Research Article
BibTex RIS Cite

Levetiracetam Protects Against Glutamate-Induced Excitotoxicity in SH-SY5Y Cell Line

Year 2022, Volume: 6 Issue: 2, 142 - 150, 01.12.2022
https://doi.org/10.47947/ijnls.1187054

Abstract

The latest research has shown that the new generation of antiepileptic drugs has neuroprotective on nervous system. On the other hand, the effect of levetiracetam, a new generation antiepileptic drug, on GIC in SH-SY5Y cells remains uncertain. This research aims to investigate the effect of levetiracetam on GIC and oxidant and antioxidant levels in SH-SY5Y cells. It is utilized SH-SY5Y cell line at this research. Four groups were formed to assess the impact of levetiracetam on SH-SY5Y cell death following GIC. While no treatment was administered to the control group, 10 mM glutamate was administered to the glutamate group for 24 hours (10, 25, 50 and 100 μg/ml). LEV at different concentrations was given to the levetiracetam for 24 hours. The levetiracetam + glutamate was pretreated with levetiracetam at several concentrations for 1 hour (10, 25, 50, and 100 μg/ml), which was followed by a 24-hour exposure to 10 mM glutamate. TAS and TOS levels in cells and cell viability were examined. Following the GIC, a 25 μg/ml-Levetiracetam improved cell viability in neuroblastoma cells dramatically (p < 0.05). LEV (25 ug/ml) + glutamate while enhanced TAS levels in neuroblastoma cells in comparison to the glutamate (p < 0.05), significantly reduced TOS levels (p < 0.05 Levetiracetam improves cell survival by reducing cell death following GIC in neuroblastoma cells. In the acute process, levetiracetam exerts a protective effect.

Supporting Institution

TUBITAK 2209- A University Students Research Projects Support Program.

Project Number

1919B012102071

References

  • Biedler, J. L., Helson, L., & Spengler, B. A. (1973). Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Research, 33(11), 2643-2652.
  • Chang, S. J., & Yu, B. C. (2010). Mitochondrial matters of the brain: mitochondrial dysfunction and oxidative status in epilepsy. Journal of Bioenergetics & Biomembranes, 42(6), 457-459.
  • Doble, A. (1999). The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacology & Therapeutics, 81(3), 163-221.
  • Ekici, M., & Taşkiran, A. Ş. (2020). The effect of valproic acid on DNA damage and apoptosis after pentylenetetrazole-induced epileptic seizure generated in the hippocampus and cortex in rats. Journal of the Institute of Science & Technology, 10(4), 2924-2931.
  • Erbaş, O., Yılmaz, M., & Taşkıran, D. (2016). Levetiracetam attenuates rotenone-induced toxicity: A rat model of Parkinson's disease. Environmental Toxicology & Pharmacology, 42, 226-230.
  • Erel, O. (2004). A novel automated method to measure total antioxidant response against potent free radical reactions. Clinical Biochemistry, 37(2), 112-119.
  • Erel, O. (2005). A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry, 38(12), 1103-1111.
  • Ergül, M., & Taşkıran, A. Ş. (2021). Thiamine protects glioblastoma cells against glutamate toxicity by suppressing oxidative/endoplasmic reticulum stress. Chemical & Pharmaceutical Bulletin, 69(9), 832-839.
  • Filiz, A. K., & Öztürk, A. (2021). The effect of carbamazepine against glutamate-induced cytotoxicity in the C6 cell line. International Journal of Scientific & Technological Research, 7(8), 67-76.
  • Filiz, A. K., Joha, Z., & Yulak F. (2021). Mechanism of anti-cancer effect of β-glucan on SH-SY5Y cell line. Bangladesh Journal of Pharmacology,16(4), 122-128.
  • Gluck, M. R., Jayatilleke, E., Shaw, S., Rowan, A. J., & Haroutunian, V. (2000). CNS oxidative stress associated with the kainic acid rodent model of experimental epilepsy. Epilepsy Research, 39(1), 63-71.
  • Herzog, R. I., Liu, C., Waxman, S. G., & Cummins, T. R. (2003). Calmodulin binds to the C terminus of sodium channels Nav1. 4 and Nav1. 6 and differentially modulates their functional properties. Journal of Neuroscience, 23(23), 8261-8270.
  • Jesberger, J.A., & Richardson, J.S. (1991). Oxygen free radicals and brain dysfunction. International Journal of Neuroscience, 57(1-2), 1-17.
  • Kritis, A. A., Stamoula, E. G., Paniskaki, K. A., & Vavilis, T. D. (2015). Researching glutamate–induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Frontiers in Cellular Neuroscience, 9, 91.
  • Lau, A., & Tymianski, M. (2010). Glutamate receptors, neurotoxicity and neurodegeneration. Pflügers Archiv-European Journal of Physiology, 460(2), 525-542.
  • Lewerenz, J., & Maher, P. (2015). Chronic glutamate toxicity in neurodegenerative diseases—what is the evidence?. Frontiers in Neuroscience, 9, 469. Liang, L. P., & Patel, M. (2006). Seizure-induced changes in mitochondrial redox status. Free Radical Biology & Medicine, 40(2), 316-322.
  • Lukyanetz, E. A., Shkryl, V. M. & Kostyuk, P. G. (2002). Selective blockade of N-type calcium channels by levetiracetam. Epilepsia, 43(1), 9-18.
  • Lynch, B. A., Lambeng, N., Nocka, K., Kensel-Hammes, P., Bajjalieh, S. M., Matagne, A., & Fuks, B. (2004). The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proceedings of the National Academy of Sciences, 101, 9861-9866.
  • MaCord, J. M. (2000). The evolution of free radical and oxidative stress. American Journal of Medicine, 108, 652-659.
  • Marini, H., Costa, C., Passaniti, M., Esposito, M., Campo, G. M., Ientile, R., ... & Squadrito, F. (2004). Levetiracetam protects against kainic acid-induced toxicity. Life Sciences, 74(10), 1253-1264.
  • Mayer, M. L. (2005). Glutamate receptor ion channels. Current Opinion in Neurobiology, 15(3), 282-288.
  • McCulloch, J. (1992). Excitatory amino acid antagonists and their potential for the treatment of ischaemic brain damage in man. British Journal of Clinical Pharmacology, 34(2), 106-114.
  • Miyazaki, I., Murakami, S., Torigoe, N., Kitamura, Y., & Asanuma, M. (2016). Neuroprotective effects of levetiracetam target xCT in astrocytes in parkinsonian mice. Journal of Neurochemistry, 136(1), 194-204.
  • de Albuquerque Oliveira, A., Linhares, M. I., Chaves Filho, M., Rios, E. R. V., de Carvalho Lima, C. N., Venancio, E. T., ... & de FranÃ, M. M. (2016). Antioxidant properties of antiepileptic drugs levetiracetam and clonazepam in mice brain after in vitro-induced oxidative stress. African Journal of Pharmacy & Pharmacology, 10(14), 278-288.
  • Sendrowski, K., Boćkowski, L., Sobaniec, W., Iłendo, E., Jaworowska, B., & Śmigielska-Kuzia, J. (2011). Levetiracetam protects hippocampal neurons in culture against hypoxia-induced injury. Folia Histochemica et Cytobiologica, 49(1), 148-152.
  • Stettner, M., Dehmel, T., Mausberg, A. K., Köhne, A., Rose, C. R., & Kieseier, B. C. (2011). Levetiracetam exhibits protective properties on rat Schwann cells in vitro. Journal of the Peripheral Nervous System, 16(3), 250-260.
  • Suebsoonthron, J., Jaroonwitchawan, T., Yamabhai, M., & Noisa, P. (2017). Inhibition of WNT signaling reduces differentiation and induces sensitivity to doxorubicin in human malignant neuroblastoma SH-SY5Y cells. Anticancer Drugs, 28, 469-479.
  • Tutanc, M., Aras, M., Dokuyucu, R., Altas, M., Zeren, C., Arica, V., Ozturk, O. H., Motor, S., & Yilmaz, C. (2015). Oxidative Status in Epileptic Children Using Carbamazepine. Iranian Journal of Pediatrics, 25(6), 3885.
  • Waxman, S. G. (2008). Mechanisms of disease: sodium channels and neuroprotection in multiple sclerosis-current status. Nature Clinical Practice Neurology, 4, 159–169.
  • Weita, L. T., Zhang S., & Wang Y. T. (2014). Excitotoxicity and stroke: identifying novel targets for neuroprotection. Progress in Neurobiology, 115, 157-188.
  • Xing, L. L., Sha, Y. L., Wu, Y. M., Hu, J. M., & Zhang, M. (2015). Preliminary analysis of stem cell-like cells in human neuroblastoma. World Journal of Pediatrics, 11, 54–60.
  • Yan, B. C., Shen, H., Zhang, Y., Zhu, X., Wang, J., Xu, P., Jiang, D., X. & Yu, X. (2018). The antiepileptic drug levetiracetam promotes neuroblast differentiation and expression of superoxide dismutase in the mouse hippocampal dentate gyrus via PI3K/Akt signalling. Neuroscience Letters, 662, 84-90.
  • Yasuhiro, Y., Ikeda, K., & Iwasaki, Y. (2012). Levetiracetam Protects Spinal Motor Neurons Against Glutamate-Induced Neurotoxicity in Culture. Journal of Neurology Research, 2(2), 39-43.
  • Zhou, Y., & Niels, C. D. (2014). Glutamate as a neurotransmitter in the healthy brain. Journal of Neural Transmission, 121(8), 799-817.
Year 2022, Volume: 6 Issue: 2, 142 - 150, 01.12.2022
https://doi.org/10.47947/ijnls.1187054

Abstract

Project Number

1919B012102071

References

  • Biedler, J. L., Helson, L., & Spengler, B. A. (1973). Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Research, 33(11), 2643-2652.
  • Chang, S. J., & Yu, B. C. (2010). Mitochondrial matters of the brain: mitochondrial dysfunction and oxidative status in epilepsy. Journal of Bioenergetics & Biomembranes, 42(6), 457-459.
  • Doble, A. (1999). The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacology & Therapeutics, 81(3), 163-221.
  • Ekici, M., & Taşkiran, A. Ş. (2020). The effect of valproic acid on DNA damage and apoptosis after pentylenetetrazole-induced epileptic seizure generated in the hippocampus and cortex in rats. Journal of the Institute of Science & Technology, 10(4), 2924-2931.
  • Erbaş, O., Yılmaz, M., & Taşkıran, D. (2016). Levetiracetam attenuates rotenone-induced toxicity: A rat model of Parkinson's disease. Environmental Toxicology & Pharmacology, 42, 226-230.
  • Erel, O. (2004). A novel automated method to measure total antioxidant response against potent free radical reactions. Clinical Biochemistry, 37(2), 112-119.
  • Erel, O. (2005). A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry, 38(12), 1103-1111.
  • Ergül, M., & Taşkıran, A. Ş. (2021). Thiamine protects glioblastoma cells against glutamate toxicity by suppressing oxidative/endoplasmic reticulum stress. Chemical & Pharmaceutical Bulletin, 69(9), 832-839.
  • Filiz, A. K., & Öztürk, A. (2021). The effect of carbamazepine against glutamate-induced cytotoxicity in the C6 cell line. International Journal of Scientific & Technological Research, 7(8), 67-76.
  • Filiz, A. K., Joha, Z., & Yulak F. (2021). Mechanism of anti-cancer effect of β-glucan on SH-SY5Y cell line. Bangladesh Journal of Pharmacology,16(4), 122-128.
  • Gluck, M. R., Jayatilleke, E., Shaw, S., Rowan, A. J., & Haroutunian, V. (2000). CNS oxidative stress associated with the kainic acid rodent model of experimental epilepsy. Epilepsy Research, 39(1), 63-71.
  • Herzog, R. I., Liu, C., Waxman, S. G., & Cummins, T. R. (2003). Calmodulin binds to the C terminus of sodium channels Nav1. 4 and Nav1. 6 and differentially modulates their functional properties. Journal of Neuroscience, 23(23), 8261-8270.
  • Jesberger, J.A., & Richardson, J.S. (1991). Oxygen free radicals and brain dysfunction. International Journal of Neuroscience, 57(1-2), 1-17.
  • Kritis, A. A., Stamoula, E. G., Paniskaki, K. A., & Vavilis, T. D. (2015). Researching glutamate–induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Frontiers in Cellular Neuroscience, 9, 91.
  • Lau, A., & Tymianski, M. (2010). Glutamate receptors, neurotoxicity and neurodegeneration. Pflügers Archiv-European Journal of Physiology, 460(2), 525-542.
  • Lewerenz, J., & Maher, P. (2015). Chronic glutamate toxicity in neurodegenerative diseases—what is the evidence?. Frontiers in Neuroscience, 9, 469. Liang, L. P., & Patel, M. (2006). Seizure-induced changes in mitochondrial redox status. Free Radical Biology & Medicine, 40(2), 316-322.
  • Lukyanetz, E. A., Shkryl, V. M. & Kostyuk, P. G. (2002). Selective blockade of N-type calcium channels by levetiracetam. Epilepsia, 43(1), 9-18.
  • Lynch, B. A., Lambeng, N., Nocka, K., Kensel-Hammes, P., Bajjalieh, S. M., Matagne, A., & Fuks, B. (2004). The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proceedings of the National Academy of Sciences, 101, 9861-9866.
  • MaCord, J. M. (2000). The evolution of free radical and oxidative stress. American Journal of Medicine, 108, 652-659.
  • Marini, H., Costa, C., Passaniti, M., Esposito, M., Campo, G. M., Ientile, R., ... & Squadrito, F. (2004). Levetiracetam protects against kainic acid-induced toxicity. Life Sciences, 74(10), 1253-1264.
  • Mayer, M. L. (2005). Glutamate receptor ion channels. Current Opinion in Neurobiology, 15(3), 282-288.
  • McCulloch, J. (1992). Excitatory amino acid antagonists and their potential for the treatment of ischaemic brain damage in man. British Journal of Clinical Pharmacology, 34(2), 106-114.
  • Miyazaki, I., Murakami, S., Torigoe, N., Kitamura, Y., & Asanuma, M. (2016). Neuroprotective effects of levetiracetam target xCT in astrocytes in parkinsonian mice. Journal of Neurochemistry, 136(1), 194-204.
  • de Albuquerque Oliveira, A., Linhares, M. I., Chaves Filho, M., Rios, E. R. V., de Carvalho Lima, C. N., Venancio, E. T., ... & de FranÃ, M. M. (2016). Antioxidant properties of antiepileptic drugs levetiracetam and clonazepam in mice brain after in vitro-induced oxidative stress. African Journal of Pharmacy & Pharmacology, 10(14), 278-288.
  • Sendrowski, K., Boćkowski, L., Sobaniec, W., Iłendo, E., Jaworowska, B., & Śmigielska-Kuzia, J. (2011). Levetiracetam protects hippocampal neurons in culture against hypoxia-induced injury. Folia Histochemica et Cytobiologica, 49(1), 148-152.
  • Stettner, M., Dehmel, T., Mausberg, A. K., Köhne, A., Rose, C. R., & Kieseier, B. C. (2011). Levetiracetam exhibits protective properties on rat Schwann cells in vitro. Journal of the Peripheral Nervous System, 16(3), 250-260.
  • Suebsoonthron, J., Jaroonwitchawan, T., Yamabhai, M., & Noisa, P. (2017). Inhibition of WNT signaling reduces differentiation and induces sensitivity to doxorubicin in human malignant neuroblastoma SH-SY5Y cells. Anticancer Drugs, 28, 469-479.
  • Tutanc, M., Aras, M., Dokuyucu, R., Altas, M., Zeren, C., Arica, V., Ozturk, O. H., Motor, S., & Yilmaz, C. (2015). Oxidative Status in Epileptic Children Using Carbamazepine. Iranian Journal of Pediatrics, 25(6), 3885.
  • Waxman, S. G. (2008). Mechanisms of disease: sodium channels and neuroprotection in multiple sclerosis-current status. Nature Clinical Practice Neurology, 4, 159–169.
  • Weita, L. T., Zhang S., & Wang Y. T. (2014). Excitotoxicity and stroke: identifying novel targets for neuroprotection. Progress in Neurobiology, 115, 157-188.
  • Xing, L. L., Sha, Y. L., Wu, Y. M., Hu, J. M., & Zhang, M. (2015). Preliminary analysis of stem cell-like cells in human neuroblastoma. World Journal of Pediatrics, 11, 54–60.
  • Yan, B. C., Shen, H., Zhang, Y., Zhu, X., Wang, J., Xu, P., Jiang, D., X. & Yu, X. (2018). The antiepileptic drug levetiracetam promotes neuroblast differentiation and expression of superoxide dismutase in the mouse hippocampal dentate gyrus via PI3K/Akt signalling. Neuroscience Letters, 662, 84-90.
  • Yasuhiro, Y., Ikeda, K., & Iwasaki, Y. (2012). Levetiracetam Protects Spinal Motor Neurons Against Glutamate-Induced Neurotoxicity in Culture. Journal of Neurology Research, 2(2), 39-43.
  • Zhou, Y., & Niels, C. D. (2014). Glutamate as a neurotransmitter in the healthy brain. Journal of Neural Transmission, 121(8), 799-817.
There are 34 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Research articles
Authors

Arzuhan Çetindağ Çiltaş 0000-0002-5420-3546

Sema Gündoğdu 0000-0002-0407-9874

Fatih Yulak 0000-0003-3708-6752

Project Number 1919B012102071
Early Pub Date July 27, 2022
Publication Date December 1, 2022
Submission Date October 10, 2022
Acceptance Date November 19, 2022
Published in Issue Year 2022 Volume: 6 Issue: 2

Cite

APA Çetindağ Çiltaş, A., Gündoğdu, S., & Yulak, F. (2022). Levetiracetam Protects Against Glutamate-Induced Excitotoxicity in SH-SY5Y Cell Line. International Journal of Nature and Life Sciences, 6(2), 142-150. https://doi.org/10.47947/ijnls.1187054