychiatry, 10, 230. https://doi.org/10.1038/s41398-020-00918-y
  • Ward, E., De Santis, C., Robbins, A., Kohler, B., & Jemal, A. (2014). Childhood and adolescent cancer statistics. CA: Cancer Journal for Clinicians, 64, 83-103. https://doi.org/10.3322/caac.21219
  • Xie, L., Xiang, G. H., Tang, T., Tang, Y., Zhao, L. Y., Liu, D., Zhang, Y. R., Tang, J. T., Zhou, S. & Wu, D. H. (2016). Capsaicin and dihydrocapsaicin induce apoptosis in human glioma cells via ROS and Ca2+ mediated mitochondrial pathway. Molecular Medicine Reports, 14, 4198-4208. https://doi.org/10.3892/mmr.2016.5784
  • Zhang, S., Wang, D., Huang, J., Hu, Y. & Xu, Y. (2019). Application of capsaicin as a potential new therapeutic drug in human cancers. Journal of clinical pharmacy and therapeutics. Journal of Clinical Pharmacy and Therapeutics, 45, 16-28. https://doi.org/10.3892/mmr.2016.5784
  • Zhu, M., Yu, X., Zheng, Z., Huang, J., Yang, X., Shi, H. (2020). Capsaicin suppressed activity of prostate cancer stem cells by inhibition of Wnt/β-catenin pathway. Phytotherapy Research, 34, 817-824. https://doi.org/10.1002/ptr.6563
There are 50 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Research articles
Authors

Ayhan Çetinkaya 0000-0002-8212-7149

Şeyda Karabörk 0000-0002-9026-4485

Hümeyra Çelik 0000-0002-3394-2438

İbrahim Ethem Torun 0000-0001-7035-3336

Early Pub Date July 27, 2022
Publication Date December 1, 2022
Submission Date April 14, 2022
Acceptance Date July 31, 2022
Published in Issue Year 2022 Volume: 6 Issue: 2

Cite

APA Çetinkaya, A., Karabörk, Ş., Çelik, H., Torun, İ. E. (2022). Evaluation of the Cytotoxic Efficacy of Thymoquinone and Capsaicin in the SH-SY5Y Neuroblastoma Cell Line. International Journal of Nature and Life Sciences, 6(2), 118-128. https://doi.org/10.47947/ijnls.1103372